Hormone-Driven Temperature Optimization for Elevated Reproduction in Goldfish (Carassius auratus) under Laboratory Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Procurement and Breeder Preparation
2.2. Temperature Regimens and Conditions
2.3. Hormone Injection Procedure and Preparation
2.4. Sperm Collection Procedure
2.5. Sperm Motility
2.6. Sperm Morphology
2.7. Oocyte Collection
2.8. Fresh Sperm-Egg Fertilization
2.9. Fertilization Evaluation
2.10. Sperm Cryopreservation
2.11. Sperm Motility Post Thminawing
2.12. Egg Fertilization Using Thawed Sperm
2.13. Larvae Evaluation following Fertilization
2.14. Statistical Analysis
3. Results
3.1. Sperm Motility
3.1.1. Fresh Sperm
3.1.2. Thawed Sperm
3.2. Sperm Morphology
3.2.1. Fresh Sperm
3.2.2. Thawed Sperm
3.3. Fertilization Quality
3.3.1. Fresh Sperm
3.3.2. Thawed Sperm
3.4. Larvae following Fertilization
3.4.1. Fresh Sperm
3.4.2. Thawed Sperm
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mylonas, C.C.; Fostier, A.; Zanuy, S. Broodstock Management and Hormonal Manipulations of Fish Reproduction. Gen. Comp. Endocrinol. 2010, 165, 516–534. [Google Scholar] [CrossRef]
- Nowosad, J.; Kucharczyk, D.; Targońska, K.; Wyszomirska, E.; Chwaluczy, R.; Kupren, K. The Synergistic Effect of Temperature and Hormonal Stimulation on Spawning Efficiency of Common Barbel, Barbus barbus L. Turkish J. Fish. Aquat. Sci. 2016, 16, 517–524. [Google Scholar]
- Jonsson, B.; Jonsson, N. A Review of the Likely Effects of Climate Change on Anadromous Atlantic Salmon Salmo salar and Brown Trout Salmo trutta, with Particular Reference to Water Temperature and Flow. J. Fish Biol. 2009, 75, 2381–2447. [Google Scholar] [CrossRef] [PubMed]
- Sallenave, R. Important Water Quality Parameters in Aquaponics Systems; College of Agricultural, Consumer and Environmental Sciences: Las Cruces, NM, USA, 2016. [Google Scholar]
- Kim, J.-H.; Park, H.-J.; Kim, K.-W.; Hwang, I.-K.; Kim, D.-H.; Oh, C.W.; Lee, J.S.; Kang, J.-C. Growth Performance, Oxidative Stress, and Non-Specific Immune Responses in Juvenile Sablefish, Anoplopoma Fimbria, by Changes of Water Temperature and Salinity. Fish Physiol. Biochem. 2017, 43, 1421–1431. [Google Scholar] [CrossRef] [PubMed]
- Stacey, N.; Fraser, E.J.; Sorensen, P.; Van Der Kraak, G. Milt Production in Goldfish: Regulation by Multiple Social Stimuli. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2001, 130, 467–476. [Google Scholar] [CrossRef]
- Tarkhani, R.; Imanpoor, M.R.; Taghizadeh, V. Effect of Dietary 17 β-Estradiol on Serum Sex Hormones᾽ Levels and Gamete Quality in Goldfish (Carassius auratus). J. Comp. Clin. Pathol. Res. 2012, 2252, 422. [Google Scholar]
- PASMANIK, M.; CALLARD, G. V Changes in Brain Aromatase and 5α-Reductase Activities Correlate Significantly with Seasonal Reproductive Cycles in Goldfish (Carassius auratus). Endocrinology 1988, 122, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Zohar, Y.; Mylonas, C.C. Endocrine Manipulations of Spawning in Cultured Fish: From Hormones to Genes. In Reproductive Biotechnology in Finfish Aquaculture; Elsevier: Amsterdam, The Netherlands, 2001; pp. 99–136. [Google Scholar]
