Tibial Damage Caused by T-2 Toxin in Goslings: Bone Dysplasia, Poor Bone Quality, Hindered Chondrocyte Differentiation, and Imbalanced Bone Metabolism
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Sample Collection
2.2. Body Measurements
2.3. Tibial Phenotypic Measurements and Imaging Analysis
2.4. Tibial Bone-Breaking Strength Determination
2.5. Tibial Bone Mineral Density Determination
2.6. Tibial Bone Composition Determination
2.7. Tibial Stainings by Hematoxylin–Eosin (HE), Alcian Blue (AB), Safranin O-Fast Green (SF), and Tartrate-Resistant Acid Phosphatase (TRAP)
2.8. RT-qPCR
2.9. Serum Biochemical Tests
2.10. ELISA
2.11. Statistical Analysis
3. Results
3.1. Effects of T-2 Toxin on Body Weight and Body Size
3.2. Tibial Phenotype, Quality, and Composition under T-2 Toxin Exposure
3.3. Tibial Growth Plate Lesions Induced by T-2 Toxin
3.4. Imbalance of Osteogenesis and Osteoclastogenesis Caused by T-2 Toxin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Escrivá, L.; Font, G.; Manyes, L. In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. Food Chem. Toxicol. 2015, 78, 185–206. [Google Scholar] [CrossRef]
- Fernye, C.; Ancsin, Z.; Bócsai, A.; Balogh, K.; Mézes, M.; Erdélyi, M. Role of glutathione redox system on the T-2 toxin tolerance of pheasant (Phasianus colchicus). Toxicol. Res. 2018, 34, 249–257. [Google Scholar] [CrossRef]
- Mézes, M.; Barta, M.; Nagy, G. Comparative investigation on the effect of T-2 mycotoxin on lipid peroxidation and antioxidant status in different poultry species. Res. Vet. Sci. 1999, 66, 19–23. [Google Scholar] [CrossRef]
- Wu, Q.; Qin, Z.; Kuca, K.; You, L.; Zhao, Y.; Liu, A.; Musilek, K.; Chrienova, Z.; Nepovimova, E.; Oleksak, P.; et al. An update on T-2 toxin and its modified forms: Metabolism, immunotoxicity mechanism, and human exposure assessment. Arch. Toxicol. 2020, 94, 3645–3669. [Google Scholar] [CrossRef] [PubMed]
- Szabó, R.T.; Kovács-Weber, M.; Erdélyi, M.; Balogh, K.; Fazekas, N.; Horváth, Á.; Mézes, M.; Kovács, B. Comet assay study of the genotoxic effect of T-2 and HT-2 toxins in chicken hepatocytes. Biol. Futura 2019, 70, 330–335. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, L.; Ou, Z.; Ma, C.; Kong, L.; Huang, Y.; Chen, Y.; Zhao, H.; Wen, L.; Wu, J.; et al. Betulinic acid protects against renal damage by attenuation of oxidative stress and inflammation via Nrf2 signaling pathway in T-2 toxin-induced mice. Int. Immunopharmacol. 2021, 101, 108210. [Google Scholar] [CrossRef]
- Yin, H.; Han, S.; Chen, Y.; Wang, Y.; Li, D.; Zhu, Q. T-2 toxin induces oxidative stress, apoptosis and cytoprotective autophagy in chicken hepatocytes. Toxins 2020, 12, 90. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Bao, Q.; Weng, K.; Liu, J.; Luo, S.; Chen, J.; Li, Z.; Cao, Z.; Zhang, Y.; Zhang, Y.; et al. Effects of T-2 toxin on growth performance, feather quality, tibia development and blood parameters in Yangzhou goslings. Poult. Sci. 2023, 102, 102382. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.F.; Lin, X.L.; Wang, X.; Ping, Z.G.; Guo, X. Comparison of apoptosis and autophagy in human chondrocytes induced by the T-2 and HT-2 toxins. Toxins 2019, 11, 260. [Google Scholar] [CrossRef]
