Characterization of Oxacillin-Resistant and Oxacillin-Susceptible mecA-Positive Staphylococcus pseudintermedius from Skin Lesions and Nasal Cavities of Dogs with Clinical Pyoderma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation and Identification of Oxacillin-Resistant and Oxacillin-Susceptible mecA-Positive Staphylococcus pseudintermedius
2.3. Pulsed-Field Gel Electrophoresis (PFGE)
2.4. SCCmec Typing
2.5. Statistical Analysis
3. Results
3.1. Sample Origins and Distribution of S. pseudintermedius Isolates Positive for the mecA Gene
3.2. Phenotypic Characteristics of Oxacillin-Resistant and Oxacillin-Susceptible mecA-Positive S. pseudintermedius
3.3. Genotypic Characteristics of Oxacillin-Resistant and Oxacillin-Susceptible mecA-Positive Staphylococcus pseudintermedius
3.3.1. SCCmec Type
3.3.2. Pulsed-Field Gel Electrophoresis (PFGE) Analysis
3.4. Comparative Genotypic and Phenotypic Analysis of S. pseudintermedius Isolates from Individual Dogs and Different Dogs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weese, J.S.; van Duijkeren, E. Methicillin-Resistant Staphylococcus aureus and Staphylococcus pseudintermedius in Veterinary Medicine. Vet. Microbiol. 2010, 140, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Rubin, J.E.; Chirino-Trejo, M. Prevalence, Sites of Colonization, and Antimicrobial Resistance among Staphylococcus pseudintermedius Isolated from Healthy Dogs in Saskatoon, Canada. J. Vet. Diagn. Investig. 2011, 23, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.O.; Loeffler, A.; Davis, M.F.; Guardabassi, L.; Weese, J.S. Recommendations for Approaches to Meticillin-Resistant Staphylococcal Infections of Small Animals: Diagnosis, Therapeutic Considerations and Preventative Measures.: Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. Vet. Dermatol. 2017, 28, 304-e69. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Kikuchi, K.; Tanaka, Y.; Takahashi, N.; Kamata, S.; Hiramatsu, K. Methicillin-Resistant Staphylococcus pseudintermedius in a Veterinary Teaching Hospital. J. Clin. Microbiol. 2007, 45, 1118–1125. [Google Scholar] [CrossRef]
- Ishihara, K.; Shimokubo, N.; Sakagami, A.; Ueno, H.; Muramatsu, Y.; Kadosawa, T.; Yanagisawa, C.; Hanaki, H.; Nakajima, C.; Suzuki, Y.; et al. Occurrence and Molecular Characteristics of Methicillin-Resistant Staphylococcus aureus and Methicillin-Resistant Staphylococcus pseudintermedius in an Academic Veterinary Hospital. Appl. Environ. Microbiol. 2010, 76, 5165–5174. [Google Scholar] [CrossRef]
- Cuny, C.; Layer-Nicolaou, F.; Weber, R.; Köck, R.; Witte, W. Colonization of Dogs and Their Owners with Staphylococcus aureus and Staphylococcus pseudintermedius in Households, Veterinary Practices, and Healthcare Facilities. Microorganisms 2022, 10, 677. [Google Scholar] [CrossRef] [PubMed]
