Ecology and Management of a Large Outbreak of Avian Botulism in Wild Waterbirds in Northeastern Italy (2019–2022)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Routine Activities of Environment Management
2.2. Samples and Laboratory Analyses
- 2019—A total of 30 wild bird carcasses, found in VM, including 11 unspecified ducks, 17 pied avocets (Recurvirostra avosetta), 1 feral pigeon (Columba livia domestica), and 1 eurasian magpie (Pica pica), from 5 September to 9 October;
- 2020—A total of 1 great cormorant and 1 mallard found dead in VM and PA wetlands, on 17 June and 13 July, respectively, and 1 flock of 16 unspecified duck carcasses found in VM on 19 August;
- 2021—A total of 28 waterbird carcasses, including 24 unspecified ducks, 2 green-winged teals, 1 mallard, 1 unspecified ardeid found in VM, and 10 environmental samples from VM (water and water with sediment) between 18 August and 25 August;
- 2022—A total of 16 waterbirds carcasses (including 8 mallards, 3 mute swans, Cygnus olor, 4 northern shoveler, and 1 green-winged teal) found in the PA and VM wetlands between 4 May and 12 August.
3. Results
3.1. Emergence, Evolution, and Management of Avian Botulism
3.1.1. Summer and Autumn 2019: Chronicle of Events
3.1.2. Spring and Summer 2020: Chronicle of Events
3.1.3. Summer 2021: Chronicle of Events
3.1.4. Spring and Summer 2022: Chronicle of Events
3.2. Avian Botulism Confirmation by Laboratory Tests
- When tested by Real-Time PCR [34,35] for the presence of Newcastle disease and Influenza A viruses—i.e., pathogens possibly associated with neurological signs and mortality—78 and 63 samples (represented by cloacal and/or tracheal swabs) from the 92 bird carcasses submitted to the IZSLER tested negative for IAV and NDV, respectively. Only one pooled sample obtained from four unspecified duck carcasses, collected on 9 August 2021, tested positive for IAV. However, following further molecular characterization [36,37,38], this pooled sample tested negative for AIV belonging to the H5 and H7 subtypes. The IAV-positive sample was further characterized at the Italian National Reference Laboratory for Avian Influenza and Newcastle Disease (Legnaro, PD) as an H3N8 antigenic subtype.
- As shown in Table 1, in the 2019–2022 study period, eligible samples (represented by the liver and/or intestine) from the 74 birds tested at the IZLER were examined to confirm the presumptive diagnosis of avian botulism by Multiplex Real-Time PCR (n. 74) and a Mouse Test (n. 22).
Recovery Data | Samples Submitted to Laboratories | No. Tested/ Submitted | RT-PCR pos./Tested (Clostridium Type) organ | Mouse Test (pos./Tested) | ||
---|---|---|---|---|---|---|
yy | dd/mm | Locality | ||||
2019 | 5 September | VM | unspecified ducks | 7/7 | 1/7 * (C) liv. ** and int. *** | n.d. |
5 October | VM | unspecified ducks | 4/4 | 1/4 (CD) liv. and int. | 0/1 ^^ liv. | |
8 October | VM | pied avocets (Recurvirostra avosetta) | 9/12 | 3/9 (C) liv. and int. | 1/1 ^^ liv. | |
VM | feral pigeon (Columba livia domestica) | 1/1 | 0/1 liv. and int. | n.d. | ||
VM | Eurasian magpie (Pica pica) | 1/1 | 1/1 (C) liv. and int. | n.d. | ||
9 October | VM | pied avocets (R. avosetta) | 2/5 | 1/2 (C) liv. and int. | n.d. | |
2020 | 17 June | VM | great cormorant (Phalacrocorax carbo) | 1/1 | 0/1 liv. and int. | n.d. |
13 July | PA | mallard (Anas platyrhynchos) | 1/1 | 1/1 (C/D) liv. and int. | 0/1 ^^ liv. | |
19–20 August | VM | unspecified ducks | 16/16 | 1/16 * (C) int. ** 0/16 * liv. *** | 0/16 *^^ int. | |
n.d. | ||||||
2021 | 17–18 August | VM | green-winged teals (Anas crecca) | 2/2 | 1/2 (C), 1/2 (C/D) liv. | n.d. |
2/2 (C) int. § | n.d. | |||||
VM | unspecified ardeid | 1/1 | 0/1 liv. | n.d. | ||
0/1 int. | ||||||
VM | mallard (A. platyrhynchos) | 1/1 | 1/1 (C/D) liv. | 1/1 ^^ liv. | ||
1/1 (C/D) int. | 1/1 ^^ int. | |||||
VM | unspecified ducks | 9/17 | 2/9 (C) liv. | 0/2 ^^ liv. | ||
1/9 (C), 2/9 (C/D) int. §§ | n.d. | |||||
19 August | VM | unspecified ducks # | 4/5 | 1/4 * int. C | n.d. | |
0/4 * liv. | ||||||
20 August | VM | water samples | 10/10 | 7/10 (C) | n.d. | |
25 August | VM | unspecified ducks | 2/2 | 0/2 * liv. | n.d. | |
1/2 * (C/D) int. | n.d. | |||||
2022 | 4 May | PA | mallard (A. platyrhynchos) | 4/7 | 1/4 (C), 1/4 (C/D) §§§ liv. | n.d. |
3 August | VM | mute swan (Cygnus olor) | 1/1 | 0/1 liv. | n.d | |
9 August | VM | northern shovelers (S. clypeata) | 3/3 | 0/3 * liv. 0/3 * int. | n.d. | |
VM | mute swan (C. olor) | 1/1 | 1/1 (C/D) liv. | n.d. | ||
10 August | VM | northern shoveler (S. clypeata) | 1/1 | 0/1 liv. | n.d. | |
VM | mallard (A. platyrhynchos) | 1/1 | 1/1 (C/D) liv. 1/1 (C/D) int. | n.d. | ||
VM | green-winged teal (A. crecca) | 1/1 | 0/1 liv. | n.d. | ||
12 August | VM | mute swan (C. olor) | 1/1 | 0/1 liv. | n.d. |
- Annual data showed that 7/24, 2/18, 9/19, and 4/13 birds were RT-PCR-positive for BoNT-producing clostridia in 2019, 2020, 2021, and 2022, respectively. When also tested by a Mouse Test, 1/2, 0/17, and 1/3 birds were positive for BoNT in 2019, 2020, and 2021, respectively.
