Adaptive Evolution and Functional Differentiation of Testis-Expressed Genes in Theria
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample and Library Preparation
2.2. RNA Sequencing and Assembling
2.3. Comparative Evolutionary Analyses
2.4. Molecular Evolutionary Analyses
3. Results and Discussion
3.1. The Evolutionary Tempo and Mode of Testis Genes in Theria
3.2. Therian-Specific Testis-Expressed Genes
3.3. 22 Genes: Functional Differentiation in a Member of a Large Gene Family
3.4. Perspectives on the Function of PRDM1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bininda-Emonds, O.R.P.; Cardillo, M.; Jones, K.E.; MacPhee, R.D.E.; Beck, R.M.D.; Grenyer, R.; Price, S.A.; Vos, R.A.; Gittleman, J.L.; Purvis, A. The delayed rise of present-day mammals. Nature 2007, 446, 507–512. [Google Scholar] [CrossRef]
- Katsura, Y.; Kondo, H.X.; Ryan, J.; Harley, V.; Satta, Y. The Evolutionary Process of Mammalian Sex Determination Genes focusing on Marsupial SRYs. BMC Evol. Biol. 2018, 18, 3. [Google Scholar]
- Renfree, M.B.; Chew, K.Y.; Shaw, G. Inducing sex reversal of the urogenital system of marsupials. Differentiation 2014, 87, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Graves, J.A.M.; Renfree, M.B. Marsupials in the Age of Genomics. Annu. Rev. Genom. Hum. Genet. 2013, 14, 393–420. [Google Scholar] [CrossRef] [PubMed]
- O, W.S.; Short, R.V.; Renfree, M.B.; Shaw, G. Primary genetic control of somatic sexual differentiation in a mammal. Nature 1988, 331, 716–717. [Google Scholar] [CrossRef] [PubMed]
- Renfree, M.B.; Shaw, G. Diapause. Annu. Rev. Physiol. 2000, 62, 353–375. [Google Scholar] [CrossRef]
- Shaw, G.; Renfree, M.B.; Short, R.V. OWS Experimental manipulation of sexual differentiation in wallaby pouch young treated with exogenous steroids. Development 1988, 104, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.; Johnston, P.; Watson, J.; Graves, J.A.M. X-inactivation in marsupials and monotremes. Semin. Dev. Biol. 1993, 4, 117–128. [Google Scholar] [CrossRef]
- Brawand, D.; Soumillon, M.; Necsulea, A.; Julien, P.; Csardi, G.; Harrigan, P.; Weier, M.; Liechti, A.; Aximu-Petri, A.; Kircher, M.; et al. The evolution of gene expression levels in mammalian organs. Nature 2011, 478, 343–348. [Google Scholar] [CrossRef]
- Murchison, E.P.; Tovar, C.; Hsu, A.; Bender, H.S.; Kheradpour, P.; Rebbeck, C.A.; Obendorf, D.; Conlan, C.; Bahlo, M.; Blizzard, C.A.; et al. The Tasmanian devil transcriptome reveals Schwann cell origins of a clonally transmissible cancer. Science 2010, 327, 84–87. [Google Scholar] [CrossRef]
- Renfree, M.B.; Papenfuss, A.T.; Deakin, J.E.; Lindsay, J.; Heider, T.; Belov, K.; Rens, W.; Waters, P.D.; Pharo, E.A.; Shaw, G.; et al. Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome. Biol. 2011, 12, R81. [Google Scholar] [CrossRef]
- Murat, F.; Mbengue, N.; Winge, S.B.; Trefzer, T.; Leushkin, E.; Sepp, M.; Cardoso-Moreira, M.; Schmidt, J.; Schneider, C.; Mößinger, K.; et al. The molecular evolution of spermatogenesis across mammals. Nature 2023, 613, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup. The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative Genomics Viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Ambrosio, A.B.; Nascimento, L.C.D.; Oliveira, B.V.; Teixeira, P.J.P.L.; A Tiburcio, R.; Thomazella, D.P.T.; Leme, A.F.P.; Carazzolle, M.F.; O Vidal, R.; Mieczkowski, P.; et al. Global analyses of Ceratocystis cacaofunesta mitochondria: From genome to proteome. BMC Genom. 2013, 14, 91. [Google Scholar]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Khaitovich, P.; Enard, W.; Lachmann, M.; Pääbo, S. Evolution of primate gene expression. Nat. Rev. Genet. 2006, 7, 693–702. [Google Scholar] [CrossRef]
- Feigin, C.Y.; Newton, A.H.; Doronina, L.; Schmitz, J.; Hipsley, C.A.; Mitchell, K.J.; Gower, G.; Llamas, B.; Soubrier, J.; Heider, T.N.; et al. Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore. Nat. Ecol. Evol. 2018, 2, 182–192. [Google Scholar]