- Perreten, V.; Kadlec, K.; Schwarz, S.; Andersson, U.G.; Finn, M.; Greko, C.; Moodley, A.; Kania, S.A.; Frank, L.A.; Bemis, D.A.; et al. Clonal Spread of Methicillin-Resistant Staphylococcus pseudintermedius in Europe and North America: An International Multicentre Study. J. Antimicrob. Chemother. 2010, 65, 1145–1154. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Ruscher, C.; Lübke-Becker, A.; Wleklinski, C.G.; Şoba, A.; Wieler, L.H.; Walther, B. Prevalence of Methicillin-Resistant Staphylococcus pseudintermedius Isolated from Clinical Samples of Companion Animals and Equidaes. Vet. Microbiol. 2009, 136, 197–201. [Google Scholar] [CrossRef]
- Hososaka, Y.; Hanaki, H.; Endo, H.; Suzuki, Y.; Nagasawa, Z.; Otsuka, Y.; Nakae, T.; Sunakawa, K. Characterization of Oxacillin-Susceptible MecA-Positive Staphylococcus aureus: A New Type of MRSA. J. Infect. Chemother. 2007, 13, 79–86. [Google Scholar] [CrossRef]
- Saeed, K.; Ahmad, N.; Dryden, M.; Cortes, N.; Marsh, P.; Sitjar, A.; Wyllie, S.; Bourne, S.; Hemming, J.; Jeppesen, C.; et al. Oxacillin-Susceptible Methicillin-Resistant Staphylococcus aureus (OS-MRSA), a Hidden Resistant Mechanism among Clinically Significant Isolates in the Wessex Region/UK. Infection 2014, 42, 843–847. [Google Scholar] [CrossRef]
- Conceição, T.; Coelho, C.; de Lencastre, H.; Aires-de-Sousa, M. Frequent Occurrence of Oxacillin-Susceptible MecA-Positive Staphylococcus aureus (OS-MRSA) Strains in Two African Countries. J. Antimicrob. Chemother. 2015, 70, 3200–3204. [Google Scholar] [CrossRef] [PubMed]
- Phaku, P.; Lebughe, M.; Strauß, L.; Peters, G.; Herrmann, M.; Mumba, D.; Mellmann, A.; Muyembe-Tamfum, J.J.; Schaumburg, F. Unveiling the Molecular Basis of Antimicrobial Resistance in Staphylococcus aureus from the Democratic Republic of the Congo Using Whole Genome Sequencing. Clin. Microbiol. Infect. 2016, 22, 644-e1. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.L.; Li, T.M.; Zhong, N.; Wang, X.; Jiang, J.; Zhang, W.X.; Tang, R.; Guo, Y.J.; Liu, Y.; Hu, J.; et al. Current Status of Oxacillin-Susceptible MecA-Positive Staphylococcus aureus Infection in Shanghai, China: A Multicenter Study. J. Microbiol. Immunol. Infect. 2021, 54, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Xiong, Z.; Liang, Z.; Zhang, C.; Cai, H.; Long, Y.; Gao, F.; Wang, J.; Deng, Q.; Zhong, H.; et al. Genomic Basis of Occurrence of Cryptic Resistance among Oxacillin- and Cefoxitin-Susceptible MecA-Positive Staphylococcus aureus. Microbiol. Spectr. 2022, 10, e00291-22. [Google Scholar] [CrossRef]
- Duarte, F.C.; Danelli, T.; Tavares, E.R.; Morguette, A.E.B.; Kerbauy, G.; Grion, C.M.C.; Yamauchi, L.M.; Perugini, M.R.E.; Yamada-Ogatta, S.F. Fatal Sepsis Caused by MecA-Positive Oxacillin-Susceptible Staphylococcus aureus: First Report in a Tertiary Hospital of Southern Brazil. J. Infect. Chemother. 2019, 25, 293–297. [Google Scholar] [CrossRef]
- Fabri, F.V.; Pinto, N.B.; de Mattos, M.d.S.F.; Rodrigues, R.F.; Shinohara, D.R.; Pereira, P.M.; Nishiyama, S.A.B.; Tognim, M.C.B. First Report of Oxacillin-Susceptible MecA-Positive Staphylococcus aureus in Healthy Dogs and Their Owners in Southern Brazil. Prev. Vet. Med. 2021, 189, 105286. [Google Scholar] [CrossRef]