- In addition, 7/10 water samples collected on 20 August, 2021 tested positive for Clostridium spp. type C.
- The in-depth bacterial characterization showed the presence of Clostridium spp. type C and C/D in the study area.
- Further details on the sampling periods, recovery data, samples examined, and pooled samples are shown in Table 1.
3.3. Impact of Avian Botulism on Wild Birds
3.3.1. 2019
- After the first recognition, on 5 September 2019, of 7 wild duck pooled carcasses found to be positive for BoNT-producing clostridia by RT-PCR (Table 1), the avian botulism emergency in VM showed a dramatic escalation in October 2019.
- From 4 October to 11 October, a total of 2158 bird carcasses and 209 birds showing symptoms consistent with avian botulism were collected and managed by suitable, urgent, interventions, as previously described in Section 3.1.
- As shown in Table 2, the number of birds (both dead and ill birds) collected in this period showed a decreasing trend that spanned from 1663 to 19 carcasses and from 180 to 5 symptomatic birds on 4–5 October and 11 October, respectively. Overall, 91.8% of the collected birds (2173/2367) belonged to the Anseriformes order, followed by unspecified wild birds (6.9%, 163/2367), and birds belonging to the orders of Charadriiformes (1.2%, 25/2367), Gruiformes (0.1%, 3/2367), Pelecaniformes (0.04%, 1/2367), Columbiformes (0.04%, 1/2367), and Passeriformes (0.04%, 1/2367). All the Anseriformes birds were accounted for by six dabbling duck species, mainly represented by Anas crecca (2031/2173).
Bird Species | Collected Bird Carcasses (CBC) No. | Collected Symptomatic Birds (CSB) No. | Total No. | |||||
---|---|---|---|---|---|---|---|---|
4–5 October | 8–9 October | 11 October | 4 October | 8 October | 11 October | CBC | CSB | |
Anas crecca | 1452 | 449 | 13 | 97 | 18 | 2 | 1914 | 117 |
Anas platyrhynchos | 48 | 15 | 2 | 11 | 2 | 2 | 65 | 15 |
Spatula clypeata | 20 | 6 | 1 | 12 | 1 | 1 | 27 | 14 |
Mareca strepera | 8 | 3 | 1 | ― | ― | ― | 12 | ― |
Anas acuta | 2 | 1 | ― | 2 | ― | ― | 3 | 2 |
Mareca penelope | 2 | 1 | ― | ― | 1 | ― | 3 | 1 |
Recurvirostra avosetta | 12 | 5 | ― | 1 | ― | ― | 17 | 1 |
Numenius arquata | 1 | ― | ― | ― | ― | ― | 1 | ― |
Tringa erythropus | 3 | ― | 1 | ― | 1 | ― | 4 | 1 |
Limosa limosa | ― | ― | ― | ― | 1 | ― | ― | 1 |
Rallus aquaticus | 2 | ― | ― | ― | ― | ― | 2 | ― |
Gallinula chloropus | ― | ― | 1 | ― | ― | ― | 1 | ― |
Threskiornis aethiopicus | 1 | ― | ― | ― | ― | ― | 1 | ― |
Columba livia domestica | ― | 1 | ― | ― | ― | ― | 1 | ― |
Pica pica | ― | 1 | ― | ― | ― | ― | 1 | ― |
unspecified waterbird | 82 | 24 | ― | 57 | ― | ― | 106 | 57 |
Total No. | 1633 | 506 | 19 | 180 | 24 | 5 | 2158 | 209 |
- During the carcass collection activities, the advanced decomposition state of a large portion of the collected waterbirds, frequently mixed in the collection tanks with bodies in good condition, underlies the relatively large, estimated number of undetermined bird species.
- Regarding the symptomatic birds, treated as previously described in Section 3.1.1, 57 of the 180 waterbirds showing a variable intoxication degree were soon dead, and no species identification data are available. Based on the 11 October census results, around ten waterbirds (including teals, mallards, gadwalls, and shovelers) showed mild paralysis signs, enabling them to move away by swimming or finally even taking off in flight, thus suggestive of mild or resolving intoxication. Concurrently, less than ten ducks were seen in greater difficulty, and five of them were collected (two teals, two mallards, one shoveler) to be hospitalized at the WTRC aviaries.
