Protective Effect of Coated Benzoic Acid on Intestinal Epithelium in Weaned Pigs upon Enterotoxigenic Escherichia coli Challenge
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Animal Diets and Experimental Design
2.3. Sample Collection
2.4. Growth Performance Evaluation
2.5. Serum Parameter Measurements
2.6. Analysis of Intestinal Antioxidant Parameters
2.7. Immunofluorescence Analysis
2.8. Cell Cycle Measurement
2.9. Apoptosis Measurement
2.10. Immunohistochemistry Analysis of Mucosal sIgA
2.11. RNA Extraction, cDNA Synthesis, and Quantitative Real-Time PCR Analysis
2.12. Statistical Analysis
3. Results
3.1. Effect of CBA on Growth Performance in the ETEC-Challenged Pigs
3.2. Effect of CBA on Serum Inflammatory Cytokines and Antioxidant Capacity in the ETEC-Challenged Pigs
3.3. Effect of CBA on Integrity of Intestinal Epithelium in the ETEC-Challenged Pigs
3.4. Effect of CBA Supplementation on Cell Cycle and Apoptosis in the Jejunal Epithelium
3.5. Effect of CBA on Intestinal Mucosal Immunity and Antioxidant Capacity in ETEC-Challenged Pigs
3.6. Effect of CBA on Expressions of Critical Genes Related to Intestinal Epithelium Functions in ETEC-Challenged Pigs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oswald, I.P. Role of intestinal epithelial cells in the innate immune defence of the pig intestine. Vet. Res. 2006, 37, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Gao, L.-M.; Liu, Y.-L.; Xie, C.; Cai, L.; Xu, K.; Zhou, X.-H. Maternal dietary uridine supplementation reduces diarrhea incidence in piglets by regulating the intestinal mucosal barrier and cytokine profiles. J. Sci. Food Agric. 2020, 100, 3709–3718. [Google Scholar] [CrossRef]
- Lee, I.K.; Kye, Y.C.; Kim, G.; Kim, H.W.; Gu, M.J.; Umboh, J.; Maaruf, K.; Kim, S.W.; Yun, C.-H. Stress, Nutrition, and Intestinal Immune Responses in Pigs—A Review. Asian-Australas. J. Anim. Sci. 2016, 29, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Guan, G.; Ding, S.; Yin, Y.; Duraipandiyan, V.; Al-Dhabi, N.A.; Liu, G. Macleaya cordata extract alleviated oxidative stress and altered innate immune response in mice challenged with enterotoxigenic Escherichia coli. Sci. China Life Sci. 2019, 62, 1019–1027. [Google Scholar] [CrossRef]
- Lu, X.; Li, C.; Li, C.; Li, P.; Fu, E.; Xie, Y.; Jin, F. Heat-Labile Enterotoxin-Induced PERK-CHOP Pathway Activation Causes Intestinal Epithelial Cell Apoptosis. Front. Cell. Infect. Microbiol. 2017, 7, 244. [Google Scholar] [CrossRef]
- Lin, Q.; Su, G.; Wu, A.; Chen, D.; Yu, B.; Huang, Z.; Luo, Y.; Mao, X.; Zheng, P.; Yu, J.; et al. Bombyx mori gloverin A2 alleviates enterotoxigenic Escherichia coli-induced inflammation and intestinal mucosa disruption. Antimicrob. Resist. Infect. Control 2019, 8, 189. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Huang, J.; Li, X.; Zhang, Z.; Jin, M.; Wang, J.; Xu, Y.; Wang, Z. Icariin and its phosphorylated derivatives alleviate intestinal epithelial barrier disruption caused by enterotoxigenic Escherichia coli through modulate p38 MAPK in vivo and in vitro. FASEB J. 2020, 34, 1783–1801. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wang, Y.; Zeng, X.; Cai, S.; Wang, G.; Liu, L.; Huang, S.; Li, N.; Liu, H.; Ding, X.; et al. Therapeutic administration of the recombinant antimicrobial peptide microcin J25 effectively enhances host defenses against gut inflammation and epithelial barrier injury induced by enterotoxigenic Escherichia coli infection. FASEB J. 2020, 34, 1018–1037. [Google Scholar] [CrossRef]