- Putriningsih, P.A.S.; Phuektes, P.; Jittimanee, S.; Kampa, J. Methicillin-Resistant Staphylococci in Canine Pyoderma in Thailand. Vet. World 2023, 16, 2340–2348. [Google Scholar] [CrossRef]
- Sasaki, T.; Tsubakishita, S.; Tanaka, Y.; Sakusabe, A.; Ohtsuka, M.; Hirotaki, S.; Kawakami, T.; Fukata, T.; Hiramatsu, K. Multiplex-PCR Method for Species Identification of Coagulase-Positive Staphylococci. J. Clin. Microbiol. 2010, 48, 765–769. [Google Scholar] [CrossRef]
- Oliveira, D.C.; De Lencastre, H. Multiplex PCR Strategy for Rapid Identification of Structural Types and Variants of the Mec Element in Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2002, 46, 2155–2161. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, 5th ed.; CLSI Supplement VET01S; CLSI: Wayne, PA, USA, 2020; Volume 40. [Google Scholar]
- Skov, R.; Varga, A.; Matuschek, E.; Åhman, J.; Bemis, D.; Bengtsson, B.; Sunde, M.; Humphries, R.; Westblade, L.; Guardabassi, L.; et al. EUCAST Disc Diffusion Criteria for the Detection of MecA-Mediated β-Lactam Resistance in Staphylococcus pseudintermedius: Oxacillin versus Cefoxitin. Clin. Microbiol. Infect. 2020, 26, 122.e1–122.e6. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Xie, Y.; Reed, S. Pulsed-Field Gel Electrophoresis Typing of Staphylococcus aureus Isolates. In Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2014; Volume 1085. [Google Scholar] [CrossRef]
- Kondo, Y.; Ito, T.; Ma, X.X.; Watanabe, S.; Kreiswirth, B.N.; Etienne, J.; Hiramatsu, K. Combination of Multiplex PCRs for Staphylococcal Cassette Chromosome Mec Type Assignment: Rapid Identification System for Mec, Ccr, and Major Differences in Junkyard Regions. Antimicrob. Agents Chemother. 2007, 51, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Fungwithaya, P.; Chanchaithong, P.; Phumthanakorn, N.; Prapasarakul, N. Nasal Carriage of Methicillin-Resistant Staphylococcus pseudintermedius in Dogs Treated with Cephalexin Monohydrate. Can. Vet. J. 2017, 58, 73. [Google Scholar] [PubMed]
- Abdullahi, I.N.; Zarazaga, M.; Campaña-Burguet, A.; Eguizábal, P.; Lozano, C.; Torres, C. Nasal Staphylococcus aureus and S. pseudintermedius Carriage in Healthy Dogs and Cats: A Systematic Review of Their Antibiotic Resistance, Virulence and Genetic Lineages of Zoonotic Relevance. J. Appl. Microbiol. 2022, 133, 3368–3390. [Google Scholar] [CrossRef]
- Weese, J.S.; Battersby, I.; Morrison, J.A.; Spofford, N.; Soltero-Rivera, M. Antimicrobial Use Practices in Canine and Feline Dental Procedures Performed in Primary Care Veterinary Practices in the United States. PLoS ONE 2023, 18, e0295070. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.P.; Reid-Smith, R.J.; Boerlin, P.; Weese, J.S.; Prescott, J.F.; Janecko, N.; McEwen, S.A. Out-Patient Antimicrobial Drug Use in Dogs and Cats for New Disease Events from Community Companion Animal Practices in Ontario. Can. Vet. J. 2012, 53, 291. [Google Scholar]