- Boureux, A.; Vignal, E.; Faure, S.; Fort, P. Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol. Biol. Evol. 2007, 24, 203–216. [Google Scholar] [CrossRef]
- Etienne-Manneville, S.; Hall, A. Rho GTPases in cell biology. Nature 2002, 420, 629–635. [Google Scholar] [CrossRef]
- Van Aelst, L.; D’Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 1997, 11, 2295–2322. [Google Scholar] [PubMed]
- Granger, B.L.; Lazarides, E. Synemin: A new high molecular weight protein associated with desmin and vimentin filaments in muscle. Cell 1980, 22, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Sewduth, R.N.; Jaspard-Vinassa, B.; Peghaire, C.; Guillabert, A.; Franzl, N.; Larrieu-Lahargue, F.; Moreau, C.; Fruttiger, M.; Dufourcq, P.; Couffinhal, T.; et al. The ubiquitin ligase PDZRN3 is required for vascular morphogenesis through Wnt/planar cell polarity signalling. Nat. Commun. 2014, 5, 4832. [Google Scholar] [CrossRef] [PubMed]
- de Angelis, C.; Galdiero, M.; Pivonello, C.; Garifalos, F.; Menafra, D.; Cariati, F.; Salzano, C.; Galdiero, G.; Piscopo, M.; Vece, A.; et al. The role of vitamin D in male fertility: A focus on the testis. Rev. Endocr. Metab. Disord. 2017, 18, 285–305. [Google Scholar] [CrossRef] [PubMed]
- Goossens, S.; Van Roy, F. Cadherin-mediated cell-cell adhesion in the testis. Front. Biosci. 2005, 10, 398–419. [Google Scholar] [CrossRef]
- Nollet, F.; Kools, P.; van Roy, F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J. Mol. Biol. 2000, 299, 551–572. [Google Scholar] [PubMed]
- Johnson, K.J.; Patel, S.R.; Boekelheide, K. Multiple cadherin superfamily members with unique expression profiles are produced in rat testis. Endocrinology 2000, 141, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Byers, S.W.; Sujarit, S.; Jegou, B.; Butz, S.; Hoschutzky, H.; Herrenknecht, K.; MacCalman, C.; Blaschuk, O.W. Cadherins and cadherin-associated molecules in the developing and maturing rat testis. Endocrinology 1994, 134, 630–639. [Google Scholar] [CrossRef]
- Kopera, I.A.; Bilinska, B.; Cheng, C.Y.; Mruk, D.D. Sertoli-germ cell junctions in the testis: A review of recent data. Philos. Trans. R Soc. Lond. B Biol. Sci. 2010, 365, 1593–1605. [Google Scholar] [CrossRef] [PubMed]
- Le Magueresse-Battistoni, B. Serine proteases and serine protease inhibitors in testicular physiology: The plasminogen activation system. Reproduction 2007, 134, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Thierry-Mieg, D.; Thierry-Mieg, J. AceView: A comprehensive cDNA-supported gene and transcripts annotation. Genome Biol. 2006, 7, S12. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Park, Y.-J.; Chen, P.; Lee, T.J.; Jeon, Y.-J.; Croce, C.M.; Suh, Y.; Hwang, S.; Kwon, W.-S.; Pang, M.-G.; et al. Comparative expression profiling of testis-enriched genes regulated during the development of spermatogonial cells. PLoS ONE 2017, 12, e0175787. [Google Scholar] [CrossRef] [PubMed]
- Clement, T.; Geyer, C.; Willis, W.; Goulding, E.; Eddy, M. Expressed Actin-Like 7b (Actl7b) Is Required for Mouse Spermatid Morphogenesis and Male Fertility. Biol. Reprod. 2012, 87, 140. [Google Scholar] [CrossRef]
- Hosen, M.B.; Islam, M.R.; Begum, F.; Kabir, Y.; Howlader, M.Z. Oxidative stress induced sperm DNA damage, a possible reason for male infertility. Iran. J. Reprod. Med. 2015, 13, 525–532. [Google Scholar]
- Cardoso-Moreira, M.; Halbert, J.; Valloton, D.; Velten, B.; Chen, C.; Shao, Y.; Liechti, A.; Ascenção, K.; Rummel, C.; Ovchinnikova, S.; et al. Gene expression across mammalian organ development. Nature 2019, 571, 505–509. [Google Scholar] [CrossRef]
- Fumasoni, I.; Meani, N.; Rambaldi, D.; Scafetta, G.; Alcalay, M.; Ciccarelli, F.D. Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates. BMC Evol. Biol. 2007, 7, 187. [Google Scholar] [CrossRef] [PubMed]