- Ghosh, C.; Sarkar, P.; Issa, R.; Haldar, J. Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance. Trends Microbiol. 2019, 27, 323–338. [Google Scholar] [CrossRef]
- Pearlin, B.V.; Muthuvel, S.; Govidasamy, P.; Villavan, M.; Alagawany, M.; Ragab Farag, M.; Dhama, K.; Gopi, M. Role of acidifiers in livestock nutrition and health: A review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 558–569. [Google Scholar] [CrossRef]
- Mroz, Z.; Jongbloed, A.W.; Partanen, K.H.; Vreman, K.; Kemme, P.A.; Kogut, J. The effects of calcium benzoate in diets with or without organic acids on dietary buffering capacity, apparent digestibility, retention of nutrients, and manure characteristics in swine. J. Anim. Sci. 2000, 78, 2622–2632. [Google Scholar] [CrossRef] [PubMed]
- Knarreborg, A.; Miquel, N.; Granli, T.; Jensen, B. Establishment and application of an in vitro methodology to study the effects of organic acids on coliform and lactic acid bacteria in the proximal part of the gastrointestinal tract of piglets. Anim. Feed. Sci. Technol. 2002, 99, 131–140. [Google Scholar] [CrossRef]
- Friedman, M.; Henika, P.R.; Mandrell, R.E. Antibacterial activities of phenolic benzaldehydes and benzoic acids against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 2003, 66, 1811–1821. [Google Scholar] [CrossRef] [PubMed]
- Resende, M.; Chaves, R.F.; Garcia, R.M.; Barbosa, J.A.; Marques, A.S.; Rezende, L.R.; Peconick, A.P.; Garbossa, C.A.P.; Mesa, D.; Silva, C.C.; et al. Benzoic acid and essential oils modify the cecum microbiota composition in weaned piglets and improve growth performance in finishing pigs. Livest. Sci. 2020, 242, 104311. [Google Scholar] [CrossRef]
- Saravanan, N.; Rajasankar, S.; Nalini, N. Antioxidant effect of 2-hydroxy-4-methoxy benzoic acid on ethanol-induced hepatotoxicity in rats. J. Pharm. Pharmacol. 2007, 59, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Diao, H.; Zheng, P.; Yu, B.; He, J.; Mao, X.B.; Yu, J.; Chen, D.W. Effects of dietary supplementation with benzoic acid on intestinal morphological structure and microflora in weaned piglets. Livest. Sci. 2014, 167, 249–256. [Google Scholar] [CrossRef]
- Kiarie, E.; Voth, C.; Wey, D.; Zhu, C.; Vingerhoeds, P.; Borucki, S.; Squires, E.J. Comparative efficacy of antibiotic growth promoter and benzoic acid on growth performance, nutrient utilization, and indices of gut health in nursery pigs fed corn–soybean meal diet. Can. J. Anim. Sci. 2018, 98, 868–874. [Google Scholar] [CrossRef]
- Cho, J.H.; Lee, S.I.; Kim, I.H. Effects of different levels of fibre and benzoic acid on growth performance, nutrient digestibility, reduction of noxious gases, serum metabolites and meat quality in finishing pigs. J. Appl. Anim. Res. 2015, 43, 336–344. [Google Scholar] [CrossRef]
- Giannenas, I.; Doukas, D.; Karamoutsios, A.; Tzora, A.; Bonos, E.; Skoufos, I.; Tsinas, A.; Christaki, E.; Tontis, D.; Florou-Paneri, P. Effects of Enterococcus faecium, mannan oligosaccharide, benzoic acid and their mixture on growth performance, intestinal microbiota, intestinal morphology and blood lymphocyte subpopulations of fattening pigs. Anim. Feed Sci. Technol. 2016, 220, 159–167. [Google Scholar] [CrossRef]
- Morel, P.; Chidgey, K.L.; Jenkinson, C.; Lizarraga, I.; Schreurs, N.M. Effect of benzoic acid, sodium butyrate and sodium butyrate coated with benzoic acid on growth performance, digestibility, intestinal morphology and meat quality in grower-finisher pigs. Livest. Sci. 2019, 226, 107–113. [Google Scholar] [CrossRef]