- Ghanem, S.F. Effect of Endocrine Disrupting Chemicals Exposure on Reproduction and Endocrine Functions Using the Zebrafish Model. Egypt. J. Aquat. Biol. Fish. 2021, 25, 951–981. [Google Scholar] [CrossRef]
- Zarski, D.; Kucharczyk, D.; Targonska, K.; Jamróz, M.; Krejszeff, S.; Mamcarz, A. Application of Ovopel and Ovaprim and Their Combinations in Controlled Reproduction of Two Reophilic Cyprinid Fish Species. Polish J. Nat. Sci. 2009, 4, 235–244. [Google Scholar] [CrossRef]
- Mehdi, Y.; Mousavi, S.E.; Mehdi, Y.; Mousavi, S.E. A Review of the Control of Reproduction and Hormonal Manipulations in Finfish Species. African J. Agric. Res. 2011, 6, 1643–1650. [Google Scholar]
- Abdel-Latif, H.M.R.; Shukry, M.; Saad, M.F.; Mohamed, N.A.; Nowosad, J.; Kucharczyk, D. Effects of GnRHa and HCG with or without Dopamine Receptor Antagonists on the Spawning Efficiency of African Catfish (Clarias gariepinus) Reared in Hatchery Conditions. Anim. Reprod. Sci. 2021, 231, 106798. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.; Rab, A.; Akhtar, N.; Khan, M.F.; Khan, S.U.; Qayyum, M. Induced Spawning of Bighead Carp, Aristichthys nobilis (Richardson), by Using Different Hormones/Hormonal Analogues. Pak. J. Zool. 2008, 40, 283–287. [Google Scholar]
- Nargesi, E.A.; Falahatkar, B.; Żarski, D.; Gorouhi, D. The Effectiveness of Ovaprim, Ovopel, and Their Combinations in Artificial Reproduction of Common Rudd Scardinius erythrophthalmus under Controlled Conditions. Theriogenology. 2023, 199, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.E.; Kilgore, K.H.; Pouder, D.B.; Powell, J.F.F.; Watson, C.A.; Yanong, R.P.E. Survey of Ovaprim Use as a Spawning Aid in Ornamental Fishes in the United States as Administered through the University of Florida Tropical Aquaculture Laboratory. N. Am. J. Aquac. 2009, 71, 206–209. [Google Scholar] [CrossRef]
- Van Look, K.J.W.; Kime, D.E. Automated Sperm Morphology Analysis in Fishes: The Effect of Mercury on Goldfish Sperm. J. Fish Biol. 2003, 63, 1020–1033. [Google Scholar] [CrossRef]
- Cosson, J. Fish Sperm Physiology: Structure, Factors Regulating Motility, and Motility Evaluation; IntechOpen: London, UK, 2019; Volume 1, pp. 1–26. [Google Scholar]
- Alavi, S.M.H.; Cosson, J. Sperm Motility in Fishes. I. Effects of Temperature and PH: A Review. Cell Biol. Int. 2005, 29, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Merino, O.; Risopatrón, J.; Valdebenito, I.; Figueroa, E.; Farías, J.G. Effect of the Temperature of Activation Medium on Fish Sperm Quality: Impact on Fertilization in Vitro in Aquaculture Practice. Rev. Aquac. 2023, 15, 434–451. [Google Scholar] [CrossRef]
- Geffroy, B.; Sandoval-Vargas, L.; Boyer-Clavel, M.; Pérez-Atehortúa, M.; Lallement, S.; Isler, I.V. A Simulated Marine Heatwave Impacts European Sea Bass Sperm Quantity, but Not Quality. J. Fish Biol. 2023, 103, 784–789. [Google Scholar] [CrossRef]