- On 29 November 2019, ISPRA gave a positive opinion for the rapid release of recovered birds before the onset of colder weather. The individuals that survived (Table 2) after the first hospitalization at the Ca’ Ponticelle WTRC aviaries (San Vitale pinewood, 44°27′38.52″ N, 12°13′17″ E) were moved to aviaries at the Classe pinewood (south of Ravenna, 44°21′17″ N, 12°17′25″ E) and then released in the nearby protected area of Ortazzo (44°21′00″ N, 12°18′14″ E).
3.3.2. 2020
- Of the 17 cases of suspected avian botulism that occurred in VM in 2020, only one pooled sample obtained from 16 duck carcasses tested positive for Type C Clostridium spp., and one mallard carcass found on 13 July in the PA area tested Type C/D Clostridium spp.-positive (Table 1).
3.3.3. 2021
- When, on 17 August, the first signs of avian botulism were reported in the same VM area affected in 2019, a large-scale operation was then arranged to search for and promptly remove carcasses, as well as to collect sick birds. As shown in Table 3, from 17 August to 25 August, a total of 82 dead birds and 94 birds showing symptoms consistent with avian botulism were collected to remove the potentially dangerous carcasses and treat the sick birds by rehydrating and antibiotic therapy, as previously described in Section 3.1.1. Overall, 97.7% of the collected birds (172/176) belonged to the Anseriformes order, followed by Pelecaniformes (1.7%, 3/176) and birds belonging to the order of Charadriiformes (0.6%, 1/176). Except for a pochard and an unspecified duck, the Anseriformes birds were accounted for by six dabbling duck species, mainly represented by Anas crecca (114/172).
- On 25 August, when the last search for botulism-affected birds was carried out, seven symptomatic birds, including six ducks and one little egret, plus two dead teals were collected. No dead or sick birds were found in the following days.
3.3.4. 2022
- Two juvenile mallards (estimated age approx. 20–30 days) found on May 5 at the PA wetland (Table 1) were positive for Clostridium spp. bacteria capable of producing BoNT toxins: one for type C and the other one for the mosaic variant C/D. However, the presence of emaciation combined with parasitic proventriculitis, compatible with infestation by Eustrongylides spp. (further details available upon request), and, most importantly, the absence of environmental conditions necessary to trigger an outbreak of avian botulism accounted for the young mallards’ role of indicators of environmental presence of BoNT-producing clostridia.
- During the mid-summer of 2022, the seven ducks showing symptoms consistent with avian botulism and taken to the local WTRC to be treated as previously described (Section 3.1.1, Section 3.1.3, and Section 3.1.4) included three northern shovelers and one green-winged teal recovered on 9 August, one green-winged teal recovered on August 10, and two green-winged teals recovered on 11 August.
- The nine waterbirds found dead at VM between 3 August and 12 August and submitted to the IZSLER for analyses included three mute swans, four northern shovelers, one mallard, and one green-winged teal. Among these, one mallard and two mute swans tested positive for avian botulism (Table 1).
4. Discussion
- However, despite the efforts made in July 2021 to maintain the water level in VM between 30 and 10 cm a.m.s.l., the reduced hydric availability combined with the increasing temperature and bacterial proliferation in the water triggered a new botulism event starting on 17 August and leading (until 25 August) to the collection of 176 waterbirds (82 carcasses and 94 sick ducks) in the same area affected by the severe outbreak in 2019. On 17 August 2021, to face the botulism spread, a rapid and complete desiccation of the wetland started to promote the removal of fish biomass and deter, also using gas cannons, birds from the contaminated area. The VM desiccation, including a phase of the simultaneous inlet of new freshwater and discharge of decaying water, finished on 10 September, with the beginning of the re-flooding operations lasting a few weeks. Once again, almost all the collected waterbirds belonged to the Anseriformes order, mostly represented by Anas crecca (114/172).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- the VM water supply networks were for multiple uses, starting with drinking and industrial use;
- in 2019, characterized by a very rainy May, water was supplied by Ravenna Servizi Industriali society (RSI) and released in VM from 17 July to 9 August; after the latter date (as notified by RSI), maintenance works began on the so-called “canaletta ANIC”, the pipeline built in the 1950s by the Azienda Nazionale Idrogenazione Combustibili society to take water from the Reno River to the industrial area; therefore, it was no longer possible to supply water;
- never in the past had there been a need to turn on the water flow at the beginning of October, and the prolonged and anomalously high temperatures in September probably favored the onset of the problem;
- the control measures based on draining these areas in summer and cleaning them of vegetation were at the moment difficult to implement (as the area did not dry and the mud could attract waders); thus, the inflow of water from the Reno River to the VM was planned for the week of 5–12 October 2019;
- removing as many carcasses as possible quickly and treating symptomatic subjects (e.g., with rehydration and antibiotic therapy) were needed actions;
- precautional measures to be implemented included the use of gloves when handling both dead and symptomatic animals, as well as the respect of the most common hygiene standards.
