Joint Genomic and Transcriptomic Analysis Reveals Candidate Genes Associated with Plumage Color Traits in Matahu Ducks
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Animals and Sample Collection
2.2. Genome Resequencing and Variant Site Detection
2.3. Select Scanning Analysis
2.4. cDNA Library Construction and RNA-Sequencing
2.5. Significant Difference Gene Functional Annotation and Enrichment Analysis
3. Results
3.1. Genome Sequencing Results and Variant Detection Statistics
3.2. Analysis of Signals Selected for Feather Color Differences
GO and KEGG Annotation Analysis of Genes
3.3. Transcriptome Analysis of Different Tissue Parts of Matahu Ducks
3.3.1. Screening of Differentially Expressed Genes
3.3.2. Gene Ontology and KEGG Annotation Analysis of Genes
3.4. Integration of Genomic and Transcriptomic Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Zhu, T.; Wang, L.; Lv, X.; Yang, W.; Qu, C.; Li, H.; Wang, H.; Ning, Z.; Qu, L. Genome-Wide Association Study Reveals the Genetic Basis of Duck Plumage Colors. Genes 2023, 14, 856. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Chen, L.; Zhao, Q.; Møller, A.P.; Fang, Y.; Sun, Y. The Signalling Function of Plumage Colour Traits in the Chestnut Thrush (Turdus rubrocanus). Ibis 2023, 165, 1359–1367. [Google Scholar] [CrossRef]
- Wang, Z. Unique Feather Color Characteristics and Transcriptome Analysis of Hair Follicles in Liancheng White Ducks. Poult. Sci. 2024, 103, 103794. [Google Scholar] [CrossRef]
- Davoodi, P.; Ehsani, A.; Vaez Torshizi, R.; Masoudi, A.A. New Insights into Genetics Underlying of Plumage Color. Anim. Genet. 2022, 53, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Jiang, Y.; Wang, Z.; Bi, Y.; Chen, G.; Bai, H.; Chang, G. Genome-Wide Analysis Identifies Candidate Genes Encoding Feather Color in Ducks. Genes 2022, 13, 1249. [Google Scholar] [CrossRef]
- Chintala, S.; Li, W.; Lamoreux, M.L.; Ito, S.; Wakamatsu, K.; Sviderskaya, E.V.; Bennett, D.C.; Park, Y.-M.; Gahl, W.A.; Huizing, M.; et al. Slc7a11 Gene Controls Production of Pheomelanin Pigment and Proliferation of Cultured Cells. Proc. Natl. Acad. Sci. USA 2005, 102, 10964–10969. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, X.; Yang, L.; Li, J.; Lian, Z.; Li, N.; Deng, X. Expression and Network Analysis of Genes Related to Melanocyte Development in the Silky Fowl and White Leghorn Embryos. Mol. Biol. Rep. 2011, 38, 1433–1441. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F.; Zhu, T.; Zhao, X.; Zhang, J.; Wen, J.; Zhang, Y.; Wang, G.; Ren, X.; Chen, A.; et al. Whole Genome Resequencing Reveals Genomic Regions Related to Red Plumage in Ducks. Poult. Sci. 2024, 103, 103694. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, M.; Cheng, H.; Fan, W.; Yuan, Z.; Gao, Q.; Xu, Y.; Guo, Z.; Zhang, Y.; Hu, J.; et al. An Intercross Population Study Reveals Genes Associated with Body Size and Plumage Color in Ducks. Nat. Commun. 2018, 9, 2648. [Google Scholar] [CrossRef]