- Yan, D.; Song, Y.; Shen, B.; Kang, P.; Pei, F. Magnetic resonance imaging in the tibial epiphyseal growth plate development of Wistar rat. J. Orthop. Surg. Res. 2014, 9, 39. [Google Scholar] [CrossRef]
- Devegowda, G.; Ravikiran, D. Mycotoxins and skeletal problems in poultry. World Mycotoxin J. 2009, 2, 331–337. [Google Scholar] [CrossRef]
- Yu, J.; Wan, Y.; Yang, H.; Wang, Z. Age-and sex-related changes in body weight, muscle, and tibia in growing Chinese domestic geese (Anser domesticus). Agriculture 2022, 12, 463. [Google Scholar] [CrossRef]
- Osiak-Wicha, C.; Tomaszewska, E.; Muszyński, S.; Dobrowolski, P.; Andres, K.; Schwarz, T.; Świetlicki, M.; Mielnik-Błaszczak, M.; Arciszewski, M.B. Developmental changes in tibia and humerus of goose: Morphometric, densitometric, and mechanical analysis. Animal 2023, 17, 100960. [Google Scholar] [CrossRef] [PubMed]
- Licata, A. Bone density vs bone quality: What’s a clinician to do? Clevel. Clin. J. Med. 2009, 76, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Rath, N.C.; Huff, G.R.; Huff, W.E.; Balog, J.M. Factors regulating bone maturity and strength in poultry. Poult. Sci. 2000, 79, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Friedman, A.W. Important determinants of bone strength: Beyond bone mineral density. J. Clin. Rheumatol. 2006, 12, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Chen, Y.; Xu, L.; Su, G.; Wang, Z.; Yang, H. Requirement of non-phytate phosphorus in 1-to 28-day-old geese based on growth performance, serum variables, and bone characteristics. Agriculture 2022, 12, 479. [Google Scholar] [CrossRef]
- Liang, J.R.; Xiao, X.; Yang, H.M.; Wang, Z.Y. Assessment of vitamin A requirement of gosling in 0-28 d based on growth performance and bone indexes. Poult. Sci. 2021, 100, 101015. [Google Scholar] [CrossRef]
- Wongdee, K.; Krishnamra, N.; Charoenphandhu, N. Endochondral bone growth, bone calcium accretion, and bone mineral density: How are they related? J. Physiol. Sci. 2012, 62, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Burdan, F.; Szumiło, J.; Korobowicz, A.; Farooquee, R.; Patel, S.; Patel, A.; Dave, A.; Szumiło, M.; Solecki, M.; Klepacz, R.; et al. Morphology and physiology of the epiphyseal growth plate. Folia Histochem. Cytobiol. 2009, 47, 5–16. [Google Scholar] [CrossRef]
- Farquharson, C.; Jefferies, D. Chondrocytes and longitudinal bone growth: The development of tibial dyschondroplasia. Poult. Sci. 2000, 79, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Chung, R.; Foster, B.K.; Xian, C.J. Injury responses and repair mechanisms of the injured growth plate. Front. Biosci. (Schol. Ed.) 2011, 3, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Jahejo, A.R.; Tian, W.X. Cellular, molecular and genetical overview of avian tibial dyschondroplasia. Res. Vet. Sci. 2021, 135, 569–579. [Google Scholar] [CrossRef]