- Kristensen, N.B.; Nørgaard, J.V.; Wamberg, S.; Engbaek, M.; Fernández, J.A.; Zacho, H.D.; Poulsen, H.D. Absorption and metabolism of benzoic acid in growing pigs. J. Anim. Sci. 2009, 87, 2815–2822. [Google Scholar] [CrossRef] [PubMed]
- Saha, D.C.; Boegel, S.J.; Tanvir, S.; Nogueira, C.L.; Aucoin, M.G.; Anderson, W.A.; Jahed, H. Antiviral and Antibacterial Cold Spray Coating Application on Rubber Substrate, Disruption in Disease Transmission Chain. J. Therm. Spray Technol. 2023, 32, 818–830. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.H.; Lee, K.Y.; Tran, H.N.; Kim, I.H. Effect of a protected blend of organic acids and medium-chain fatty acids on growth performance, nutrient digestibility, blood profiles, meat quality, faecal microflora, and faecal gas emission in finishing pigs. Can. J. Anim. Sci. 2019, 99, 448–455. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Lee, K.Y.; Kim, I.H. Effect of protected organic acid blends on growth performance, nutrient digestibility and faecal micro flora in growing pigs. J. Appl. Anim. Res. 2016, 44, 238–242. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Lee, K.Y.; Serpunja, S.; Song, T.-H.; Kim, I.H. Growth performance, nutrient digestibility, fecal microbiota and fecal noxious gas emission in weaning pigs fed high and low density diet with and without protected organic acid blends. Anim. Feed Sci. Technol. 2018, 239, 1–8. [Google Scholar] [CrossRef]
- Xu, T.; Ma, X.; Zhou, X.; Qian, M.; Yang, Z.; Cao, P.; Han, X. Coated tannin supplementation improves growth performance, nutrients digestibility, and intestinal function in weaned piglets. J. Anim. Sci. 2022, 100, skac088. [Google Scholar] [CrossRef] [PubMed]
- Bosi, P.; Sarli, G.; Casini, L.; De Filippi, S.; Trevisi, P.; Mazzoni, M.; Merialdi, G. The influence of fat protection of calcium formate on growth and intestinal defence in Escherichia coli K88-challenged weanling pigs. Anim. Feed Sci. Technol. 2007, 139, 170–185. [Google Scholar] [CrossRef]
- European Food Safety Authority. Opinion of the Scientific Panel on additives and products or substances used in animal feed (FEEDAP) on the safety and the efficacy of product “BIO-COX 120G” as feed additive in accordance with Council Directive 70/524/EEC. EFSA J. 2004, 2, 75. [Google Scholar] [CrossRef]
- National Research Council (U.S.). Nutrient Requirements of Swine; National Research Council: Rockville, MD, USA, 2012. [Google Scholar]
- Huang, C.; Qiao, S.; Li, D.; Piao, X.; Ren, J. Effects of Lactobacilli on the Performance, Diarrhea Incidence, VFA Concentration and Gastrointestinal Microbial Flora of Weaning Pigs. Asian-Australas. J. Anim. Sci. 2004, 17, 401–409. [Google Scholar] [CrossRef]
- Liu, P.; Piao, X.S.; Thacker, P.A.; Zeng, Z.K.; Li, P.F.; Wang, D.; Kim, S.W. Chito-oligosaccharide reduces diarrhea incidence and attenuates the immune response of weaned pigs challenged with Escherichia coli K88. J. Anim. Sci. 2010, 88, 3871–3879. [Google Scholar] [CrossRef]
- Fleige, S.; Walf, V.; Huch, S.; Prgomet, C.; Sehm, J.; Pfaffl, M.W. Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. Biotechnol. Lett. 2006, 28, 1601–1613. [Google Scholar] [CrossRef] [PubMed]