- Gu, L.-H.; Wu, R.-R.; Zheng, X.-L.; Fu, A.; Xing, Z.-Y.; Chen, Y.-Y.; He, Z.-C.; Lu, L.-Z.; Qi, Y.-T.; Chen, A.-H.; et al. Genomic Insights into Local Adaptation and Phenotypic Diversity of Wenchang Chickens. Poult. Sci. 2024, 103, 103376. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, R.; Peng, Y.; Zhang, C.; Li, L.; Lu, C.; Li, X. Hair Follicles Transcriptome Profiles in Bashang Long-Tailed Chickens with Different Plumage Colors. Genes Genom. 2019, 41, 1357–1367, Erratum in Genes Genom. 2019, 41, 1369. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows–Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing next-Generation DNA Sequencing Data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional Annotation of Genetic Variants from High-Throughput Sequencing Data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Korunes, K.L.; Samuk, K. Pixy: Unbiased Estimation of Nucleotide Diversity and Divergence in the Presence of Missing Data. Mol. Ecol. Resour. 2021, 21, 1359–1368. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A Fast Spliced Aligner with Low Memory Requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie Enables Improved Reconstruction of a Transcriptome from RNA-Seq Reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate Transcript Quantification from RNA-Seq Data with or without a Reference Genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.D. Insights from Zebrafish on Human Pigment Cell Disease and Treatment. Dev. Dyn. 2017, 246, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, S.-M.; Huang, J.; Chen, S.-Y.; Liu, Y.-P. Mutations of TYR and MITF Genes Are Associated with Plumage Colour Phenotypes in Geese. Asian-Australas. J. Anim. Sci. 2014, 27, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, X.-H.; Pang, Y.-Z. Association of Tyrosinase (TYR) and Tyrosinase-Related Protein 1 (TYRP1) with Melanic Plumage Color in Korean Quails Coturnix coturnix). Asian-Australas. J. Anim. Sci. 2013, 26, 1518–1522. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Liu, H.; Wang, J.; Wang, L.; Xi, Y.; Liu, Y.; Xu, Q.; Hu, J.; Han, C.; Bai, L.; et al. Transcriptome Analysis Reveals Genes Associated With Sexual Dichromatism of Head Feather Color in Mallard. Front. Genet. 2021, 12, 627974. [Google Scholar] [CrossRef]
- D’Mello, S.; Finlay, G.; Baguley, B.; Askarian-Amiri, M. Signaling Pathways in Melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef]
- Vachtenheim, J.; Borovansky, J. “Transcription Physiology” of Pigment Formation in Melanocytes: Central Role of MITF. Exp. Dermatol. 2010, 19, 617–627. [Google Scholar] [CrossRef]
- Sultana, H.; Seo, D.; Choi, N.-R.; Bhuiyan, M.S.A.; Lee, S.H.; Heo, K.N.; Lee, J.H. Identification of Polymorphisms in MITF and DCT Genes and Their Associations with Plumage Colors in Asian Duck Breeds. Asian-Australas. J. Anim. Sci. 2018, 31, 180–188. [Google Scholar] [CrossRef]
- Lin, R.; Zhao, F.; Xiong, T.; Lai, L.; Li, H.; Lin, W.; Xiao, T.; Lin, W. Genetic Mapping Identifies SNP Mutations in MITF-M Promoter Associated with Melanin Formation in Putian Black Duck. Poult. Sci. 2024, 103, 103191. [Google Scholar] [CrossRef]
- Lin, R.; Lin, W.; Zhou, S.; Chen, Q.; Pan, J.; Miao, Y.; Zhang, M.; Huang, Z.; Xiao, T. Integrated Analysis of mRNA Expression, CpG Island Methylation, and Polymorphisms in the MITF Gene in Ducks (Anas platyrhynchos). BioMed Res. Int. 2019, 2019, 8512467. [Google Scholar] [CrossRef]