- Yu, F.F.; Zuo, J.; Sun, L.; Yu, S.Y.; Lei, X.L.; Zhu, J.H.; Zhou, G.Y.; Guo, X.; Ba, Y. Animal models of kashin-beck disease exposed to environmental risk factors: Methods and comparisons. Ecotoxicol. Environ. Saf. 2022, 234, 113419. [Google Scholar] [CrossRef]
- Nascimento, J.; Nunes, V.; Guedes, R.; Rachid, M. T-2 toxin and disturbed endochondral bone growth in broiler chicken. Arq. Bras. Med. Vet. Zootec. 2001, 53, 332–341. [Google Scholar] [CrossRef]
- He, S.J.; Hou, J.F.; Dai, Y.Y.; Zhou, Z.L.; Deng, Y.F. N-acetyl-cysteine protects chicken growth plate chondrocytes from T-2 toxin-induced oxidative stress. J. Appl. Toxicol. 2012, 32, 980–985. [Google Scholar] [CrossRef]
- Suzuki, A.; Minamide, M.; Iwaya, C.; Ogata, K.; Iwata, J. Role of metabolism in bone development and homeostasis. Int. J. Mol. Sci. 2020, 21, 8992. [Google Scholar] [CrossRef] [PubMed]
- Hart, N.H.; Newton, R.U.; Tan, J.; Rantalainen, T.; Chivers, P.; Siafarikas, A.; Nimphius, S. Biological basis of bone strength: Anatomy, physiology and measurement. J. Musculoskelet. Neuronal Interact. 2020, 20, 347–371. [Google Scholar]
- Lacey, D.L.; Boyle, W.J.; Simonet, W.S.; Kostenuik, P.J.; Dougall, W.C.; Sullivan, J.K.; Martin, J.S.; Dansey, R. Bench to bedside: Elucidation of the OPG-RANK–RANKL pathway and the development of denosumab. Nat. Rev. Drug Discov. 2012, 11, 401–419. [Google Scholar] [CrossRef]
- Tsukasaki, M.; Asano, T.; Muro, R.; Huynh, N.C.N.; Komatsu, N.; Okamoto, K.; Nakano, K.; Okamura, T.; Nitta, T.; Takayanagi, H. OPG production matters where it happened. Cell Rep. 2020, 32, 108124. [Google Scholar] [CrossRef]
- Cui, Y.L.; Cao, Z.; Zhang, J.; Song, M.; Li, Y.F. Effects of T-2 toxin exposure on bone metabolism and bone development of mice. J. Northeast Agric. Univ. (Engl. Ed.) 2022, 29, 89–96. [Google Scholar]
- GB/T 36784-2018; Yangzhou Goose. Ministry of Agriculture and Rural Affairs: Beijing, China, 2018.
- NY/T 823-2020; Performance Terminology and Measurements for Poultry. Ministry of Agriculture and Rural Affairs: Beijing, China, 2020.
- Cui, Y.M.; Wang, J.; Zhang, H.J.; Qi, G.H.; Wu, S.G. Effect of photoperiod on eggshell quality and quality characteristics of tibia, femur, and ulna in laying ducks. Poult. Sci. 2021, 100, 101376. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Zeng, Q.F.; Bai, S.P.; Wang, J.P.; Ding, X.M.; Xuan, Y.; Su, Z.W.; Fraley, G.S.; Zhang, K.Y. Study on the morphology and mineralization of the tibia in meat ducks from 1 to 56 d. Poult. Sci. 2019, 98, 3355–3364. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Kang, P.; Li, Y.; Yang, J.; Shen, B.; Zhou, Z.; Deng, J.; Pei, F. Radiographic findings of Wistar rats fed with T-2 toxin and Kashin-Beck disease-affected diet. Int. J. Rheum. Dis. 2011, 14, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, H.M.; Jang, J.E.; Kim, C.M.; Kim, E.Y.; Lee, D.; Khang, G. Osteogenic Differentiation of Bone Marrow Stem Cell in Poly(Lactic-co-Glycolic Acid) Scaffold Loaded Various Ratio of Hydroxyapatite. Int. J. Stem Cells 2013, 6, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Fan, R.; Zhou, Z. Endoplasmic reticulum stress, chondrocyte apoptosis and oxidative stress in cartilage of broilers affected by spontaneous femoral head necrosis. Poult. Sci. 2021, 100, 101258. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Fu, X.; Gong, A.; Gu, J.; Zou, H.; Yuan, Y.; Song, R.; Ma, Y.; Bian, J.; Liu, Z.; et al. Oligomeric proanthocyanidins ameliorates osteoclastogenesis through reducing OPG/RANKL ratio in chicken’s embryos. Poult. Sci. 2024, 103, 103706. [Google Scholar] [CrossRef] [PubMed]
- Janik, E.; Niemcewicz, M.; Podogrocki, M.; Ceremuga, M.; Stela, M.; Bijak, M. T-2 toxin-the most toxic trichothecene mycotoxin: Metabolism, toxicity, and decontamination strategies. Molecules 2021, 26, 6868. [Google Scholar] [CrossRef] [PubMed]
- Meneely, J.; Greer, B.; Kolawole, O.; Elliott, C. T-2 and HT-2 toxins: Toxicity, occurrence and analysis: A review. Toxins 2023, 15, 481. [Google Scholar] [CrossRef]
- Shi, H.; Li, S.; Bai, Y.; Prates, L.L.; Lei, Y.; Yu, P. Mycotoxin contamination of food and feed in China: Occurrence, detection techniques, toxicological effects and advances in mitigation technologies. Food Control 2018, 91, 202–215. [Google Scholar] [CrossRef]
- Huang, T.Y.; Song, W.X.; Wang, Y.S.; Liu, Y.; Chen, F.J.; Chen, Y.H.; Jiang, Y.B.; Zhang, C.; Yang, X. A review of anorexia induced by T-2 toxin. Food Chem. Toxicol. 2023, 179, 113982. [Google Scholar] [CrossRef]
- Yohannes, T.; Sharma, A.; Sumi, V.; Rout, S. Clinical manifestation and growth performance of broiler chickens fed with T-2 toxin and co-infected with infectious bronchitis virus. ISABB J. Food Agric. Sci. 2012, 2, 30–35. [Google Scholar]
- Gaigé, S.; Djelloul, M.; Tardivel, C.; Airault, C.; Félix, B.; Jean, A.; Lebrun, B.; Troadec, J.-D.; Dallaporta, M. Modification of energy balance induced by the food contaminant T-2 toxin: A multimodal gut-to-brain connection. Brain Behav. Immun. 2014, 37, 54–72. [Google Scholar] [CrossRef] [PubMed]
- Sheng, K.; Lu, X.; Yue, J.; Gu, W.; Gu, C.; Zhang, H.; Wu, W. Role of neurotransmitters 5-hydroxytryptamine and substance P in anorexia induction following oral exposure to the trichothecene T-2 toxin. Food Chem. Toxicol. 2019, 123, 1–8. [Google Scholar] [CrossRef]
- Liu, X.; Guo, P.; Liu, A.; Wu, Q.; Xue, X.; Dai, M.; Hao, H.; Qu, W.; Xie, S.; Wang, X. Nitric oxide (NO)-mediated mitochondrial damage plays a critical role in T-2 toxin-induced apoptosis and growth hormone deficiency in rat anterior pituitary GH3 cells. Food Chem. Toxicol. 2017, 102, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; You, L.; Wu, W.; Wang, X.; Chrienova, Z.; Nepovimova, E.; Wu, Q.; Kuca, K. The neurotoxicity of trichothecenes T-2 toxin and deoxynivalenol (DON): Current status and future perspectives. Food Chem. Toxicol. 2020, 145, 111676. [Google Scholar] [CrossRef]
- Sokolović, M.; Garaj-Vrhovac, V.; ŠImpraga, B. T-2 toxin: Incidence and toxicity in poultry. Arh. Hig. Rada Toksikol. 2008, 59, 43–52. [Google Scholar] [CrossRef]