- Gagetti, P.; Wattam, A.R.; Giacoboni, G.; De Paulis, A.; Bertona, E.; Corso, A.; Rosato, A.E. Identification and Molecular Epidemiology of Methicillin Resistant Staphylococcus pseudintermedius Strains Isolated from Canine Clinical Samples in Argentina. BMC Vet. Res. 2019, 15, 264. [Google Scholar] [CrossRef]
- Viegas, F.M.; Santana, J.A.; Silva, B.A.; Xavier, R.G.C.; Bonisson, C.T.; Câmara, J.L.S.; Rennó, M.C.; Cunha, J.L.R.; Figueiredo, H.C.P.; Lobato, F.C.F.; et al. Occurrence and Characterization of Methicillin-Resistant Staphylococcus Spp. in Diseased Dogs in Brazil. PLoS ONE 2022, 17, e0269422. [Google Scholar] [CrossRef]
- Viñes, J.; Fàbregas, N.; Pérez, D.; Cuscó, A.; Fonticoba, R.; Francino, O.; Ferrer, L.; Migura-Garcia, L. Concordance between Antimicrobial Resistance Phenotype and Genotype of Staphylococcus pseudintermedius from Healthy Dogs. Antibiotics 2022, 11, 1625. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Logue, C.M.; Liu, K.; Cao, X.; Zhang, W.; Shen, J.; Wu, C. Methicillin-Resistant Staphylococcus pseudintermedius Isolated from Canine Pyoderma in North China. J. Appl. Microbiol. 2012, 112, 623–630. [Google Scholar] [CrossRef]
- Chanchaithong, P.; Perreten, V.; Schwendener, S.; Tribuddharat, C.; Chongthaleong, A.; Niyomtham, W.; Prapasarakul, N. Strain Typing and Antimicrobial Susceptibility of Methicillin-Resistant Coagulase-Positive Staphylococcal Species in Dogs and People Associated with Dogs in Thailand. J. Appl. Microbiol. 2014, 117, 572–586. [Google Scholar] [CrossRef]
- Feng, Y.; Tian, W.; Lin, D.; Luo, Q.; Zhou, Y.; Yang, T.; Deng, Y.; Liu, Y.H.; Liu, J.H. Prevalence and Characterization of Methicillin-Resistant Staphylococcus pseudintermedius in Pets from South China. Vet. Microbiol. 2012, 160, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Chanayat, Y.; Akatvipat, A.; Bender, J.B.; Punyapornwithaya, V.; Meeyam, T.; Anukool, U.; Pichpol, D. The Sccmec Types and Antimicrobial Resistance among Methicillin-Resistant Staphylococcus Species Isolated from Dogs with Superficial Pyoderma. Vet. Sci. 2021, 8, 85. [Google Scholar] [CrossRef]
- Kang, J.H.; Chung, T.H.; Hwang, C.Y. Clonal Distribution of Methicillin-Resistant Staphylococcus pseudintermedius Isolates from Skin Infection of Dogs in Korea. Vet. Microbiol. 2017, 210, 32–37. [Google Scholar] [CrossRef]
- Turlej, A.; Hryniewicz, W.; Empel, J. Staphylococcal Cassette Chromosome Mec (SCCmec) Classification and Typing Methods: An Overview. Pol. J. Microbiol. 2011, 60, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Baig, S.; Johannesen, T.B.; Overballe-Petersen, S.; Larsen, J.; Larsen, A.R.; Stegger, M. Novel SCCmec Type XIII (9A) Identified in an ST152 Methicillin-Resistant Staphylococcus aureus. Infect. Genet. Evol. 2018, 61, 74–76. [Google Scholar] [CrossRef] [PubMed]