- Yuan, B.; Qi, Y.; Zhang, X.; Hu, J.; Fan, Y.; Ji, X. The Relationship of MITF Gene Expression and Promoter Methylation with Plumage Colour in Quail. Br. Poult. Sci. 2024, 65, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Di, T.; Wang, W.; Jiang, H. EGCG, GCG, TFDG, or TSA Inhibiting Melanin Synthesis by Downregulating MC1R Expression. Int. J. Mol. Sci. 2023, 24, 11017. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wu, X.; Li, Y.; Han, H.; Zhang, Y.; Yang, J.; Liu, Y. Effect of Polymorphisms in the 5′-Flanking Sequence of MC1R on Feather Color in Taihang Chickens. Poult. Sci. 2022, 101, 102192. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xi, Y.; Tang, Q.; Qi, J.; Zhou, Z.; Guo, Z.; Fan, W.; Hu, J.; Xu, Y.; Liang, S.; et al. Genetic Fine-mapping Reveals Single Nucleotide Polymorphism Mutations in the MC1R Regulatory Region Associated with Duck Melanism. Mol. Ecol. 2023, 32, 3076–3088. [Google Scholar] [CrossRef]
- Quillen, E.E.; Bauchet, M.; Bigham, A.W.; Delgado-Burbano, M.E.; Faust, F.X.; Klimentidis, Y.C.; Mao, X.; Stoneking, M.; Shriver, M.D. OPRM1 and EGFR Contribute to Skin Pigmentation Differences between Indigenous Americans and Europeans. Hum. Genet. 2012, 131, 1073–1080. [Google Scholar] [CrossRef]
- She, Q.; Dong, Y.; Li, D.; An, R.; Zhou, T.; Nie, X.; Pan, R.; Deng, Y. ABCB6 Knockdown Suppresses Melanogenesis through the GSK3-β/β-Catenin Signaling Axis in Human Melanoma and Melanocyte Cell Lines. J. Dermatol. Sci. 2022, 106, 101–110. [Google Scholar] [CrossRef]
- Rzepka, Z.; Buszman, E.; Beberok, A.; Wrześniok, D. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis. Postępy Hig. Med. Dośw. 2016, 70, 695–708. [Google Scholar] [CrossRef]
- Jin, E.-J.; Erickson, C.A.; Takada, S.; Burrus, L.W. Wnt and BMP Signaling Govern Lineage Segregation of Melanocytes in the Avian Embryo. Dev. Biol. 2001, 233, 22–37. [Google Scholar] [CrossRef]
- Zhou, Y.; Zeng, H.-L.; Wen, X.-Y.; Jiang, L.; Fu, C.-H.; Hu, Y.-B.; Lei, X.-X.; Zhang, L.; Yu, X.; Yang, S.-Y.; et al. Selaginellin Inhibits Melanogenesis via the MAPK Signaling Pathway. J. Nat. Prod. 2022, 85, 838–845. [Google Scholar] [CrossRef]
- Shin, J.-M.; Kim, M.Y.; Sohn, K.-C.; Jung, S.-Y.; Lee, H.-E.; Lim, J.W.; Kim, S.; Lee, Y.-H.; Im, M.; Seo, Y.-J.; et al. Nrf2 Negatively Regulates Melanogenesis by Modulating PI3K/Akt Signaling. PLoS ONE 2014, 9, e96035. [Google Scholar] [CrossRef]
- Nielsen, K.P.; Zhao, L.; Stamnes, J.J.; Stamnes, K.; Moan, J. The Importance of the Depth Distribution of Melanin in Skin for DNA Protection and Other Photobiological Processes. J. Photochem. Photobiol. B Biol. 2006, 82, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.R.; Schmidt-Ullrich, R.; Paus, R. The Hair Follicle as a Dynamic Miniorgan. Curr. Biol. 2009, 19, R132–R142. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Wang, L.; Tian, Y.; Yang, Y.; Li, P.; Yang, G.; Lu, H.; Wang, S.; Zeng, W.; Zhang, t. A genome-wide scan to identify signatures of selection in Lueyang black-bone chicken. Poult. Sci. 2023, 102, 102721. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Hu, S.; Jiao, D.; Li, X.; Qi, S.; Fan, R. Synaptotagmin-4 Promotes Dendrite Extension and Melanogenesis in Alpaca Melanocytes by Regulating Ca2+ Influx via TRPM1 Channels. Cell Biochem. Funct. 2020, 38, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, R.; Zhang, J.; Yang, S.; Ji, K.; Du, B.; Liu, X.; Liu, B.; Qi, S.; Jia, Q.; et al. Cyclin-Dependent Kinase 5 Regulates Proliferation, Migration, Tyrosinase Activity, and Melanin Production in B16-F10 Melanoma Cells via the Essential Regulator p-CREB. Vitr. Cell. Dev. Biol. Anim. 2019, 55, 416–425. [Google Scholar] [CrossRef]
- Wu, H.-L.; Pang, S.-L.; Liu, Q.-Z.; Wang, Q.; Cai, M.-X.; Shang, J. 5-HT1A/1B Receptors as Targets for Optimizing Pigmentary Responses in C57BL/6 Mouse Skin to Stress. PLoS ONE 2014, 9, e89663. [Google Scholar] [CrossRef]
- Aboul-Naga, A.M.; Alsamman, A.M.; El Allali, A.; Elshafie, M.H.; Abdelal, E.S.; Abdelkhalek, T.M.; Abdelsabour, T.H.; Mohamed, L.G.; Hamwieh, A. Genome-Wide Analysis Identified Candidate Variants and Genes Associated with Heat Stress Adaptation in Egyptian Sheep Breeds. Front. Genet. 2022, 13, 898522. [Google Scholar] [CrossRef]
- Kunene, L.M.; Muchadeyi, F.C.; Hadebe, K.; Mészáros, G.; Sölkner, J.; Dugmore, T.; Dzomba, E.F. Genetics of Base Coat Colour Variations and Coat Colour-Patterns of the South African Nguni Cattle Investigated Using High-Density SNP Genotypes. Front. Genet. 2022, 13, 832702. [Google Scholar] [CrossRef]
- Santos, M.E.; Baldo, L.; Gu, L.; Boileau, N.; Musilova, Z.; Salzburger, W. Comparative Transcriptomics of Anal Fin Pigmentation Patterns in Cichlid Fishes. BMC Genom. 2016, 17, 712. [Google Scholar] [CrossRef]
- Abolins-Abols, M.; Kornobis, E.; Ribeca, P.; Wakamatsu, K.; Peterson, M.P.; Ketterson, E.D.; Milá, B. Differential Gene Regulation Underlies Variation in Melanic Plumage Coloration in the Dark-eyed Junco (Junco hyemalis). Mol. Ecol. 2018, 27, 4501–4515. [Google Scholar] [CrossRef]
- Yin, S.-J.; Lee, J.-R.; Hahn, M.-J.; Yang, J.-M.; Qian, G.-Y.; Park, Y.-D. Tyrosinase-Mediated Melanogenesis in Melanoma Cells: Array Comparative Genome Hybridization Integrating Proteomics and Bioinformatics Studies. Int. J. Biol. Macromol. 2021, 170, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.; Killian, K.J.; Samuels, Y.; Rudloff, U. ERBB4 Mutation Analysis: Emerging Molecular Target for Melanoma Treatment. In Molecular Diagnostics for Melanoma: Methods and Protocols; Thurin, M., Marincola, F.M., Eds.; Humana Press: Totowa, NJ, USA, 2014; pp. 461–480. ISBN 978-1-62703-727-3. [Google Scholar]
- Glatthaar, H.; Katto, J.; Vogt, T.; Mahlknecht, U. Estrogen Receptor Alpha (ESR1) Single-Nucleotide Polymorphisms (SNPs) Affect Malignant Melanoma Susceptibility and Disease Course. Genet. Epigenetics 2016, 8, GEG.S31264. [Google Scholar] [CrossRef] [PubMed]