- Vörösházi, J.; Neogrády, Z.; Mátis, G.; Mackei, M. Pathological consequences, metabolism and toxic effects of trichothecene T-2 toxin in poultry. Poult. Sci. 2024, 103, 103471. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Wang, Y.; Huang, T.; Liu, Y.; Chen, F.; Chen, Y.; Jiang, Y.; Zhang, C.; Yang, X. T-2 toxin metabolism and its hepatotoxicity: New insights on the molecular mechanism and detoxification. Environ. Pollut. 2023, 330, 121784. [Google Scholar] [CrossRef]
- Assan, N. Bioprediction of body weight and carcass parameters from morphometric measurements in livestock and poultry. Sci. J. Rev. 2013, 2, 140–150. [Google Scholar]
- Nyalala, I.; Okinda, C.; Kunjie, C.; Korohou, T.; Nyalala, L.; Chao, Q. Weight and volume estimation of poultry and products based on computer vision systems: A review. Poult. Sci. 2021, 100, 101072. [Google Scholar] [CrossRef] [PubMed]
- Šromová, V.; Sobola, D.; Kaspar, P. A brief review of bone cell function and importance. Cells 2023, 12, 2576. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Rodriguez, E.; Benavides-Reyes, C.; Torres, C.; Dominguez-Gasca, N.; Garcia-Ruiz, A.I.; Gonzalez-Lopez, S.; Rodriguez-Navarro, A.B. Changes with age (from 0 to 37 D) in tibiae bone mineralization, chemical composition and structural organization in broiler chickens. Poult. Sci. 2019, 98, 5215–5225. [Google Scholar] [CrossRef] [PubMed]
- Glimcher, M.J. Bone: Nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Rev. Mineral. Geochem. 2006, 64, 223–282. [Google Scholar] [CrossRef]
- Fonseca, H.; Moreira-Gonçalves, D.; Coriolano, H.J.; Duarte, J.A. Bone quality: The determinants of bone strength and fragility. Sports Med. 2014, 44, 37–53. [Google Scholar] [CrossRef]
- Mackie, E.; Ahmed, Y.; Tatarczuch, L.; Chen, K.S.; Mirams, M. Endochondral ossification: How cartilage is converted into bone in the developing skeleton. Int. J. Biochem. Cell Biol. 2008, 40, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Rigueur, D.; Lyons, K.M. TGFβ as a gatekeeper of BMP action in the developing growth plate. Bone 2020, 137, 115439. [Google Scholar] [CrossRef] [PubMed]
- Grimsrud, C.D.; Rosier, R.N.; Puzas, J.E.; Reynolds, P.R.; Reynolds, S.D.; Hicks, D.G.; O’Keefe, R.J. Bone morphogenetic protein-7 in growth-plate chondrocytes: Regulation by retinoic acid is dependent on the stage of chondrocyte maturation. J. Orthop. Res. 1998, 16, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Perry, M.J.; McDougall, K.E.; Hou, S.C.; Tobias, J.H. Impaired growth plate function in bmp-6 null mice. Bone 2008, 42, 216–225. [Google Scholar] [CrossRef]
- Kronenberg, H.M. Developmental regulation of the growth plate. Nature 2003, 423, 332–336. [Google Scholar] [CrossRef]