- Dadras, H.; Dzyuba, B.; Cosson, J.; Golpour, A.; Siddique, M.A.M.; Linhart, O. Effect of Water Temperature on the Physiology of Fish Spermatozoon Function: A Brief Review. Aquac. Res. 2017, 48, 729–740. [Google Scholar] [CrossRef]
- Brionne, A.; Goupil, A.-S.; Kica, S.; Lareyre, J.-J.; Labbé, C.; Laurent, A. Spermatozoa Methylome and Its Sensitivity to Water Temperature in a Teleost Fish. Sci. Total Environ. 2023, 892, 164077. [Google Scholar] [CrossRef]
- Donelson, J.M.; Munday, P.L.; McCormick, M.I.; Pankhurst, N.W.; Pankhurst, P.M. Effects of Elevated Water Temperature and Food Availability on the Reproductive Performance of a Coral Reef Fish. Mar. Ecol. Prog. Ser. 2010, 401, 233–243. [Google Scholar] [CrossRef]
- Rurangwa, E.; Kime, D.E.; Ollevier, F.; Nash, J.P. The Measurement of Sperm Motility and Factors Affecting Sperm Quality in Cultured Fish. Aquaculture 2004, 234, 1–28. [Google Scholar] [CrossRef]
- Geffen, A.J.; Frayer, O. Retention of Sperm Motility in Turbot, Scophthalmus Maximus L.: The Effects of Time from Activation, Thermal Shock and Adenosine Triphosphate Levels. Aquac. Res. 1993, 24, 203–209. [Google Scholar] [CrossRef]
- Williot, P.; Kopeika, E.F.; Goncharov, B.F. Influence of Testis State, Temperature and Delay in Semen Collection on Spermatozoa Motility in the Cultured Siberian Sturgeon (Acipenser baeri Brandt). Aquaculture 2000, 189, 53–61. [Google Scholar] [CrossRef]
- Lahnsteiner, F.; Mansour, N. The Effect of Temperature on Sperm Motility and Enzymatic Activity in Brown Trout Salmo Trutta, Burbot Lota Lota and Grayling Thymallus Thymallus. J. Fish Biol. 2012, 81, 197–209. [Google Scholar] [CrossRef]
- Bombardelli, R.A.; Sanches, E.A.; Baggio, D.M.; Sykora, R.M.; de Souza, B.E.; Tessaro, L.; Piana, P.A. Effects of the Spermatozoa: Oocyte Ratio, Water Volume and Water Temperature on Artificial Fertilization and Sperm Activation of Cascudo-Preto. Rev. Bras. Zootec. 2013, 42, 1–6. [Google Scholar] [CrossRef]
- Mehlis, M.; Bakker, T. The Influence of Ambient Water Temperature on Sperm Performance and Fertilization Success in Three-Spined Sticklebacks (Gasterosteus aculeatus). Evol. Ecol. 2014, 28, 655–667. [Google Scholar] [CrossRef]
- Ekici, A.; Yamaner, G.; Demircan, M.D. Cryopreservation Studies in Aquaculture from Past to Present: Scientific Techniques and Quality Controls for Commercial Applications. In Cryopreservation-Applications and Challenges; IntechOpen: London, UK, 2022. [Google Scholar]
- Hassan, M.M.; Qin, J.G.; Li, X. Sperm Cryopreservation in Oysters: A Review of Its Current Status and Potentials for Future Application in Aquaculture. Aquaculture 2015, 438, 24–32. [Google Scholar] [CrossRef]
- Howard, J.G.; Lynch, C.; Santymire, R.M.; Marinari, P.E.; Wildt, D.E. Recovery of Gene Diversity Using Long-term Cryopreserved Spermatozoa and Artificial Insemination in the Endangered Black-footed Ferret. Anim. Conserv. 2016, 19, 102–111. [Google Scholar] [CrossRef]