References
- Badagliacca, P.; Pomilio, F.; Auricchio, B.; Sperandii, A.F.; Di Provvido, A.; Di Ventura, M.; Migliorati, G.; Caudullo, M.; Morelli, D.; Anniballi, F. Type C/D botulism in the waterfowl in an urban park in Italy. Anaerobe 2018, 54, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Arnal, J.; Marín, C. The Latent Threat in Wild Birds: Clostridium botulinum. Vet Sci. 2024, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- Skarin, H.; Lindgren, Y.; Jansson, D.S. Investigations into an Outbreak of Botulism Caused by Clostridium botulinum Type C/D in Laying Hens. Avian Dis. 2015, 59, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Animal and Plant Health Agency (APHA). Avian Botulism in UK Wild Waterbirds. July 2019. Available online: http://apha.defra.gov.uk/documents/surveillance/diseases/avian-botulism.pdf (accessed on 4 February 2024).
- Holmes, P. Avian botulism—A recurring paralytic disease of wild UK waterbirds. Vet Rec. 2019, 185, 261–262. [Google Scholar] [CrossRef]
- Meurens, F.; Carlin, F.; Federighi, M.; Filippitzi, M.E.; Fournier, M.; Fravalo, P.; Ganière, J.P.; Grisot, L.; Guillier, L.; Hilaire, D.; et al. Clostridium botulinum type C, D, C/D, and D/C: An update. Front. Microbiol. 2023, 13, 1099184. [Google Scholar] [CrossRef] [PubMed]
- Wobeser, G.A. Botulism. In Diseases of Wild Waterfowl, 2nd ed.; Springer: New York, NY, USA, 1997; pp. 149–161. [Google Scholar]
- Wlodarczyk, R.; Minias, P.; Kukier, E.; Grenda, T.; Smietanka, K.; Janiszewski, T. The first case of a major avian type C botulism outbreak in Poland. Avian Dis. 2014, 58, 488–490. [Google Scholar] [CrossRef]
- Boulianne, M.; Uzal, F.A. Botulism. In Diseases of Poultry, 14th ed.; Swayne, D., Boulianne, M., Logue, C.M., McDougald, L.R., Nair, V., Suarez, D.L., Eds.; Wiley-Blackwell-AAAP: Hoboken, NJ, USA, 2020; pp. 976–980. [Google Scholar]
- Cromie, R.L.; Lee, R.; Delahay, R.J.; Newth, J.L.; O’Brien, M.F.; Fairlamb, H.A.; Reeves, J.P.; Stroud, D.A. Avian Botulism. In Ramsar Wetland Disease Manual: Guidelines for Assessment, Monitoring and Management of Animal Disease in Wetlands; Ramsar Technical Report No. 7; Ramsar Convention Secretariat: Gland, Switzerland, 2012; pp. 186–190. [Google Scholar]
- Anza, I.; Vidal, D.; Laguna, C.; Díaz-Sánchez, S.; Sánchez, S.; Chicote, A.; Florín, M.; Mateo, R. Eutrophication and bacterial pathogens as risk factors for avian botulism outbreaks in wetlands receiving effluents from urban wastewater treatment plants. Appl. Environ. Microbiol. 2014, 80, 4251–4259. [Google Scholar] [CrossRef] [PubMed]
- Wobeser, G. Avian botulism―another perspective. J. Wildl. Dis. 1997, 33, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Songer, G.; Uzal, F.A. Clostridium species. In A Laboratory Manual for the Isolation, Identification and Characterization of Avian Pathogens, 6th ed.; Williams, S.M., Dufour-Zavala, L., Jackwood, M.W., Lee, M.D., Lupiani, B., Reed, W.M., Spackman, E., Woolcock, P.R., Eds.; American Association of Avian Pathologists: Jacksonville, FL, USA, 2016; pp. 33–40. [Google Scholar]
- Anza, I.; Vidal, D.; Feliu, J.; Crespo, E.; Mateo, R. Differences in the Vulnerability of Waterbird Species to Botulism Outbreaks in Mediterranean Wetlands: An Assessment of Ecological and Physiological Factors. Appl. Environ. Microbiol. 2016, 82, 3092–3099. [Google Scholar] [CrossRef]
- Defilippo, F.; Luppi, A.; Maioli, G.; Marzi, D.; Fontana, M.C.; Paoli, F.; Bonilauri, P.; Dottori, M.; Merialdi, G. Outbreak of type C botulism in birds and mammals in the Emilia Romagna region, northern Italy. J. Wildl. Dis. 2013, 49, 1042–1046. [Google Scholar] [CrossRef] [PubMed]
- Circella, E.; Camarda, A.; Bano, L.; Marzano, G.; Lombardi, R.; D’Onghia, F.; Greco, G. Botulism in Wild Birds and Changes in Environmental Habitat: A Relationship to be Considered. Animals 2019, 9, 1034. [Google Scholar] [CrossRef] [PubMed]
- Regione Emilia-Romagna. Coperture Vettoriali Uso del suolo di Dettaglio 2020. Servizio Sistemi Informativi Geografici. Available online: https://geoportale.regione.emilia-romagna.it/download/dati-e-prodotti-cartografici-preconfezionati/pianificazione-e-catasto/uso-del-suolo/2020-coperture-vettoriali-uso-del-suolo-di-dettaglio-edizione-2023 (accessed on 27 February 2024).