- Fairbrother, J.M.; Nadeau, E.; Gyles, C.L. Escherichia coli in postweaning diarrhea in pigs: An update on bacterial types, pathogenesis, and prevention strategies. Anim. Health Res. Rev. 2005, 6, 17–39. [Google Scholar] [CrossRef]
- Zhang, F.; Zeng, X.; Yang, F.; Huang, Z.; Liu, H.; Ma, X.; Qiao, S. Dietary N-Carbamylglutamate Supplementation Boosts Intestinal Mucosal Immunity in Escherichia coli Challenged Piglets. PLoS ONE 2013, 8, e66280. [Google Scholar] [CrossRef] [PubMed]
- Yi, G.F.; Carroll, J.A.; Allee, G.L.; Gaines, A.M.; Kendall, D.C.; Usry, J.L.; Toride, Y.; Izuru, S. Effect of glutamine and spray-dried plasma on growth performance, small intestinal morphology, and immune responses of Escherichia coli K88+-challenged weaned pigs. J. Anim. Sci. 2005, 83, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Yi, Q.; Liu, J.; Zhang, Y.; Qiao, H.; Chen, F.; Zhang, S.; Guan, W. Anethole Attenuates Enterotoxigenic Escherichia coli-Induced Intestinal Barrier Disruption and Intestinal Inflammation via Modification of TLR Signaling and Intestinal Microbiota. Front. Microbiol. 2021, 12, 647242. [Google Scholar] [CrossRef] [PubMed]
- Fleckenstein, J.M.; Hardwidge, P.R.; Munson, G.P.; Rasko, D.A.; Sommerfelt, H.; Steinsland, H. Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes Infect. 2010, 12, 89–98. [Google Scholar] [CrossRef]
- Dubreuil, J.D. The whole Shebang: The gastrointestinal tract, Escherichia coli enterotoxins and secretion. Curr. Issues Mol. Biol. 2012, 14, 71–82. [Google Scholar] [CrossRef]
- Torrallardona, D.; Badiola, I.; Broz, J. Effects of benzoic acid on performance and ecology of gastrointestinal microbiota in weanling piglets. Livest. Sci. 2007, 108, 210–213. [Google Scholar] [CrossRef]
- Diao, H.; Gao, Z.; Yu, B.; Zheng, P.; He, J.; Yu, J.; Huang, Z.; Chen, D.; Mao, X. Effects of benzoic acid (VevoVitall®) on the performance and jejunal digestive physiology in young pigs. J. Anim. Sci. Biotechnol. 2016, 7, 32. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Yang, Q.; Chen, D.; Yu, B.; He, J. Benzoic Acid Used as Food and Feed Additives Can Regulate Gut Functions. BioMed Res. Int. 2019, 2019, 5721585. [Google Scholar] [CrossRef]
- Kluge, H.; Broz, J.; Eder, K. Effect of benzoic acid on growth performance, nutrient digestibility, nitrogen balance, gastrointestinal microflora and parameters of microbial metabolism in piglets. J. Anim. Physiol. Anim. Nutr. 2006, 90, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Guggenbuhl, P.; Séon, A.; Quintana, A.P.; Nunes, C.S. Effects of dietary supplementation with benzoic acid (VevoVitall®) on the zootechnical performance, the gastrointestinal microflora and the ileal digestibility of the young pig. Livest. Sci. 2007, 108, 218–221. [Google Scholar] [CrossRef]
- Silveira, H.; Amaral, L.G.d.M.; Garbossa, C.A.P.; Rodrigues, L.M.; Da Silva, C.C.; Cantarelli, V.d.S. Benzoic acid in nursery diets increases the performance from weaning to finishing by reducing diarrhoea and improving the intestinal morphology of piglets inoculated with Escherichia coli K88. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1675–1685. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Xun, W.; Peng, W.; Hu, H.; Cao, T.; Hou, G. Effect of the Single and Combined Use of Curcumin and Piperine on Growth Performance, Intestinal Barrier Function, and Antioxidant Capacity of Weaned Wuzhishan Piglets. Front. Vet. Sci. 2020, 7, 418. [Google Scholar] [CrossRef]