- Judycka, S.; Nynca, J.; Ciereszko, A. Opportunities and Challenges Related to the Implementation of Sperm Cryopreservation into Breeding of Salmonid Fishes. Theriogenology 2019, 132, 12–21. [Google Scholar] [CrossRef]
- Fraser, D.J. How Well Can Captive Breeding Programs Conserve Biodiversity? A Review of Salmonids. Evol. Appl. 2008, 1, 535–586. [Google Scholar] [CrossRef]
- Cabrita, E.; Sarasquete, C.; Martínez-Páramo, S.; Robles, V.; Beirão, J.; Pérez-Cerezales, S.; Herráez, M.P. Cryopreservation of Fish Sperm: Applications and Perspectives. J. Appl. Ichthyol. 2010, 26, 623–635. [Google Scholar] [CrossRef]
- Torres, L.; Hu, E.; Tiersch, T.R. Cryopreservation in Fish: Current Status and Pathways to Quality Assurance and Quality Control in Repository Development. Reprod. Fertil. Dev. 2016, 28, 1105–1115. [Google Scholar] [CrossRef]
- Diwan, A.D.; Harke, S.N.; Gopalkrishna; Panche, A.N. Cryobanking of Fish and Shellfish Egg, Embryos and Larvae: An Overview. Front. Mar. Sci. 2020, 7, 251. [Google Scholar] [CrossRef]
- DeGraaf, J.D.; Berlinsky, D.L. Cryogenic and Refrigerated Storage of Atlantic Cod (Gadus morhua) and Haddock (Melanogrammus aeglefinus) Spermatozoa. Aquaculture 2004, 234, 527–540. [Google Scholar] [CrossRef]
- Suquet, M.; Dreanno, C.; Fauvel, C.; Cosson, J.; Billard, R. Cryopreservation of Sperm in Marine Fish. Aquac. Res. Orig. Artic. 2000, 31, 231–243. [Google Scholar] [CrossRef]
- Irawan, H.; Vuthiphandchai, V.; Nimrat, S. The Effect of Extenders, Cryoprotectants and Cryopreservation Methods on Common Carp (Cyprinus carpio) Sperm. Anim. Reprod. Sci. 2010, 122, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Minaz, M. The Potential of Ornamental Fish Culture in Biofloc Technology with Different C/N Ratio and Multi-Criteria Decision Making Model: An Example of Goldfish (Carassius auratus); Research Square: Durham, NC, USA, 2024. [Google Scholar]
- Targońska, K.; Kucharczyk, D. The Application of HCG, CPH and Ovopel in Successful Artificial Reproduction of Goldfish (Carassius auratus auratus) under Controlled Conditions. Reprod. Domest. Anim. 2011, 46, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Dumorne, K.; Valdebenito, I.; Contreras, P.; Rodríguez, P.U.; Risopatrón, J.; Figueroa, E.; Estévez, M.L.; Díaz, R.; Farías, J. Effect of PH, Osmolality and Temperature on Sperm Motility of Pink Cusk-Eel (Genypterus blacodes, (Forster, 1801)). Aquac. Rep. 2018, 11, 42–46. [Google Scholar] [CrossRef]
- Ulikowski, D. European Catfish (Silurus glanis L.) Reproduction Outside of the Spawning Season. Fish. Aquat. Life 2004, 12, 121–131. [Google Scholar]
- Ford, T.; Beitinger, T.L. Temperature Tolerance in the Goldfish, Carassius Auratus. J. Therm. Biol. 2005, 30, 147–152. [Google Scholar] [CrossRef]
- Targońska, K.; Kucharczyk, D.; Kujawa, R.; Mamcarz, A.; Żarski, D. Controlled Reproduction of Asp, Aspius aspius (L.) Using Luteinizing Hormone Releasing Hormone (LHRH) Analogues with Dopamine Inhibitors. Aquaculture 2010, 306, 407–410. [Google Scholar] [CrossRef]