- Costa, M. Problemi di conservazione delle zone umide d’acqua dolce nel Comune di Ravenna. In Le Oasi Palustri Ravennati, un Paesaggio Instabile e Minacciato; Pupillo, P., Montanari, F.L., Gasparini, L.M., Spagnesi, M., Eds.; Edizioni Moderna: Ravenna, Italy, 2020; pp. 163–187. Available online: https://www.naturaitalica.it/wp-content/uploads/2021/04/Le-oasi-palustri-ravennati.pdf (accessed on 27 February 2024).
- Parco Delta del Po Emilia-Romagna. Available online: https://www.parcodeltapo.it/it/pagina.php?id=5 (accessed on 4 April 2024).
- Regione Emilia-Romagna. IT4070001—ZSC-ZPS—Punte Alberete, Valle Mandriole. Available online: https://ambiente.regione.emilia-romagna.it/it/parchi-natura2000/rete-natura-2000/siti/it4070001 (accessed on 4 April 2024).
- RETE NATURA 2000, SIC/ZPS IT4070001. Punte Alberete, Valle Mandriole. Piano di Gestione. Gennaio 2018. Available online: https://ambiente.regione.emilia-romagna.it/it/parchi-natura2000/rete-natura-2000/strumenti-di-gestione/misure-specifiche-di-conservazione-piani-di-gestione/piani-di-gestione/PG701.pdf/@@download/file/PG701.pdf (accessed on 27 February 2024).
- RETE NATURA 2000, SIC/ZPS IT4070001. Punte Alberete, Valle Mandriole. Quadro Conoscitivo. Gennaio 2018. Available online: https://ambiente.regione.emilia-romagna.it/it/parchi-natura2000/rete-natura-2000/strumenti-di-gestione/misure-specifiche-di-conservazione-piani-di-gestione/misure-di-conservazione-per-sito/QC701.pdf/@@download/file/QC701.pdf (accessed on 29 July 2024).
- RETE NATURA 2000, SIC/ZPS IT4070001/ Punte Alberete, Valle Mandriole. Formulario Natura 2000 del sito IT4070001. Available online: https://ambiente.regione.emilia-romagna.it/it/parchi-natura2000/consultazione/dati/formulari/IT4070001.pdf/@@download/file/Site_IT4070001.pdf (accessed on 29 July 2024).
- Carta Della Vegetazione—Parco regionale del Delta del Po—Stazione Pineta di San Vitale e Piallasse di Ravenna (Digitale)—Edizione 1999. Available online: https://geoportale.regione.emilia-romagna.it/catalogo/dati-cartografici/biologia/vegetazione/layer-19 (accessed on 1 April 2024).
- Merloni, N.; Piccoli, F. La vegetazione del complesso Punte Alberete e Valle Mandriole (Parco Regionale del Delta del Po—Italia). Braun-Blanquetia 2001, 29, 1–17. [Google Scholar]
- Costa, M.; Gellini, S.; Ceccarelli, P.P.; Casini, L.; Volponi, S. (Eds.) Atlante Degli Uccelli Nidificanti del Parco del Delta del Po dell’Emilia-Romagna (2004–2006); Parco Regionale Delta del Po Emilia-Romagna: Comacchio, Italy, 2009; pp. 1–399. [Google Scholar]
- NATURA 2000; Standard Data form: IT4070001 Punte Alberete, Valle Mandriole. Version November 1995. Regione Emilia-Romagna, Direzione Generale Cura del Territorio e Dell’ambiente—Servizio Aree Protette, Foreste e Sviluppo Della Montagna. Regione Emilia-Romagna: Bologna, Italy, 1995.
- NATURA 2000; Standard Data form: IT4070001 Punte Alberete, Valle Mandriole. Update 2002. Regione Emilia-Romagna, Direzione Generale Cura del Territorio e Dell’ambiente—Servizio Aree Protette, Foreste e Sviluppo Della Montagna. Regione Emilia-Romagna: Bologna, Italy, 2002.
- Costa, M.; Bondi, S. Status e biologia della Moretta tabaccata, Aythya nyroca, nel complesso palustre di Punte Alberete e Valle Mandriole (Ravenna). Riv. Ital. Orn. 2002, 71, 125–131. [Google Scholar]
- Fasola, M. (Ed.) Avifauna del Delta del Po: Uccelli acquatici nidificanti. Programma di Conservazione per l’area Geografica del Parco del Delta del Po (I fase); Ministero dell’Ambiente, Servizio Conservazione della Natura: Ravenna, Italy, 1996; pp. 1–356.
- Volponi, S. Uccelli acquatici coloniali e di canneto indicatori dello stato dell’ambiente. Biotopo di Punte Alberete e Valle Mandriole. In Le Oasi Palustri Ravennati, un Paesaggio Instabile e Minacciato; Pupillo, P., Montanari, F.L., Gasparini, L.M., Spagnesi, M., Eds.; Edizioni Moderna: Ravenna, Italy, 2020; pp. 120–144. Available online: https://www.naturaitalica.it/wp-content/uploads/2021/04/Le-oasi-palustri-ravennati.pdf (accessed on 27 February 2024).