- Song, H.; Park, K.H. Regulation and function of SOX9 during cartilage development and regeneration. Semin. Cancer Biol. 2020, 67, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Wu, B.; Murali, S.; Lanigan, T.; Coleman, R.M. A synthetic, closed-looped gene circuit for the autonomous regulation of RUNX2 activity during chondrogenesis. FASEB J. 2024, 38, e23484. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Shi, Y.; Zhang, Y.; Zhang, R.; Cao, L.; Liu, Y.; Ma, T.; Chen, J. T-2 toxin-induced chondrocyte apoptosis contributes to growth plate damage through Smad2 and Smad3 signaling. Toxicon 2023, 232, 107193. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.N.; Mu, Y.D.; Wang, H.; Zhang, M.; Shi, Y.W.; Mi, G.; Peng, L.X.; Chen, J.H. Endoplasmic reticulum stress pathway mediates T-2 toxin-induced chondrocyte apoptosis. Toxicology 2021, 464, 152989. [Google Scholar] [CrossRef] [PubMed]
- Obeng, E. Apoptosis (programmed cell death) and its signals-A review. Braz. J. Biol. 2020, 81, 1133–1143. [Google Scholar] [CrossRef] [PubMed]
- Bertheloot, D.; Latz, E.; Franklin, B.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell. Mol. Immunol. 2021, 18, 1106–1121. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Ahmed, A.F.; Li, M.; Li, M.; Yan, Z.; Wang, J. A review: The mechanism of plant-derived polysaccharides on osteoblasts and osteoclasts. J. Future Foods 2024, 4, 183–192. [Google Scholar] [CrossRef]
- Gori, F.; Hofbauer, L.C.; Dunstan, C.R.; Spelsberg, T.C.; Khosla, S.; Riggs, B.L. The expression of osteoprotegerin and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated. Endocrinology 2000, 141, 4768–4776. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, R. Biochemical markers of bone turnover. Clin. Chim. Acta 2001, 313, 95–105. [Google Scholar] [CrossRef]
- Woitge, H.; Seibel, M.; Ziegler, R. Comparison of total and bone-specific alkaline phosphatase in patients with nonskeletal disorder or metabolic bone diseases. Clin. Chem. 1996, 42, 1796–1804. [Google Scholar] [CrossRef]
- Bian, X.; Jin, L.; Wang, Y.; Yuan, M.; Yao, Z.; Ning, B.; Gao, W.; Guo, C. Riboflavin deficiency reduces bone mineral density in rats by compromising osteoblast function. J. Nutr. Biochem. 2023, 122, 109453. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.T.; Wu, K.-T.; Sun, H.; Khalil, M.M.; Dai, J.F.; Liu, Y.; Liu, Q.; Zhang, N.Y.; Qi, D.S.; Sun, L.H. A novel modified hydrated sodium calcium aluminosilicate (HSCAS) adsorbent can effectively reduce T-2 toxin-induced toxicity in growth performance, nutrient digestibility, serum biochemistry, and small intestinal morphology in chicks. Toxins 2019, 11, 199. [Google Scholar] [CrossRef] [PubMed]
- Vorland, C.J.; Stremke, E.R.; Moorthi, R.N.; Hill Gallant, K.M. Effects of excessive dietary phosphorus intake on bone health. Curr. Osteoporos. Rep. 2017, 15, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.W.; Wen, J.; Jiang, X.X.; Wang, W.C.; Yang, L. High calcium to phosphorus ratio impairs growth and bone mineralization in Pekin ducklings. Poult. Sci. 2018, 97, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Porwal, K.; Sinha, R.A.; Chattopadhyay, N.; Gupta, S.K. Moderate/subclinical calcium deficiency attenuates trabecular mass, microarchitecture and bone growth in growing rats. Biochem. Biophys. Rep. 2021, 26, 101033. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.C.; Teng, X.Q.; Xu, D.L.; Chi, X.; Ge, M.; Xu, S.W. Influences of low level of dietary calcium on bone characters in laying hens. Poult. Sci. 2020, 99, 7084–7091. [Google Scholar] [CrossRef]