- Nowosad, J.; Targońska, K.; Chwaluczyk, R.; Kaszubowski, R.; Kucharczyk, D. Effect of Temperature on the Effectiveness of Artificial Reproduction of Dace [Cyprinidae (Leuciscus leuciscus (L.))] under Laboratory and Field Conditions. J. Therm. Biol. 2014, 45, 62–68. [Google Scholar] [CrossRef]
- Abdolazizi, S.; Ghaderi, E.; Naghdi, N.; Kamangar, B.B. Effects of Clove Oil as an Anesthetic on Some Hematological Parameters of Carassius auratus. J. Aquac. Res. Dev. 2011, 2, 108. [Google Scholar] [CrossRef]
- Acharjee, A.; Chaube, R.; Joy, K.P. Ovaprim, a Commercial Spawning Inducer, Stimulates Gonadotropin Subunit Gene Transcriptional Activity: A Study Correlated with Plasma Steroid Profile, Ovulation and Fertilization in the Catfish Heteropneustes Fossilis. Gen. Comp. Endocrinol. 2017, 251, 66–73. [Google Scholar] [CrossRef]
- Olumuji, O.K.; Mustapha, M.K. Induced Breeding of African Mud Catfish, Clarias Gariepinus (Burchell 1822), Using Different Doses of Normal Saline Diluted Ovaprim. J. Aquac. Res. Dev. 2012, 3, 1–4. [Google Scholar]
- Black, B.J.; Black, M. Efficacy of Two Exogenous Hormones (GnRHa and HCG) for Induction of Spontaneous Spawning in Captive Yellowfin Bream, Acanthopagrus australis (Sparidae) and Influence of Sex Ratio on Spawning Success. Aquaculture 2013, 416, 105–110. [Google Scholar] [CrossRef]
- Carolsfeld, J.; Godinho, H.P.; Zaniboni Filho, E.; Harvey, B.J. Cryopreservation of Sperm in Brazilian Migratory Fish Conservation. J. Fish Biol. 2003, 63, 472–489. [Google Scholar] [CrossRef]
- Kása, E.; Bernáth, G.; Kollár, T.; Żarski, D.; Lujić, J.; Marinović, Z.; Bokor, Z.; Hegyi, Á.; Urbányi, B.; Vílchez, M.C. Development of Sperm Vitrification Protocols for Freshwater Fish (Eurasian perch, Perca fluviatilis) and Marine Fish (European Eel, Anguilla anguilla). Gen. Comp. Endocrinol. 2017, 245, 102–107. [Google Scholar] [CrossRef]
- Hossen, S.; Kim, S.C.; Cho, Y.; Kho, K.H. Vital Analysis of Cryopreserved Sperm of Marbled Flounder, Pseudopleuronectes Yokohamae. Front. Physiol. 2021, 12, 696737. [Google Scholar] [CrossRef]
- Abinawanto, A.; Yimastria, S.; Pertiwi, P. Sperm Analysis of Lukas Fish (Puntius bramoides): Motility, Viability and Abnormalities. In AIP Conference Proceedings; AIP Publishing: Depok, Indonesia, 2018. [Google Scholar]
- Bisai, K.; Kumar, V.; Roy, A.; Parida, S.N.; Dhar, S.; Das, B.K.; Behera, B.K.; Pati, M.K. Effects of Di-(2-Ethylhexyl) Phthalate (DEHP) on Gamete Quality Parameters of Male Koi Carp (Cyprinus carpio). Curr. Issues Mol. Biol. 2023, 45, 7388–7403. [Google Scholar] [CrossRef]
- Tunçelli, G.; Memiş, D. Effects of Constant and Changing Water Temperature on Sperm Quality of the Endangered Çoruh Trout, Salmo Coruhensis. J. Appl. Aquac. 2021, 33, 209–220. [Google Scholar] [CrossRef]
- Caldas, J.S.; Godoy, L. Sperm Characterization of the Endangered Amazonian Fish Hypancistrus Zebra: Basic Knowledge for Reproduction and Conservation Strategies. Anim. Reprod. Sci. 2019, 204, 117–124. [Google Scholar] [CrossRef]