- Wolvekamp, M.C.; de Bruin, R.W. Diamine oxidase: An overview of historical, biochemical and functional aspects. Dig. Dis. 1994, 12, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Brandt, R.B.; Siegel, S.A.; Waters, M.G.; Bloch, M.H. Spectrophotometric assay for D-(−)-lactate in plasma. Anal. Biochem. 1980, 102, 39–46. [Google Scholar] [CrossRef]
- Dokladny, K.; Zuhl, M.N.; Moseley, P.L. Intestinal epithelial barrier function and tight junction proteins with heat and exercise. J. Appl. Physiol. 2016, 120, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wu, Z.; Ji, Y.; Sun, K.; Dai, Z.; Wu, G. L-Glutamine Enhances Tight Junction Integrity by Activating CaMK Kinase 2-AMP-Activated Protein Kinase Signaling in Intestinal Porcine Epithelial Cells. J. Nutr. 2016, 146, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Uzbekov, R.; Prigent, C. A Journey through Time on the Discovery of Cell Cycle Regulation. Cells 2022, 11, 704. [Google Scholar] [CrossRef]
- Duan, Q.; Yu, B.; Huang, Z.; Luo, Y.; Zheng, P.; Mao, X.; Yu, J.; Luo, J.; Yan, H.; He, J. Protective effect of sialyllactose on the intestinal epithelium in weaned pigs upon enterotoxigenic Escherichia coli challenge. Food Funct. 2022, 13, 11627–11637. [Google Scholar] [CrossRef] [PubMed]
- Fleisher, T.A. Apoptosis. Ann. Allergy Asthma Immunol. 1997, 78, 245–249, quiz 249–250. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, J.; Wu, G.; Chen, D.; Yu, B.; Huang, Z.; Luo, Y.; Zheng, P.; Luo, J.; Mao, X.; et al. Amelioration of Enterotoxigenic Escherichia coli-Induced Intestinal Barrier Disruption by Low-Molecular-Weight Chitosan in Weaned Pigs is Related to Suppressed Intestinal Inflammation and Apoptosis. Int. J. Mol. Sci. 2019, 20, 3485. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Foote, M.S.; Mousavi, S.; Buczkowski, A.; Schmidt, S.; Peh, E.; Kittler, S.; Bereswill, S.; Heimesaat, M.M. Combination of organic acids benzoate, butyrate, caprylate, and sorbate provides a novel antibiotics-independent treatment option in the combat of acute campylobacteriosis. Front. Microbiol. 2023, 14, 1128500. [Google Scholar] [CrossRef]
- Chen, J.; Yu, B.; Chen, D.; Huang, Z.; Mao, X.; Zheng, P.; Yu, J.; Luo, J.; He, J. Chlorogenic acid improves intestinal barrier functions by suppressing mucosa inflammation and improving antioxidant capacity in weaned pigs. J. Nutr. Biochem. 2018, 59, 84–92. [Google Scholar] [CrossRef]
- Jin, S.; Xu, H.; Yang, C.; Karmin, O. Regulation of oxidative stress in the intestine of piglets after enterotoxigenic Escherichia coli (ETEC) infection. Biochim. Biophys. Acta Mol. Cell Res. 2024, 1871, 119711. [Google Scholar] [CrossRef]
- Al-Haidari, R.A.; Al-Oqail, M.M. New benzoic acid derivatives from Cassia italica growing in Saudi Arabia and their antioxidant activity. Saudi Pharm. J. 2020, 28, 1112–1117. [Google Scholar] [CrossRef]
- AlSalhi, M.S.; Elangovan, K.; Ranjitsingh, A.J.A.; Murali, P.; Devanesan, S. Synthesis of silver nanoparticles using plant derived 4-N-methyl benzoic acid and evaluation of antimicrobial, antioxidant and antitumor activity. Saudi J. Biol. Sci. 2019, 26, 970–978. [Google Scholar] [CrossRef]
- Albayrak, E.; Server, S. The relationship of spleen stiffness value measured by shear wave elastography with age, gender, and spleen size in healthy volunteers. J. Med. Ultrason. 2019, 46, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009, 9, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Kwon, I.-S.; Kwak, J.H.; Pyo, S.; Lee, H.-W.; Kim, A.; Schmitz, F.J. Oscarellin, an Anthranilic Acid Derivative from a Philippine Sponge, Oscarella stillans, as an Inhibitor of Inflammatory Cytokines in Macrophages. J. Nat. Prod. 2017, 80, 149–155. [Google Scholar] [CrossRef]