- Lombardi, G.; Ziemann, E.; Banfi, G.; Corbetta, S. Physical activity-dependent regulation of parathyroid hormone and calcium-phosphorous metabolism. Int. J. Mol. Sci. 2020, 21, 5388. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Y.; Hao, Z.; Hu, Y.; Li, J. Parathyroid hormone and its related peptides in bone metabolism. Biochem. Pharmacol. 2021, 192, 114669. [Google Scholar] [CrossRef]
- Yu, P.; Liu, Y.; Xie, J.; Li, J. Spatiotemporally controlled calcitonin delivery: Long-term and targeted therapy of skeletal diseases. J. Control Release 2021, 338, 486–504. [Google Scholar] [CrossRef]
- Katica, M.; Tepekoy, F. The effect of Calcitriol 1, 25 (OH) 2-D3 on osteoblast-like cell proliferation during in vitro cultivation. MAE Vet. Fak. Derg. 2020, 5, 11–17. [Google Scholar]
- Nel, H.; Davis, B.; Adler, B.; Gabbay, E. Case report of osteolytic lesions in a patient with multisystem granulomatous disease. BMJ Case Rep. 2021, 14, e242685. [Google Scholar] [CrossRef] [PubMed]
Ingredient Composition (%) | Nutritional Level (%) | ||
---|---|---|---|
Corn | 66.60 | DM | 87.49 |
Soybean meal | 26.50 | ME (MJ/kg) | 11.64 |
Rice husk | 0.50 | Crude protein | 17.04 |
Stone powder | 0.50 | Crude fiber | 3.66 |
Calcium hydrogen phosphate | 1.25 | Crude fat | 2.48 |
Methionine | 0.35 | Ca | 0.68 |
Salt | 0.50 | Total phosphorus | 0.66 |
Premix | 3.80 | Available phosphorus | 0.41 |
Total | 100.00 | Lysine | 0.86 |
Methionine | 0.60 |
Gene | Accession Number | Sequence (5′→3′) | Product Length (bp) |
---|---|---|---|
BMP2 | XM_048060962.1 | F: CAAACAGCGTAAACGCCACA | 131 |
R: GACATTCCCCGTGGCAGTAA | |||
BMP6 | XM_048072067.1 | F: GCCTCCTCGGGCTTCCTCTA | 293 |
R: CTCATGACCATGTCAGCGTCG | |||
BMP7 | XM_048072573.1 | F: TTGTTCCTGCTCGACTCTCG | 124 |
R: CAGATAGCTGCAGGCCAAGA | |||
SOX9 | XM_048064463.1 | F: GCAGCTCACCAGACCCTAAA | 127 |
R: GCAGGAAAAGTCTGCGGAAG | |||
RUNX2 | XM_048065734.1 | F: TGCCACTTCACCACCAACTT | 139 |
R: AGGCGGTTTGGGATGTAAGG | |||
BAK1 | XM_013197006.2 | F: CAGCCCACCAAGGAGAA | 153 |
R: GAGGAAGCCCGTTATGC | |||
BCL2 | XM_048076100.1 | F: ATGACCGAGTACCTGAACCG | 155 |
R: GCTCCCACCAGAACCAAAC | |||
CASP9 | XM_048067306.1 | F: TTCCAGGCTCTGTCGGGTAA | 150 |
R: GTCCAGCGTTTCCACATACCA | |||
CASP3 | XM_048078363.1 | F: CTGGTATTGAGGCAGACAGTGG | 158 |
R: CAGCACCCTACACAGAGACTGAA | |||
BGP | XM_048054300.1 | F: TTGGGGTTTTAAGAGGTGCTGG | 231 |
R: GCAGACACGCTAGGAGCATT | |||
OPG | XM_013185061.2 | F: CATCTCAACACACTGATGGCAAG | 147 |
R: GATGGTGTCTTGGTCTCCATTCT | |||
RANKL | XM_013179680 | F: ACCTGACTAAAAGAGGGCTTCAG | 102 |
R: AGTATTTGGTGCTTCCTCCCTTC | |||
RANK | XM_048076117.1 | F: CAGAGATGCGTTCGTTGCTG | 230 |
R: CAGGTGGGAAATGGTCGTGA | |||
ACTB | XM_013174886.1 | F: GCACCCAGCACGATGAAAAT | 150 |
R: GACAATGGAGGGTCCGGATT |
Item | 0 mg/kg | 0.5 mg/kg | 1.0 mg/kg | 2.0 mg/kg | p-Value |
---|---|---|---|---|---|