- Tuset, V.M.; Dietrich, G.J.; Wojtczak, M.; Słowińska, M.; De Monserrat, J.; Ciereszko, A. Comparison of Three Staining Techniques for the Morphometric Study of Rainbow Trout (Oncorhynchus mykiss) Spermatozoa. Theriogenology 2008, 69, 1033–1038. [Google Scholar] [CrossRef]
- Rodrigues, J.; Dos Santos, R.S.; Cordeiro, J.G.; Leite, M.; e Oliveira, H.S.T.O.; Tercya, H.; Costa, B.P.D.; do Nascimento, N.F.; Maximino, C.; de Siqueira-Silva, D.H. Seminal Characterization of the Amazonian Fire-Eye Tetra Moenkhausia Oligolepis (Günther, 1864). Zygote 2020, 28, 453–458. [Google Scholar] [CrossRef]
- Diwan, A.D.; Ayyappan, S.; Lal, K.K.; Lakra, W.S. Cryopreservation of Fish Gametes and Embryos. Indian J. Anim. Sci. 2010, 80, 109–124. [Google Scholar]
- Viveiros, A.T.M.; Orfão, L.H.; Nascimento, A.F.; Corrêa, F.M.; Caneppele, D. Effects of Extenders, Cryoprotectants and Freezing Methods on Sperm Quality of the Threatened Brazilian Freshwater Fish Pirapitinga-Do-Sul Brycon Opalinus (Characiformes). Theriogenology 2012, 78, 361–368. [Google Scholar] [CrossRef]
- Chen, Y.F. Induced Ovulation and Embryonic Development of Ocellated Puffer, Takifugu Ocellatus. J. Appl. Ichthyol. 2005, 21, 136–140. [Google Scholar] [CrossRef]
- Sanches, E.A.; Caneppele, D.; Okawara, R.Y.; Damasceno, D.Z.; Bombardelli, R.A.; Romagosa, E. Inseminating Dose and Water Volume Applied to the Artificial Fertilization of Steindachneridion parahybae (Steindachner, 1877)(Siluriformes: Pimelodidae): Brazilian Endangered Fish. Neotrop. Ichthyol. 2016, 14, e140158. [Google Scholar] [CrossRef]
- Żarski, D.; Horváth, A.; Bernáth, G.; Palińska-Żarska, K.; Krejszeff, S.; Müller, T.; Kucharczyk, D. Application of Different Activating Solutions to in Vitro Fertilization of Crucian Carp, Carassius carassius (L.), Eggs. Aquac. Int. 2014, 22, 173–184. [Google Scholar] [CrossRef]
- Varga, Z.M. Aquaculture and Husbandry at the Zebrafish International Resource Center. Methods Cell Biol. 2011, 104, 453–478. [Google Scholar]
- Kristanto, A.H.; Umali, G.; Beam, R.; Dunham, R.A. Effect of Postmanufacturing Processing and Shipping of Luteinizing Hormone Releasing Hormone Analog on Induced Ovulation for Production of Channel Catfish Female × Blue Catfish Male Hybrid Fry. N. Am. J. Aquac. 2009, 71, 307–311. [Google Scholar] [CrossRef]
- Kjesbu, O.S.; Witthames, P.R.; Solemdal, P.; Walker, M.G. Temporal Variations in the Fecundity of Arcto-Norwegian Cod (Gadus morhua) in Response to Natural Changes in Food and Temperature. J. Sea Res. 1998, 40, 303–321. [Google Scholar] [CrossRef]
- Legendre, M. Seasonal Changes in Sexual Maturity and Fecundity, and HCG-Induced Breeding of the Catfish, Heterobranchus longifilis Val.(Clariidae), Reared in Ebrie Lagoon (Ivory Coast). Aquaculture 1986, 55, 201–213. [Google Scholar] [CrossRef]
- Targońska, K.; Żarski, D.; Müller, T.; Krejszeff, S.; Kozłowski, K.; Demeny, F.; Urbanyi, B.; Kucharczyk, D. Controlled Reproduction of the Crucian Carp Carassius carassius (L.) Combining Temperature and Hormonal Treatment in Spawners. J. Appl. Ichthyol. 2012, 28, 894–899. [Google Scholar] [CrossRef]