- Czajkowski, R. BRAF, HRAS, KRAS, NRAS and CDKN2A Genes Analysis in Cultured Melanocytes Used for Vitiligo Treatment. Int. J. Dermatol. 2011, 50, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.S.; Dorgai, L.; Ábrahám, M.; Hermesz, E. Tissue- and Stressor-Specific Differential Expression of Two Hsc70 Genes in Carp. Biochem. Biophys. Res. Commun. 2003, 307, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Kulkeaw, K.; Ishitani, T.; Kanemaru, T.; Ivanovski, O.; Nakagawa, M.; Mizuochi, C.; Horio, Y.; Sugiyama, D. Cold Exposure Down-Regulates Zebrafish Pigmentation. Genes Cells 2011, 16, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Allan, A.E.; Archambault, M.; Messana, E.; Gilchrest, B.A. Topically Applied Diacylglycerols Increase Pigmentation in Guinea Pig Skin. J. Investig. Dermatol. 1995, 105, 687–692. [Google Scholar] [CrossRef]
- Gordon, P.R.; Gilchrest, B.A. Human Melanogenesis Is Stimulated by Diacylglycerol. J. Investig. Dermatol. 1989, 93, 700–702. [Google Scholar] [CrossRef]
- Kawaguchi, M.; Valencia, J.C.; Namiki, T.; Suzuki, T.; Hearing, V.J. Diacylglycerol Kinase Regulates Tyrosinase Expression and Function in Human Melanocytes. J. Investig. Dermatol. 2012, 132, 2791–2799. [Google Scholar] [CrossRef]
- Basso, F.; Rocchetti, F.; Rodriguez, S.; Nesterova, M.; Cormier, F.; Stratakis, C.A.; Ragazzon, B.; Bertherat, J.; Rizk-Rabin, M. Comparison of the Effects of PRKAR1A and PRKAR2B Depletion on Signaling Pathways, Cell Growth, and Cell Cycle Control of Adrenocortical Cells. Horm. Metab. Res. 2014, 46, 883–888. [Google Scholar] [CrossRef]
- Yue, Y.; Zhong, M.; An, X.; Feng, Q.; Lai, Y.; Yu, M.; Zhang, X.; Liao, Z.; Chen, M.; Dong, J.; et al. Serotonin (5-HT) 2A Receptor Involvement in Melanin Synthesis and Transfer via Activating the PKA/CREB Signaling Pathway. Int. J. Mol. Sci. 2022, 23, 6111. [Google Scholar] [CrossRef]
- Selcer, K.; Balasubramonian, B.; Miller, D.; Kerr, J.; DiFrancesco, M.; Ojha, S.; Urbano, R. Steroid Sulfatase in the Mouse NIH-3T3 Fibroblast Cell Line: Characterization, and Downregulation by Glucocorticoids. Steroids 2021, 174, 108890. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-I.; Jeong, D.-S.; Jung, E.C.; Lee, J.-H.; Kim, C.D.; Yoon, T.-J. Wnt/β-Catenin Signaling Inhibitor ICG-001 Enhances Pigmentation of Cultured Melanoma Cells. J. Dermatol. Sci. 2016, 84, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Wang, G.; Liao, J.; Tang, M.; Sun, W. Transcriptome Profile Analysis of Mechanisms of Black and White Plumage Determination in Black-Bone Chicken. Cell. Physiol. Biochem. 2018, 46, 2373–2384. [Google Scholar] [CrossRef] [PubMed]
- Adameyko, I.; Lallemend, F.; Aquino, J.B.; Pereira, J.A.; Topilko, P.; MUller, T.; Fritz, N.; Beljajeva, A.; Mochii, M.; Liste, I.; et al. Schwann Cell Precursors from Nerve Innervation Are a Cellular Origin of Melanocytes in Skin. Cell 2009, 139, 366–379. [Google Scholar] [CrossRef]
- Wang, J.-D.; Cao, Y.-L.; Li, Q.; Yang, Y.-P.; Jin, M.; Chen, D.; Wang, F.; Wang, G.-H.; Qin, Z.-H.; Hu, L.-F.; et al. A Pivotal Role of FOS-Mediated BECN1/Beclin 1 Upregulation in Dopamine D2 and D3 Receptor Agonist-Induced Autophagy Activation. Autophagy 2015, 11, 2057–2073. [Google Scholar] [CrossRef]
- Shao, J.; Jiang, F.; Hu, M.; Mei, E.; Pan, Z.; Chen, C.; Lin, L.; Zheng, T.; Cai, W.; Li, Z.; et al. The Role of FOS-Mediated Autophagy Activation in the Indocyanine Green-Based Photodynamic Therapy for Treating Melanoma. J. Photochem. Photobiol. B 2021, 214, 112101. [Google Scholar] [CrossRef]