- Pu, J.; Chen, D.; Tian, G.; He, J.; Zheng, P.; Mao, X.; Yu, J.; Huang, Z.; Zhu, L.; Luo, J.; et al. Protective Effects of Benzoic Acid, Bacillus Coagulans, and Oregano Oil on Intestinal Injury Caused by Enterotoxigenic Escherichia coli in Weaned Piglets. BioMed Res. Int. 2018, 2018, 1829632. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Zhang, J.; Chen, D.; Yu, B.; Huang, Z.; Mao, X.; Zheng, P.; Yu, J.; He, J. Alginate oligosaccharide enhances intestinal integrity of weaned pigs through altering intestinal inflammatory responses and antioxidant status. RSC Adv. 2018, 8, 13482–13492. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol. Med. 2007, 13, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Yang, B.; Ross, R.P.; Stanton, C.; Zhao, J.; Zhang, H.; Chen, W. Crosstalk between sIgA-Coated Bacteria in Infant Gut and Early-Life Health. Trends Microbiol. 2021, 29, 725–735. [Google Scholar] [CrossRef]
- Wittig, B.M.; Zeitz, M. The gut as an organ of immunology. Int. J. Color. Dis. 2003, 18, 181–187. [Google Scholar] [CrossRef]
- Zhang, K.; Shen, X.; Han, L.; Wang, M.; Lian, S.; Wang, K.; Li, C. Effects on the intestinal morphology, inflammatory response and microflora in piglets challenged with enterotoxigenic Escherichia coli K88. Res. Vet. Sci. 2023, 157, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Xie, H.; Su, G.; Chen, D.; Yu, B.; Mao, X.; Huang, Z.; Yu, J.; Luo, J.; Zheng, P.; et al. β-Defensin 129 Attenuates Bacterial Endotoxin-Induced Inflammation and Intestinal Epithelial Cell Apoptosis. Front. Immunol. 2019, 10, 2333. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H. Cytoprotective Effect of Bambusae caulis in Liquamen by Blocking Oxidative Stress in Hepatocytes. Molecules 2023, 28, 5862. [Google Scholar] [CrossRef]
- Bellezza, I.; Giambanco, I.; Minelli, A.; Donato, R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 721–733. [Google Scholar] [CrossRef]
Factors | ETEC | ||
---|---|---|---|
No Challenge | Challenge with E. coli | ||
CBA | No | CON (n = 8) | ECON (n = 8) |
Yes | CBA (n = 8) | ECBA (n = 8) |
ITEM | Treatment | p-Value (One-Way ANOVA) | SEM (n = 32) | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
CON | CBA | ECON | ECBA | CBA | ETEC | Interaction | |||
Initial body weight | 7.99 | 7.78 | 7.66 | 7.85 | 0.373 | 0.07 | |||
Final body weight | 13.03 a | 13.73 a | 11.41 b | 13.14 a | 0.013 | 0.27 | 0.014 | 0.025 | 0.279 |
ADFI (g/d) | 403.01 ab | 421.15 a | 319.13 b | 406.77 ab | 0.100 | 15.68 | 0.085 | 0.108 | 0.250 |
ADWG (g/d) | 240.08 ab | 283.33 a | 178.90 b | 251.79 a | 0.021 | 12.34 | 0.013 | 0.043 | 0.503 |
F: G | 1.73 ab | 1.51 b | 1.84 a | 1.65 ab | 0.142 | 0.05 | 0.045 | 0.217 | 0.898 |
Diarrhea ratios (%) | 6.55 b | 4.76 b | 26.79 a | 13.10 ab | 0.013 | 2.77 | 0.121 | 0.006 | 0.229 |
ITEM | Treatment | p-Value (One-Way ANOVA) | SEM (n = 32) | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
CON | CBA | ECON | ECBA | CBA | ETEC | Interaction | |||
IL-6 (ng/L) | 748.00 ab | 693.23 bc | 805.50 a | 619.01 c | <0.001 | 17.75 | <0.001 | 0.757 | 0.020 |
IL-1β (ng/L) | 34.31 b | 35.87 ab | 39.53 a | 34.38 b | 0.045 | 0.77 | 0.211 | 0.193 | 0.024 |