- Arndt, R.E.; Wagner, E.J.; Routledge, M.D. Reducing or Withholding Hydrogen Peroxide Treatment during a Critical Stage of Rainbow Trout Development: Effects on Eyed Eggs, Hatch, Deformities, and Fungal Control. N. Am. J. Aquac. 2001, 63, 161–166. [Google Scholar] [CrossRef]
- Lahnsteiner, F.; Berger, B.; Horvath, A.; Urbányi, B.; Weismann, T. Cryopreservation of Spermatozoa in Cyprinid Fishes. Theriogenology 2000, 54, 1477–1498. [Google Scholar] [CrossRef] [PubMed]
- Zidni, I.; Lee, Y.H.; Park, J.Y.; Lee, H.B.; Hur, J.W.; Lim, H.K. Effects of Cryoprotective Medium Composition, Dilution Ratio, and Freezing Rates on Spotted Halibut (Verasper variegatus) Sperm Cryopreservation. Animals 2020, 10, 2153. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Ge, J.; Hao, C.; Zhang, M.; Yan, W.; Xu, Z.; Pan, J.; Chen, S.; Tian, Y.; Huang, Y. Long-Term Cryopreservation of Sperm from Mandarin Fish Siniperca Chuatsi. Anim. Reprod. Sci. 2009, 113, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.; Chong, G.; Meng, P.; Lin, C. Sugars as Supplemental Cryoprotectants for Marine Organisms. Rev. Aquac. 2018, 10, 703–715. [Google Scholar] [CrossRef]
- Melo, F.; Godinho, H.P. A Protocol for Cryopreservation of Spermatozoa of the Fish Brycon Orthotaenia. Anim. Reprod. 2018, 3, 380–385. [Google Scholar]
- Brzuska, E. Artificial Spawning of Herbivorous Fish: Use of an LHRH—A to Induce Ovulation in Grass Carp Ctenopharyngodon idella (Valenciennes) and Silver Carp Hypophthalmichthys molitrix (Valenciennes). Aquac. Res. 1999, 30, 849–856. [Google Scholar] [CrossRef]
- Servili, A.; Canario, A.V.M.; Mouchel, O.; Muñoz-Cueto, J.A. Climate Change Impacts on Fish Reproduction Are Mediated at Multiple Levels of the Brain-Pituitary-Gonad Axis. Gen. Comp. Endocrinol. 2020, 291, 113439. [Google Scholar] [CrossRef] [PubMed]
- Dhara, K.; Saha, N.C. Controlled Breeding of Asian Catfish Clarias Batrachus Using Pituitary Gland Extracts and Ovaprim at Different Temperatures, Latency Periods and Their Early Development. J. Aquac. Res. Dev. 2013, 4, 186. [Google Scholar]
- Ashaf-Ud-Doulah, M.; Islam, S.M.M.; Zahangir, M.M.; Islam, M.S.; Brown, C.; Shahjahan, M. Increased Water Temperature Interrupts Embryonic and Larval Development of Indian Major Carp Rohu Labeo Rohita. Aquac. Int. 2021, 29, 711–722. [Google Scholar] [CrossRef]
- Akatsu, S.; Al-Abdul-Elah, K.M.; Teng, S.K. Effects of Salinity and Water Temperature on the Survival and Growth of Brown-spotted Grouper Larvae (Epinephelus tauvina, Serranidae). J. World Maric. Soc. 1983, 14, 624–635. [Google Scholar] [CrossRef]
- Kupren, K.; Mamcarz, A.; Kucharczyk, D. Effects of Temperature on Survival, Deformations Rate and Selected Parameters of Newly Hatched Larvae of Three Rheophilic Cyprinids (Genus leuciscus). Polish J. Nat. Sci. 2010, 25, 299–312. [Google Scholar] [CrossRef]
- Pankhurst, N.W.; Munday, P.L. Effects of Climate Change on Fish Reproduction and Early Life History Stages. Mar. Freshw. Res. 2011, 62, 1015–1026. [Google Scholar] [CrossRef]