- Vervoort, M.; Meulemeester, D.; Béhague, J.; Kerner, P. Evolution of Prdm Genes in Animals: Insights from Comparative Genomics. Mol. Biol. Evol. 2016, 33, 679–696. [Google Scholar] [CrossRef] [PubMed]
- Yamaji, M.; Seki, Y.; Kurimoto, K.; Yabuta, Y.; Yuasa, M.; Shigeta, M.; Yamanaka, K.; Ohinata, Y.; Saitou, M. Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat. Genet. 2008, 40, 1016–1022. [Google Scholar] [CrossRef] [PubMed]
- Eom, G.H.; Kim, K.; Kim, S.-M.; Kee, H.J.; Kim, J.-Y.; Jin, H.M.; Kim, J.-R.; Kim, J.H.; Choe, N.; Kim, K.-B.; et al. Histone methyltransferase PRDM8 regulates mouse testis steroidogenesis. Biochem. Biophys. Res. Commun. 2009, 388, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Oliver, P.L.; Goodstadt, L.; Bayes, J.J.; Birtle, Z.; Roach, K.C.; Phadnis, N.; Beatson, S.A.; Lunter, G.; Malik, H.S.; Ponting, C.P. Accelerated Evolution of the Prdm9 Speciation Gene across Diverse Metazoan Taxa. PLoS Genet. 2009, 5, e1000753. [Google Scholar] [CrossRef] [PubMed]
- Keller, A.D.; Maniatis, T. Identification and characterization of a novel repressor of beta-interferon gene expression. Genes Dev. 1991, 5, 868–879. [Google Scholar] [CrossRef]
- Satie, A.P.; Mazaud-Guittot, S.; Seif, I.; Mahé, D.; He, Z.; Jouve, G.; Jégou, B.; Dejucq-Rainsford, N. Excess type I IFN signaling in the mouse seminiferous tubules leads to germ cell loss and sterility. J. Biol. Chem. 2011, 286, 23280–23295. [Google Scholar] [CrossRef]
- Ohinata, Y.; Payer, B.; O’Carroll, D.; Ancelin, K.; Ono, Y.; Sano, M.; Barton, S.C.; Obukhanych, T.; Nussenzweig, M.; Tarakhovsky, A.; et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 2005, 436, 207–213. [Google Scholar] [CrossRef]
NIPAL1 | NIPA-like domain containing 1 |
LMOD3 | Leiomodin 3 |
FUT9 | Fucosyltransferase 9 |
TECTB | Tectorin beta |
AMPD1 | Adenosine monophosphate deaminase 1 |
TYRP1 | Tyrosinase-related protein 1 |
PRDM1 | PR/SET domain 1 |
BCL11B | B-cell CLL/lymphoma 11B |
BEST3 | Bestrophin 3 |
IHH | Indian hedgehog |
IKBKE | Inhibitor of nuclear factor kappa B kinase subunit epsilon |
DAB1 | DAB1, reelin adaptor protein |
TRAF3IP | TRAF3-interacting protein 3 |
RBM20 | RNA-binding motif protein 20 |
SERPINA10 | Serpin family A member 10 |
CDH7 | Cadherin 7 |
CDH19 | Cadherin 19 |
CDH20 | Cadherin 20 |
IGFBP1 | Insulin-like growth factor binding protein 1 |
ZNF750 | Zinc finger protein 750 |
THEMIS | Thymocyte selection associated |
NTS | Neurotensin |
ARHGAP28 | Rho GTPase-activating protein 28 |
CYP2R1 | Cytochrome P450 family 2 subfamily R member 1 |
ESRP2 | Epithelial splicing regulatory protein 2 |
ATP9A | ATPase phospholipid transporting 9A |
MYO15A | Myosin XVA |
HSPA12A | Heat shock protein family A (Hsp70) member 12A |
TOGARAM2 | TOG array regulator of axonemal microtubules 2 |
PDZRN3 | PDZ domain containing ring finger 3 |
SLC7A2 | Solute carrier family 7 member 2 |
SYNM | Synemin |
CDH18 | Cadherin 18 |
GJA5 | Gap junction protein, alpha 5 |
SH3RF2 | SH3 domain containing ring finger 2 |
WFDC1 | WAP four-disulfide core domain 1 |
ELFN2 | Extracellular leucine rich repeat and fibronectin type III domain containing 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsura, Y.; Shigenobu, S.; Satta, Y. Adaptive Evolution and Functional Differentiation of Testis-Expressed Genes in Theria. Animals 2024, 14, 2316. https://doi.org/10.3390/ani14162316
Katsura Y, Shigenobu S, Satta Y. Adaptive Evolution and Functional Differentiation of Testis-Expressed Genes in Theria. Animals. 2024; 14(16):2316. https://doi.org/10.3390/ani14162316
Chicago/Turabian StyleKatsura, Yukako, Shuji Shigenobu, and Yoko Satta. 2024. "Adaptive Evolution and Functional Differentiation of Testis-Expressed Genes in Theria" Animals 14, no. 16: 2316. https://doi.org/10.3390/ani14162316
APA StyleKatsura, Y., Shigenobu, S., & Satta, Y. (2024). Adaptive Evolution and Functional Differentiation of Testis-Expressed Genes in Theria. Animals, 14(16), 2316. https://doi.org/10.3390/ani14162316