- Baccetti, N.; Dall’Antonia, P.; Magagnoli, P.; Melega, L.; Serra, L.; Soldatini, C.; Zenatello, M. Risultati dei Censimenti Degli Uccelli Acquatici Svernanti in Italia: Distribuzione, Stima e Trend Delle Popolazioni nel 1991–2000; Istituto Nazionale per la Fauna Selvatica “Alessandro Ghigi”: Turin, Italy, 2002; Volume 111, pp. 1–240. [Google Scholar]
- Tinarelli, R.; Giannella, C.; Melega, L. Lo Svernamento Degli Uccelli acquatici in Emilia-Romagna 1994–2009; Regione Emilia-Romagna & AsOER ONLUS; Tecnograf: Reggio Emilia, Italy, 2010; pp. 1–344. [Google Scholar]
- Spackman, E.; Senne, D.A.; Myers, T.J.; Bulaga, L.L.; Garber, L.P.; Perdue, M.L.; Lohman, K.; Daum, L.T.; Suarez, D.L. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J. Clin. Microbiol. 2002, 40, 3256–3260. [Google Scholar] [CrossRef] [PubMed]
- Wise, M.G.; Suarez, D.L.; Seal, B.S.; Pedersen, J.C.; Senne, D.A.; King, D.J.; Kapczynski, D.R.; Spackman, E. Development of a real-time reverse-transcription PCR for detection of newcastle disease virus RNA in clinical samples. J. Clin. Microbiol. 2004, 42, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Slomka, M.J.; Coward, V.J.; Banks, J.; Löndt, B.Z.; Brown, I.H.; Voermans, J.; Koch, G.; Handberg, K.J.; Jørgensen, P.H.; Cherbonnel-Pansart, M.; et al. Identification of sensitive and specific avian influenza polymerase chain reaction methods through blind ring trials organized in the European Union. Avian Dis. 2007, 51 (Suppl. 1), 227–234. [Google Scholar] [CrossRef] [PubMed]
- Slomka, M.J.; Pavlidis, T.; Banks, J.; Shell, W.; McNally, A.; Essen, S.; Brown, I.H. Validated H5 Eurasian real-time reverse transcriptase-polymerase chain reaction and its application in H5N1 outbreaks in 2005–2006. Avian Dis. 2007, 51 (Suppl. 1), 373–377. [Google Scholar] [CrossRef] [PubMed]
- Slomka, M.J.; Pavlidis, T.; Coward, V.J.; Voermans, J.; Koch, G.; Hanna, A.; Banks, J.; Brown, I.H. Validated RealTime reverse transcriptase PCR methods for the diagnosis and pathotyping of Eurasian H7 avian influenza viruses. Influenza Other Respir. Viruses 2009, 3, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Anniballi, F.; Auricchio, B.; Woudstra, C.; Fach, P.; Fiore, A.; Skarin, H.; Bano, L.; Segerman, B.; Knutsson, R.; De Medici, D. Multiplex real-time PCR for detecting and typing Clostridium botulinum group III organisms and their mosaic variants. Biosecur. Bioterror. 2013, 11 (Suppl. 1), S207–S214. [Google Scholar] [CrossRef]
- Method CNRB31.010. Metodo per la Ricerca di Clostridi Produttori di Tossine Botuliniche Mediante Multiplex Real-Time PCR. Rev. 0. 2017, pp. 1–43. Available online: https://www.iss.it/documents/20126/2293568/CNRB31.010.pdf/780d90a8-b50b-f94d-30f7-aa16ccb3959e?t=1575730650786 (accessed on 8 August 2023).
- Method CNRB31.011. Metodo per la Ricerca di Clostridi Produttori di Tossine Botuliniche Mediante Multiplex Real-Time PCR. Rev. 1. 2019, pp. 1–43. Available online: https://www.iss.it/documents/20126/0/CNRB31.011.pdf/c06fe2c1-773b-9465-6d43-9eb852fe0830?t=1582363100540 (accessed on 8 August 2023).
- Method CNRB31.012. Metodo per la Ricerca di Clostridi Produttori di Tossine Botuliniche Mediante Multiplex Real-Time PCR. Rev. 2. 2021, pp. 1–44. Available online: https://www.iss.it/documents/20126/0/Metodo_CNRB31.012.pdf/aab30bfc-794f-ada0-abab-0ab9b702eb33?t=1615188484372 (accessed on 7 February 2024).
- Method CNRB30.011. Metodo per la Ricerca di Clostridi Produttori di Tossine Botuliniche e per la Ricerca di Tossine Botuliniche (Metodo Colturale e Mouse Test). Rev. 1. 2019, pp. 1–30. Available online: https://www.iss.it/documents/20126/0/CNRB30.011.pdf/59a7faf1-15f5-dd54-ae13-d066de9dcea2?t=1582366268086 (accessed on 8 August 2023).