- Singh-Moodley, A.; Strasheim, W.; Mogokotleng, R.; Ismail, H.; Perovic, O. Unconventional SCCmec Types and Low Prevalence of the Panton-Valentine Leukocidin Exotoxin in South African Blood Culture Staphylococcus aureus Surveillance Isolates, 2013–2016. PLoS ONE 2019, 14, e0225726. [Google Scholar] [CrossRef]
- Nienhoff, U.; Kadlec, K.; Chaberny, I.F.; Verspohl, J.; Gerlach, G.F.; Kreienbrock, L.; Schwarz, S.; Simon, D.; Nolte, I. Methicillin-Resistant Staphylococcus pseudintermedius among Dogs Admitted to a Small Animal Hospital. Vet. Microbiol. 2011, 150, 191–197. [Google Scholar] [CrossRef]
- Kadlec, K.; Weiß, S.; Wendlandt, S.; Schwarz, S.; Tonpitak, W. Characterization of Canine and Feline Methicillin-Resistant Staphylococcus pseudintermedius (MRSP) from Thailand. Vet. Microbiol. 2016, 194, 93–97. [Google Scholar] [CrossRef]
- Neoh, H.; Tan, X.-E.; Sapri, H.F.; Tan, T.L. Pulsed-Field Gel Electrophoresis (PFGE): A Review of the “Gold Standard” for Bacteria Typing and Current Alternatives. Infect. Genet. Evol. 2019, 74, 103935. [Google Scholar] [CrossRef]
- Fazakerley, J.; Williams, N.; Carter, S.; McEwan, N.; Nuttall, T. Heterogeneity of Staphylococcus pseudintermedius Isolates from Atopic and Healthy Dogs. Vet. Dermatol. 2010, 21, 578–585. [Google Scholar] [CrossRef] [PubMed]
Origin of Samples | Number of Dogs (n) | ||
---|---|---|---|
One Isolate | Two Isolates 1 | Three Isolates 2 | |
Skin lesions | 9 | 17 | 0 |
Nasal cavity | 6 | 0 | 0 |
Skin lesions and nasal cavity | 0 | 4 | 10 |
ccr Gene Complex | mec Gene Complex | SCCmec Type | Total Isolates (%) |
---|---|---|---|
5 (C) | C2 | V | 39/87 (45) |
1 (A1B1) and 5 (C) | C2 | NT | 33/87 (38) |
1 (A1B1) and 5 (C) | A | NT | 2/87 (2) |
2 (A2B2) and 5 (C) | B and C2 | NT | 2/87 (2) |
1 (A1B1) | A and C2 | NT | 1/87 (1) |
1 (A1B1) and 5 (C) | Negative | NT | 9/87 (10) |
5 (C) | A | NT (5A, new combination) | 1/87 (1) |
Dog No. | Isolate Code | Origin of Sample | MR/MS Phenotype | MDR Phenotype | PFGE Pulsotype | SCCmec Typing | ||
---|---|---|---|---|---|---|---|---|
ccr Gene Complex | mec Gene Complex | SCCmec Type | ||||||
4 | 4 S1 | Skin | MR | MDR | SmaI-AH | 5 (C) | A | NT |
4 S2 | Skin | MR | MDR | XmaI-D | 5 (C), 1 (A1B1) | A | NT | |
6 | 6 S1 | Skin | MR | MDR | SmaI-B | 5 (C), 1 (A1B1) | C2 | NT |
6 S2 | Skin | MR | MDR | SmaI-B | 5 (C), 1 (A1B1) | C2 | NT | |
6 N1 | Nasal | MR | MDR | SmaI-B | 5 (C), 1 (A1B1) | C2 | NT | |
11 | 11 N1 | Nasal | MR | MDR | XmaI-C | 5 (C) | C2 | V |
12 | 12 S1 | Skin | MR | MDR | XmaI-E | 5 (C) | C2 | V |
12 S2 | Skin | MR | MDR | XmaI-E | 5 (C) | C2 | V | |
12 N1 | Nasal | MR | MDR | nt | 5 (C) | C2 | V | |
18 | 18 S1 | Skin | MR | MDR | SmaI-K | 5 (C) | C2 | V |
18 S2 | Skin | MR | MDR | XmaI-I | 5 (C) | C2 | V | |
18 N1 | Nasal | MR | MDR | XmaI-I | 5 (C) | C2 | V | |
19 | 19 S1 | Skin | MR | MDR | SmaI-E | 5 (C), 1 (A1B1) | C2 | NT |
19 S2 | Skin | MR | MDR | SmaI-A | 5 (C) | C2 | V | |
23 | 23 S2 | Skin | MR | MDR | SmaI-AB | 5 (C) | C2 | V |
23 N1 | Nasal | MR | MDR | SmaI-AB | 5 (C) | C2 | V | |