- Joo, A.; Aburatani, H.; Morii, E.; Iba, H.; Yoshimura, A. STAT3 and MITF Cooperatively Induce Cellular Transformation through Upregulation of C-Fos Expression. Oncogene 2004, 23, 726–734. [Google Scholar] [CrossRef]
- Chauhan, J.S.; Hölzel, M.; Lambert, J.-P.; Buffa, F.M.; Goding, C.R. The MITF Regulatory Network in Melanoma. Pigment Cell Melanoma Res. 2022, 35, 517–533. [Google Scholar] [CrossRef]
ID | Description | p-Value | Genes |
---|---|---|---|
ko04022 | cGMP-PKG signaling pathway | 1.89 × 10−16 | NFATC3 |
ko04024 | cAMP signaling pathway | 3.99 × 10−10 | CAMK4, HTR1A |
ko04151 | PI3K-Akt signaling pathway | 1.53 × 10−9 | EFNA5, ERBB4 |
ko04010 | MAPK signaling pathway | 0.0001860 | EFNA5, NFATC3, ERBB4 |
ko05218 | Melanoma | 0.0414223 | MITF |
Group | Total DEG | Up | Down |
---|---|---|---|
YGB_vs_BYB | 82 | 71 | 11 |
YMB_vs_BYB | 101 | 76 | 25 |
YGB_vs_YMB | 315 | 137 | 178 |
YGB_vs_YGN | 843 | 202 | 641 |
YGB_vs_YGF | 52 | 38 | 14 |
YGN_vs_YGF | 832 | 609 | 223 |
GO ID | Description | p Value | Gene_Name |
---|---|---|---|
GO:0004977 | Melanocortin receptor activity | 0.0082759 | MC1R, MC5R |
GO:0001755 | Neural crest cell migration | 0.0082356 | HAND2 |
GO:0042440 | Pigment metabolic process | 0.0082356 | MC1R, TYR, TYRP1 |
GO:0006582 | Melanin metabolic process | 0.0082759 | MC1R, TYR, TYRP1 |
GO:0042438 | Melanin biosynthetic process | 0.0082759 | MC1R, TYR, TYRP1 |
GO:0090741 | Pigment granule membrane | 0.0136354 | ABCB6, TYR, TYRP1 |
GO:0033162 | Melanosome membrane | 0.0136354 | ABCB6, TYR, TYRP1 |
GO:0046148 | Pigment biosynthetic process | 0.0290307 | MC1R, TYR, TYRP1 |
map00260 | Glycine, serine and threonine metabolism | 4.93 × 10−5 | GATM, GAMT |
map04022 | cGMP-PKG signaling pathway | 5.54 × 10−4 | ATP2A2, PRKG1 |
map04915 | Estrogen signaling pathway | 4.10 × 10−2 | HRAS, HSPA8, ESR1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, P.; Yang, L.; Khan, M.Z.; Jing, Y.; Zhang, M.; Qi, C.; Zhang, X.; Liu, X.; Liu, Z.; Zhang, S.; et al. Joint Genomic and Transcriptomic Analysis Reveals Candidate Genes Associated with Plumage Color Traits in Matahu Ducks. Animals 2024, 14, 3111. https://doi.org/10.3390/ani14213111
Ren P, Yang L, Khan MZ, Jing Y, Zhang M, Qi C, Zhang X, Liu X, Liu Z, Zhang S, et al. Joint Genomic and Transcriptomic Analysis Reveals Candidate Genes Associated with Plumage Color Traits in Matahu Ducks. Animals. 2024; 14(21):3111. https://doi.org/10.3390/ani14213111
Chicago/Turabian StyleRen, Pengwei, Liu Yang, Muhammad Zahoor Khan, Yadi Jing, Meixia Zhang, Chao Qi, Xin Zhang, Xiang Liu, Zhansheng Liu, Shuer Zhang, and et al. 2024. "Joint Genomic and Transcriptomic Analysis Reveals Candidate Genes Associated with Plumage Color Traits in Matahu Ducks" Animals 14, no. 21: 3111. https://doi.org/10.3390/ani14213111
APA StyleRen, P., Yang, L., Khan, M. Z., Jing, Y., Zhang, M., Qi, C., Zhang, X., Liu, X., Liu, Z., Zhang, S., & Zhu, M. (2024). Joint Genomic and Transcriptomic Analysis Reveals Candidate Genes Associated with Plumage Color Traits in Matahu Ducks. Animals, 14(21), 3111. https://doi.org/10.3390/ani14213111