- Wobeser, G.; Rainnie, D.J.; Smith-Windsor, T.B.; Bogdan, G. Avian botulism during late autumn and early spring in Saskatchewan. J. Wildl. Dis. 1983, 19, 90–94. [Google Scholar] [CrossRef]
- Rattner, B.A.; Wazniak, C.E.; Lankton, J.S.; McGowan, P.C.; Drovetski, S.V.; Egerton, T.A. Review of harmful algal bloom effects on birds with implications for avian wildlife in the Chesapeake Bay region. Harmful Algae 2022, 120, 102319. [Google Scholar] [CrossRef] [PubMed]
- Meloni, E.; Le Maréchal, C.; Millot, F.; Payne, A.; Calenge, C.; Mazuet, C.; Chemaly, M.; Rouxel, S.; Poezevara, T.; Avouac, A.; et al. Exposure of waterfowl to Clostridium botulinum in France. Front. Conserv. Sci. 2023, 4, 1011555. [Google Scholar] [CrossRef]
- Le Bouquin, S.; Lucas, C.; Souillard, R.; Le Maréchal, C.; Petit, K.; Kooh, P.; Jourdan-Da Silva, N.; Meurens, F.; Guillier, L.; Mazuet, C. Human and animal botulism surveillance in France from 2008 to 2019. Front. Public Health 2022, 10, 1003917. [Google Scholar] [CrossRef]
- Smith, G.R.; Oliphant, J.C.; White, W.R. Clostridium botulinum type C in the Mersey estuary. J. Hyg. 1982, 89, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, N.E.; Smith, G.R. Landfill sites, botulism and gulls. Epidemiol. Infect. 1994, 112, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Hubalek, Z.; Skorpikova, V.; Horal, D. Avian botulism at a sugar beet processing plant in South Moravia (Czech Republic). Vet. Med. 2005, 40, 443–445. [Google Scholar] [CrossRef]
- Neimanis, A.; Gavier-Widén, D.; Leighton, F.; Bollinger, T.; Rocke, T.; Mörner, T. An outbreak of type C botulism in herring gulls (Larus argentatus) in southeastern Sweden. J. Wildl. Dis. 2007, 43, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Espelund, M.; Klaveness, D. Botulism outbreaks in natural environments—An update. Front. Microbiol. 2014, 5, 287. [Google Scholar] [CrossRef] [PubMed]
- Vidal, D.; Anza, I.; Taggart, M.A.; Pérez-Ramírez, E.; Crespo, E.; Hofle, U.; Mateo, R. Environmental factors influencing the prevalence of a Clostridium botulinum type C/D mosaic strain in nonpermanent Mediterranean wetlands. Appl. Environ. Microbiol. 2013, 79, 4264–4271. [Google Scholar] [CrossRef]
- Soos, C.; Wobeser, G. Identification of Primary Substrate in the Initiation of Avian Botulism Outbreaks. J. Wildl. Manag. 2006, 70, 43–53. [Google Scholar] [CrossRef]
- Poulain, B.; Popoff, M.R. Why Are Botulinum Neurotoxin-Producing Bacteria So Diverse and Botulinum Neurotoxins So Toxic? Toxins 2019, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Malhi, Y.; Franklin, J.; Seddon, N.; Solan, M.; Turner, M.G.; Field, C.B.; Knowlton, N. Climate change and ecosystems: Threats, opportunities and solutions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2020, 375, 20190104. [Google Scholar] [CrossRef] [PubMed]
- van Asselen, S.; Verburg, P.H.; Vermaat, J.E.; Janse, J.H. Drivers of wetland conversion: A global meta-analysis. PLoS ONE 2013, 8, e81292. [Google Scholar] [CrossRef] [PubMed]
- Lazzari, G. Mezzo secolo di gestione delle zone umide di acqua dolce a Ravenna. In Punte Alberete, Valle Mandriole, Bassa del Bardello, Storia Recente e Prospettive Future; PressUp Srl: Rome, Italy, 2021; pp. 1–30. Available online: https://www.researchgate.net/publication/356536171_Mezzo_secolo_di_gestione_delle_zone_umide_di_acqua_dolce_a_Ravenna (accessed on 24 May 2024).
- Marconi, G. Piante palustri ed estinzioni. In Le Oasi Palustri Ravennati, un Paesaggio Instabile e Minacciato; Pupillo, P., Montanari, F.L., Gasparini, L.M., Spagnesi, M., Eds.; Edizioni Moderna: Ravenna, Italy, 2020; pp. 75–86. Available online: https://www.naturaitalica.it/wp-content/uploads/2021/04/Le-oasi-palustri-ravennati.pdf (accessed on 21 May 2024).
- Cliplef, D.J.; Wobeser, G. Observations on waterfowl carcasses during a botulism epizootic. J. Wildl. Dis. 1993, 29, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Minias, P.; Włodarczyk, R.; Janiszewski, T. Minor differentiation of foraging niche may have a major impact on the incidence of avian botulism in shorebirds. Basic Appl. Ecol. 2016, 17, 546–551. [Google Scholar] [CrossRef]
- Geetha, S.; Gouthami, S. Internet of things enabled real time water quality monitoring system. Smart Water 2017, 2, 1–19. [Google Scholar] [CrossRef]
- Anza, I.; Skarin, H.; Vidal, D.; Lindberg, A.; Båverud, V.; Mateo, R. The same clade of Clostridium botulinum strains is causing avian botulism in southern and northern Europe. Anaerobe 2014, 26, 202–203. [Google Scholar] [CrossRef] [PubMed]
- Vesentini, D. The Po Delta Biosphere Reserve: Management Challenges and Priorities Deriving from Anthropogenic Pressure and Sea Level Rise. Master’s Thesis, Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden, 15 February 2019. Available online: http://lup.lub.lu.se/student-papers/record/8971260 (accessed on 27 May 2024).