26 | 26 S1 | Skin | MR | MDR | SmaI-S | 5 (C) | C2 | V |
26 S2 | Skin | MR | MDR | SmaI-I | 5 (C) | C2 | V | |
32 | 32 S1 | Skin | MR | MDR | XmaI-G | 5 (C), 2 (A2B2) | B, C2 | NT |
32S2 | Skin | MR | MDR | XmaI-G | 5 (C), 2 (A2B2) | B, C2 | NT | |
33 | 33 S1 | Skin | MR | MDR | SmaI-AE | 5 (C) | C2 | V |
33 S2 | Skin | MR | MDR | SmaI-AE | 5 (C) | C2 | V | |
36 | 36 N1 | Nasal | MR | MDR | SmaI-AB | 5 (C), 1 (A1B1) | C2 | NT |
41 | 41 S1 | Skin | MR | MDR | SmaI-AB | 5 (C) | C2 | V |
41 S2 | Skin | MR | MDR | SmaI-AB | 5 (C) | C2 | V | |
41 N1 | Nasal | MR | MDR | SmaI-G | 5 (C) | C2 | V | |
42 | 42 S1 | Skin | MR | MDR | SmaI-D | 5 (C) | C2 | V |
42 S2 | Skin | MR | MDR | XmaI-M | 5 (C) | C2 | V | |
42 N1 | Nasal | MR | MDR | SmaI-M | 5 (C) | C2 | V | |
43 | 43 S1 | Skin | MR | MDR | SmaI-AG | 5 (C) | C2 | V |
43 S2 | Skin | MR | MDR | SmaI-AC | 5 (C) | C2 | V | |
43 N1 | Nasal | MR | MDR | SmaI-AC | 5 (C) | C2 | V | |
57 | 57 S2 | Skin | MR | MDR | SmaI-C | 5 (C), 1 (A1B1) | C2 | NT |
Dog No. | Isolates Code | Origin of Sample | MR/MS Phenotype | MDR Phenotype | PFGE Pulsotype | SCCmec Typing | ||
---|---|---|---|---|---|---|---|---|
ccr Gene Complex | mec Gene Complex | SCCmec Type | ||||||
7 | 7 S2 | Skin | MS | NO | SmaI-Y | 5 (C), 1 (A1B1) | C2 | NT |
8 | 8 S1 | Skin | MS | MDR | SmaI-A | 5 (C), 1 (A1B1) | C2 | NT |
8 S2 | Skin | MS | MDR | SmaI-A | 5 (C), 1 (A1B1) | C2 | NT | |
9 | 9 S1 | Skin | MS | MDR | SmaI-A | 5 (C), 1 (A1B1) | (-) | NT |
9 S2 | Skin | MS | MDR | SmaI-R | 5 (C), 1 (A1B1) | (-) | NT | |
9 N1 | Nasal | MS | MDR | SmaI-F | 5 (C) | C2 | V | |
10 | 10 S2 | Skin | MS | MDR | SmaI-P | 5 (C), 1 (A1B1) | (-) | NT |
13 | 13 S1 | Skin | MS | NO | XmaI-L | 5 (C), 1 (A1B1) | C2 | NT |
13 S2 | Skin | MS | NO | XmaI-J | 5 (C), 1 (A1B1) | A | NT | |
15 | 15 S1 | Skin | MS | NO | SmaI-V | 5 (C), 1 (A1B1) | (-) | NT |
15 S2 | Skin | MS | NO | SmaI-L | 5 (C), 1 (A1B1) | A, C2 | NT | |
16 | 16 S1 | Skin | MS | NO | SmaI-A | 5 (C), 1 (A1B1) | (-) | NT |
17 | 17 S2 | Skin | MS | NO | SmaI-H | 5 (C), 1 (A1B1) | (-) | NT |
17 N1 | Nasal | MS | NO | SmaI-V | 5 (C), 1 (A1B1) | C2 | NT | |
20 | 20 S1 | Skin | MS | NO | XmaI-F | 5 (C), 1 (A1B1) | C2 | NT |
20 S2 | Skin | MS | NO | SmaI-E | 5 (C), 1 (A1B1) | (-) | NT | |
21 | 21 N1 | Nasal | MS | NO | SmaI-W | 5 (C) | C2 | V |
22 | 22 S1 | Skin | MS | NO | SmaI-L | 5 (C), 1 (A1B1) | C2 | NT |
25 | 25 S1 | Skin | MS | MDR | XmaI-K | 5 (C), 1 (A1B1) | (-) | NT |
25 S2 | Skin | MS | MDR | XmaI-K | 5 (C), 1 (A1B1) | C2 | NT | |
27 | 27 S1 | Skin | MS | NO | SmaI-N | 5 (C), 1 (A1B1) | C2 | NT |
27 S2 | Skin | MS | NO | SmaI-N | 5 (C), 1 (A1B1) | (-) | NT | |
28 | 28 S1 | Skin | MS | NO | SmaI-O | 5 (C), 1 (A1B1) | C2 | NT |
29 | 29 S2 | Skin | MS | NO | SmaI-G | 5 (C), 1 (A1B1) | C2 | NT |
30 | 30 S1 | Skin | MS | NO | SmaI-AE | 5 (C) | C2 | V |
30 S2 | Skin | MS | NO | SmaI-AE | 5 (C) | C2 | V | |
31 | 31 S2 | Skin | MS | NO | XmaI-N | 5 (C) | C2 | V |
31 N1 | Nasal | MS | NO | XmaI-N | 5 (C) | C2 | V | |