Body weight (g) | 646.35 ± 30.84 a | 576.46 ± 21.61 a | 553.24 ± 33.77 a | 413.30 ± 31.98 b | 0.000 |
Body slope length (cm) | 13.98 ± 0.16 a | 12.67 ± 0.37 ab | 12.47 ± 0.38 b | 11.01 ± 0.39 c | 0.000 |
Keel length (cm) | 6.73 ± 0.22 a | 5.49 ± 0.09 b | 5.44 ± 0.13 b | 5.31 ± 0.18 b | 0.000 |
Chest depth (cm) | 5.07 ± 0.13 a | 5.18 ± 0.15 a | 4.82 ± 0.10 a | 4.11 ± 0.07 b | 0.000 |
Chest width (cm) | 5.39 ± 0.09 | 5.30 ± 0.16 | 5.03 ± 0.14 | 4.84 ± 0.16 | 0.029 |
Shank length (mm) | 67.78 ± 1.20 a | 56.71 ± 0.73 b | 55.00 ± 0.60 bc | 50.63 ± 1.63 c | 0.000 |
Shank circumference (cm) | 3.74 ± 0.09 a | 3.53 ± 0.10 ab | 3.48 ± 0.08 ab | 3.21 ± 0.12 b | 0.008 |
Pelvis width (cm) | 5.76 ± 0.09 a | 5.07 ± 0.11 b | 5.01 ± 0.13 b | 4.76 ± 0.20 b | 0.000 |
Half-diving depth (cm) | 33.50 ± 0.57 a | 28.24 ± 0.54 b | 26.74 ± 0.71 bc | 25.19 ± 0.91 c | 0.000 |
Item | 0 mg/kg | 0.5 mg/kg | 1.0 mg/kg | 2.0 mg/kg | p-Value |
---|---|---|---|---|---|
Weight (g) | 8.96 ± 0.49 a | 7.73 ± 0.29 ab | 7.02 ± 0.46 bc | 5.49 ± 0.45 c | 0.000 |
Volume (mL) | 6.63 ± 0.49 a | 5.54 ± 0.27 ab | 5.28 ± 0.33 ab | 3.93 ± 0.41 b | 0.001 |
Length (mm) | 99.25 ± 2.34 a | 90.89 ± 1.25 ab | 91.03 ± 1.73 ab | 84.44 ± 2.39 b | 0.000 |
Width (mm) | 6.06 ± 0.12 a | 5.59 ± 0.11 ab | 5.38 ± 0.15 bc | 4.81 ± 0.18 c | 0.000 |
Circumference (cm) | 2.26 ± 0.07 a | 2.06 ± 0.03 ab | 2.00 ± 0.04 bc | 1.81 ± 0.06 c | 0.000 |
Breaking strength (N) | 120.55 ± 3.96 a | 105.08 ± 4.21 ab | 91.55 ± 3.47 b | 75.37 ± 2.46 c | 0.000 |
Skim weight (g) | 2.93 ± 0.14 a | 2.43 ± 0.09 ab | 2.28 ± 0.15 bc | 1.71 ± 0.14 c | 0.000 |
Density (g/cm3) | 0.56 ± 0.02 a | 0.49 ± 0.02 ab | 0.48 ± 0.02 b | 0.48 ± 0.01 b | 0.004 |
Ash (%) | 46.36 ± 0.78 a | 42.57 ± 0.75 b | 43.51 ± 0.88 ab | 42.65 ± 0.84 b | 0.005 |
Ca (%) | 22.08 ± 0.32 a | 20.70 ± 0.49 ab | 19.92 ± 0.37 b | 19.51 ± 0.46 b | 0.000 |
P (%) | 10.84 ± 0.22 a | 10.24 ± 0.31 ab | 9.43 ± 0.32 b | 10.14 ± 0.24 ab | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, W.; Hou, L.; Bao, Q.; Xu, Q.; Chen, G. Tibial Damage Caused by T-2 Toxin in Goslings: Bone Dysplasia, Poor Bone Quality, Hindered Chondrocyte Differentiation, and Imbalanced Bone Metabolism. Animals 2024, 14, 2281. https://doi.org/10.3390/ani14152281
Gu W, Hou L, Bao Q, Xu Q, Chen G. Tibial Damage Caused by T-2 Toxin in Goslings: Bone Dysplasia, Poor Bone Quality, Hindered Chondrocyte Differentiation, and Imbalanced Bone Metabolism. Animals. 2024; 14(15):2281. https://doi.org/10.3390/ani14152281
Chicago/Turabian StyleGu, Wang, Lie Hou, Qiang Bao, Qi Xu, and Guohong Chen. 2024. "Tibial Damage Caused by T-2 Toxin in Goslings: Bone Dysplasia, Poor Bone Quality, Hindered Chondrocyte Differentiation, and Imbalanced Bone Metabolism" Animals 14, no. 15: 2281. https://doi.org/10.3390/ani14152281
APA StyleGu, W., Hou, L., Bao, Q., Xu, Q., & Chen, G. (2024). Tibial Damage Caused by T-2 Toxin in Goslings: Bone Dysplasia, Poor Bone Quality, Hindered Chondrocyte Differentiation, and Imbalanced Bone Metabolism. Animals, 14(15), 2281. https://doi.org/10.3390/ani14152281