- Locke, L.N.; Friend, M.N. 13.2.4. Avian Botulism: Geographic Expansion of a Historic Disease. In Waterfowl Management Handbook, 3rd ed.; Cross, D.H., Vohs, P., Eds.; Fish and Wildlife Service: Fort Collins, CO, USA, 1988; Fish and Wildlife Leaflet 13.2.4 Version January 1989; pp. 1–5. Available online: https://digitalcommons.unl.edu/icwdmwfm/3/ (accessed on 27 February 2024).
- Son, K.; Kim, Y.K.; Woo, C.; Wang, S.J.; Kim, Y.; Oem, J.K.; Jheong, W.; Jeong, J. Minimizing an outbreak of avian botulism (Clostridium botulinum type C) in Incheon, South Korea. J. Vet. Med. Sci. 2018, 80, 553–556. [Google Scholar] [CrossRef]
- Woo, G.H.; Kim, H.Y.; Bae, Y.C.; Jean, Y.H.; Yoon, S.S.; Bak, E.J.; Hwang, E.K.; Joo, Y.S. Outbreak of botulism (Clostridium botulinum type C) in wild waterfowl: Seoul, Korea. J. Wildl. Dis. 2010, 46, 951–955. [Google Scholar] [CrossRef]
- Russell, I.A.; Randall, R.M.; Zimmerman, D.; Govender, D. Outbreak of avian botulism and its effect on waterbirds in the Wilderness Lakes, South Africa. Koedoe 2019, 61, a1553. [Google Scholar] [CrossRef]
Bird Species | No. of Collected Bird Carcasses (CBC) | No. of Collected Symptomatic Birds (CSB) | Total No. | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17 August | 18 August | 19 August | 20 August | 21 August | 22 August | 25 August | 17 August | 18 August | 19 August | 20 August | 21 August | 22 August | 25 August | CBC | CSB | |
Anas platyrhynchos | 14 | 2 | ― | ― | ― | ― | ― | 9 | ― | 2 | 2 | 1 | ― | 1 | 16 | 15 |
Anas crecca | 35 | 18 | 2 | ― | ― | ― | 2 | 29 | 16 | 4 | 2 | 2 | 1 | 3 | 57 | 57 |
Spatula querquedula | 2 | ― | ― | ― | ― | ― | ― | 2 | ― | ― | ― | ― | ― | 1 | 2 | 3 |
Spatula clypeata | ― | 1 | ― | ― | ― | ― | ― | 5 | ― | ― | ― | ― | ― | ― | 1 | 5 |
Mareca strepera | ― | ― | ― | ― | ― | ― | ― | 8 | ― | 1 | ― | 1 | ― | ― | ― | 10 |
Aythya ferina | ― | ― | ― | ― | ― | ― | ― | ― | ― | ― | ― | ― | ― | 1 | ― | 1 |
Anas acuta | ― | ― | ― | ― | ― | ― | ― | 1 | ― | ― | ― | ― | ― | ― | ― | 1 |
Unspecified duck | 1 | ― | 3 | ― | ― | ― | ― | ― | ― | ― | ― | ― | ― | ― | 4 | ― |
Egretta garzetta | ― | ― | ― | ― | ― | ― | ― | 1 | ― | ― | ― | ― | ― | 1 | ― | 2 |
Plegadis falcinellus | 1 | ― | ― | ― | ― | ― | ― | ― | ― | ― | ― | ― | ― | ― | 1 | ― |
Himantopus himantopus | ― | 1 | ― | ― | ― | ― | ― | ― | ― | ― | ― | ― | ― | ― | 1 | ― |
Total No. | 53 | 22 | 5 | 0 | 0 | 0 | 2 | 55 | 16 | 7 | 4 | 4 | 1 | 7 | 82 | 94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volponi, S.; De Marco, M.A.; Benigno, R.; Savorelli, E.; Frasnelli, M.; Fiorentini, L.; Tosi, G.; Bardasi, L.; Toschi, E.; Taddei, R.; et al. Ecology and Management of a Large Outbreak of Avian Botulism in Wild Waterbirds in Northeastern Italy (2019–2022). Animals 2024, 14, 2291. https://doi.org/10.3390/ani14162291
Volponi S, De Marco MA, Benigno R, Savorelli E, Frasnelli M, Fiorentini L, Tosi G, Bardasi L, Toschi E, Taddei R, et al. Ecology and Management of a Large Outbreak of Avian Botulism in Wild Waterbirds in Northeastern Italy (2019–2022). Animals. 2024; 14(16):2291. https://doi.org/10.3390/ani14162291
Chicago/Turabian StyleVolponi, Stefano, Maria Alessandra De Marco, Roberta Benigno, Enea Savorelli, Matteo Frasnelli, Laura Fiorentini, Giovanni Tosi, Lia Bardasi, Elena Toschi, Roberta Taddei, and et al. 2024. "Ecology and Management of a Large Outbreak of Avian Botulism in Wild Waterbirds in Northeastern Italy (2019–2022)" Animals 14, no. 16: 2291. https://doi.org/10.3390/ani14162291
APA StyleVolponi, S., De Marco, M. A., Benigno, R., Savorelli, E., Frasnelli, M., Fiorentini, L., Tosi, G., Bardasi, L., Toschi, E., Taddei, R., & Cocchi, R. (2024). Ecology and Management of a Large Outbreak of Avian Botulism in Wild Waterbirds in Northeastern Italy (2019–2022). Animals, 14(16), 2291. https://doi.org/10.3390/ani14162291