TNF-α (pg/mL) | 270.69 a | 259.77 a | 263.92 a | 205.60 b | <0.001 | 5.99 | <0.001 | <0.001 | 0.006 |
ET (pg/mL) | 300.16 ab | 292.17 b | 316.37 a | 290.59 b | 0.069 | 3.91 | 0.027 | 0.322 | 0.231 |
CAT (U/mL) | 31.10 a | 29.06 a | 15.87 b | 16.70 b | <0.001 | 1.88 | 0.838 | <0.001 | 0.633 |
GSH-Px (μmol/L) | 478.04 a | 456.53 ab | 405.39 b | 492.24 a | 0.033 | 11.52 | 0.127 | 0.382 | 0.015 |
MDA (nmol/mL) | 3.02 b | 3.17 b | 4.01 a | 3.58 ab | 0.064 | 0.15 | 0.613 | 0.015 | 0.293 |
T-AOC (U/mL) | 3.36 bc | 4.56 ab | 2.19 c | 6.20 a | 0.004 | 0.44 | 0.001 | 0.747 | 0.066 |
T-SOD (U/L) | 175.83 ab | 171.49 b | 153.49 c | 182.18 a | <0.001 | 2.41 | <0.001 | 0.070 | <0.001 |
ITEM | Treatments | p-Value (One-Way ANOVA) | SEM (n = 32) | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
CON | CBA | ECON | ECBA | CBA | ETEC | Interaction | |||
Duodenum | |||||||||
CAT (U/mL) | 7.68 | 10.30 | 9.81 | 9.09 | 0.867 | 1.12 | 0.685 | 0.854 | 0.478 |
GSH-Px (μmol/L) | 39.17 b | 87.46 a | 37.54 b | 52.60 b | 0.010 | 6.30 | 0.007 | 0.105 | 0.138 |
MDA (nmol/mL) | 0.81 | 0.86 | 0.76 | 0.63 | 0.730 | 0.07 | 0.357 | 0.776 | 0.562 |
T-AOC (U/mL) | 0.17 | 0.24 | 0.17 | 0.23 | 0.808 | 0.03 | 0.346 | 0.938 | 0.926 |
T-SOD (U/L) | 108.56 | 122.83 | 117.41 | 108.92 | 0.662 | 4.63 | 0.763 | 0.792 | 0.240 |
Jejunum | |||||||||
CAT (U/mL) | 11.74 a | 9.40 a | 5.87 b | 6.20 b | <0.001 | 0.64 | 0.315 | <0.001 | 0.184 |
GSH-Px (μmol/L) | 32.29 | 48.04 | 30.97 | 42.63 | 0.511 | 4.59 | 0.151 | 0.719 | 0.827 |
MDA (nmol/mL) | 1.84 a | 1.24 b | 1.45 ab | 1.19 b | 0.016 | 0.09 | 0.009 | 0.154 | 0.275 |
T-AOC (U/mL) | 0.11 | 0.15 | 0.11 | 0.12 | 0.779 | 0.02 | 0.482 | 0.567 | 0.623 |
T-SOD (U/L) | 156.83 | 153.66 | 182.23 | 176.47 | 0.295 | 6.31 | 0.723 | 0.063 | 0.918 |
Ileum | |||||||||
CAT (U/mL) | 3.27 ab | 4.80 a | 2.59 b | 3.38 ab | 0.071 | 0.31 | 0.056 | 0.081 | 0.529 |
GSH-Px (μmol/L) | 63.61 b | 108.85 a | 53.48 b | 70.12 b | 0.001 | 5.82 | 0.002 | 0.014 | 0.134 |
MDA (nmol/mL) | 0.92 | 0.64 | 0.91 | 0.83 | 0.409 | 0.06 | 0.172 | 0.518 | 0.444 |
T-AOC (U/mL) | 0.08 | 0.11 | 0.10 | 0.13 | 0.416 | 0.01 | 0.162 | 0.380 | 0.798 |
T-SOD (U/L) | 138.25 | 122.36 | 124.04 | 114.12 | 0.327 | 4.61 | 0.169 | 0.230 | 0.747 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, J.; Yu, B.; Hu, Y.; Luo, Y.; Zheng, P.; Mao, X.; Yu, J.; Zhao, X.; He, T.; Yan, H.; et al. Protective Effect of Coated Benzoic Acid on Intestinal Epithelium in Weaned Pigs upon Enterotoxigenic Escherichia coli Challenge. Animals 2024, 14, 2405. https://doi.org/10.3390/ani14162405
Qi J, Yu B, Hu Y, Luo Y, Zheng P, Mao X, Yu J, Zhao X, He T, Yan H, et al. Protective Effect of Coated Benzoic Acid on Intestinal Epithelium in Weaned Pigs upon Enterotoxigenic Escherichia coli Challenge. Animals. 2024; 14(16):2405. https://doi.org/10.3390/ani14162405
Chicago/Turabian StyleQi, Jiawen, Bing Yu, Youjun Hu, Yuheng Luo, Ping Zheng, Xiangbing Mao, Jie Yu, Xiaonan Zhao, Taiqian He, Hui Yan, and et al. 2024. "Protective Effect of Coated Benzoic Acid on Intestinal Epithelium in Weaned Pigs upon Enterotoxigenic Escherichia coli Challenge" Animals 14, no. 16: 2405. https://doi.org/10.3390/ani14162405
APA StyleQi, J., Yu, B., Hu, Y., Luo, Y., Zheng, P., Mao, X., Yu, J., Zhao, X., He, T., Yan, H., Wu, A., & He, J. (2024). Protective Effect of Coated Benzoic Acid on Intestinal Epithelium in Weaned Pigs upon Enterotoxigenic Escherichia coli Challenge. Animals, 14(16), 2405. https://doi.org/10.3390/ani14162405