34 | 34 S1 | Skin | MS | MDR | SmaI-U | 5 (C), 1 (A1B1) | C2 | NT |
34 S2 | Skin | MS | MDR | SmaI-U | 5 (C), 1 (A1B1) | C2 | NT | |
35 | 35 S2 | Skin | MS | MDR | XmaI-H | 5 (C) | C2 | V |
37 | 37 N1 | Nasal | MS | NO | SmaI-Q | 5 (C) | C2 | V |
44 | 44 S1 | Skin | MS | NO | SmaI-Z | 5 (C) | C2 | V |
44 S2 | Skin | MS | NO | SmaI-AA | 5 (C), 1 (A1B1) | C2 | NT | |
44 N1 | Nasal | MS | NO | SmaI-V | 5 (C) | C2 | V | |
45 | 45 N1 | Nasal | MS | NO | SmaI-AF | 5 (C), 1 (A1B1) | C2 | NT |
46 | 46 S1 | Skin | MS | MDR | SmaI-E | 5 (C), 1 (A1B1) | C2 | NT |
46 S2 | Skin | MS | MDR | SmaI-E | 5 (C), 1 (A1B1) | C2 | NT | |
48 | 48 S1 | Skin | MS | MDR | SmaI-V | 5 (C), 1 (A1B1) | C2 | NT |
48 S2 | Skin | MS | NO | SmaI-C | 5 (C), 1 (A1B1) | C2 | NT | |
49 | 49 S1 | Skin | MS | MDR | XmaI-A | 5 (C), 1 (A1B1) | C2 | NT |
49 S2 | Skin | MS | MDR | XmaI-A | 5 (C), 1 (A1B1) | C2 | NT | |
56 | 56 S1 | Skin | MS | NO | SmaI-V | 5 (C) | C2 | V |
56 S2 | Skin | MS | NO | SmaI-AD | 5 (C) | C2 | V | |
56 N1 | Nasal | MS | MDR | SmaI-T | 5 (C), 1 (A1B1) | C2 | NT | |
58 | 58 S2 | Skin | MS | MDR | XmaI-B | 5 (C), 1 (A1B1) | C2 | NT |
58 N1 | Nasal | MS | MDR | SmaI-J | 5 (C), 1 (A1B1) | C2 | NT | |
59 | 59 S2 | Skin | MS | MDR | XmaI-B | 5 (C), 1 (A1B1) | C2 | NT |
60 | 60 S1 | Skin | MS | MDR | SmaI-R | 5 (C) | C2 | V |
60 S2 | Skin | MS | NO | SmaI-X | 5 (C), 1 (A1B1) | C2 | NT | |
60 N1 | Nasal | MS | NO | SmaI-X | 5 (C), 1 (A1B1) | C2 | NT | |
62 | 62 N1 | Nasal | MS | MDR | SmaI-A | 5 (C) | C2 | V |
63 | 63 S1 | Skin | MS | MDR | SmaI-R | 5 (C) | C2 | V |
63 S2 | Skin | MS | MDR | SmaI-R | 5 (C) | C2 | V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putriningsih, P.A.S.; Kampa, J.; Jittimanee, S.; Phuektes, P. Characterization of Oxacillin-Resistant and Oxacillin-Susceptible mecA-Positive Staphylococcus pseudintermedius from Skin Lesions and Nasal Cavities of Dogs with Clinical Pyoderma. Animals 2024, 14, 2613. https://doi.org/10.3390/ani14172613
Putriningsih PAS, Kampa J, Jittimanee S, Phuektes P. Characterization of Oxacillin-Resistant and Oxacillin-Susceptible mecA-Positive Staphylococcus pseudintermedius from Skin Lesions and Nasal Cavities of Dogs with Clinical Pyoderma. Animals. 2024; 14(17):2613. https://doi.org/10.3390/ani14172613
Chicago/Turabian StylePutriningsih, Putu Ayu Sisyawati, Jaruwan Kampa, Suphattra Jittimanee, and Patchara Phuektes. 2024. "Characterization of Oxacillin-Resistant and Oxacillin-Susceptible mecA-Positive Staphylococcus pseudintermedius from Skin Lesions and Nasal Cavities of Dogs with Clinical Pyoderma" Animals 14, no. 17: 2613. https://doi.org/10.3390/ani14172613
APA StylePutriningsih, P. A. S., Kampa, J., Jittimanee, S., & Phuektes, P. (2024). Characterization of Oxacillin-Resistant and Oxacillin-Susceptible mecA-Positive Staphylococcus pseudintermedius from Skin Lesions and Nasal Cavities of Dogs with Clinical Pyoderma. Animals, 14(17), 2613. https://doi.org/10.3390/ani14172613