- Muhling, B.; Lindegren, M.; Clausen, L.W.; Hobday, A.; Lehodey, P. Impacts of Climate Change on Pelagic Fish and Fisheries. Clim. Chang. Impacts Fish. Aquac. A Glob. Anal. 2017, 2, 771–814. [Google Scholar]
- Quigley, J.T.; Hinch, S.G. Effects of Rapid Experimental Temperature Increases on Acute Physiological Stress and Behaviour of Stream Dwelling Juvenile Chinook Salmon. J. Therm. Biol. 2006, 31, 429–441. [Google Scholar] [CrossRef]
- Alfonso, S.; Gesto, M.; Sadoul, B. Temperature Increase and Its Effects on Fish Stress Physiology in the Context of Global Warming. J. Fish Biol. 2021, 98, 1496–1508. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, J.E.; Jönsson, B.F. Rapid Warming and Salinity Changes in the Gulf of Maine Alter Surface Ocean Carbonate Parameters and Hide Ocean Acidification. Biogeochemistry 2018, 141, 401–418. [Google Scholar] [CrossRef] [PubMed]
- Ginsburg, A.S. Fertilization of Fishes and the Problem of Polyspermy; Translation: NOOAA and National Science Foundation; Academy of Science USSR: New York, NY, USA, 1968; p. 354. [Google Scholar]
- Fenkes, M.; Fitzpatrick, J.L.; Shiels, H.A.; Nudds, R.L. Acclimation Temperature Changes Spermatozoa Flagella Length Relative to Head Size in Brown Trout. Biol. Open. 2019, 8, bio039461. [Google Scholar] [CrossRef] [PubMed]
- Biswas, J.K.; Maurye, P. Aquaculture Biotechnology: Prospects and Challenges. Prog. Biotechnol. India. 2017, 1, 33–47. [Google Scholar]
- Da Costa, B.B.; de Oliveira, D.L.; Rodrigues, R.B.; Gomes, I.C.; Streit, D.P., Jr. Morphological Abnormalities in Zebrafish Cryopreserved Sperm. Cryobiology 2020, 97, 235–237. [Google Scholar] [CrossRef]
- Da Costa, B.B.; Marques, L.S.; Lassen, P.G.; Rodrigues, R.B.; Tais Da Rosa Silva, H.; Moreira, J.C.F.; Streit, D.P. Effects of Cysteine Supplementation on the Quality of Cryopreserved Sperm of South American Silver Catfish. Aquac. Res. 2020, 51, 455–464. [Google Scholar] [CrossRef]
Extenders (E) | NaCl (g) | KCl (g) | C6H5O7Na3, 2H2O (g) | Glucose (g) | Fructose (g) | Sucrose (g) | NaOH * (µL) | Antibiotics ** (mL) | Distilled Water (mL) | Cryoprotectant DMSO (%) |
---|---|---|---|---|---|---|---|---|---|---|
E1 | 0.17 | 0.23 | - | 1.06 | 0.9 | - | 12 | 0.5 | 100 | 10 |
E2 | 0.34 | - | - | - | - | 3.43 | 21 | 0.5 | 100 | 10 |
E3 | - | 0.46 | - | - | 1.93 | - | 16 | 0.5 | 100 | 10 |
E4 | 0.4 | 0.8 | 2.05 | - | 0.5 | 100 | 15 |
Temperature | 16 ± 1 °C | 22 ± 1 °C | 28 ± 1 °C | p-Value |
---|---|---|---|---|
Female Weight (g) | 35.15 ± 1.01 | 34.98 ± 2.55 | 35.23 ± 0.99 | 0.98 |
Ovulation (%) | 66 | 80 | 13 | 0.001 |
Latency Time (h) | 21–22 | 9–10 | 6–7 | 0.001 |
Relative Fecundity | 46.99 ±16.84 | 57.84 ± 19.17 | - | |
Survival Rate until Eyed-Egg Stage | 46.65 ± 9.98 | 65.80 ± 7.34 | - | 0.001 |
Percentage Deformed Larvae (%) | 32.47 ± 3.09 | 8.10 ± 5.69 | - | 0.32 |
Total Length of Larvae (mm) | 3.94 ±0.32 | 5.14 ± 0.29 | - | 0.001 |
Male Weight (g) | 32.35 ± 1.83 | 34.41 ± 2.22 | 33.01 ± 0.56 | 0.37 |
Spermiation (%) | 83.33 | 83.33 | 69.23 | 0.001 |
Sperm Motility (%) | 94.58 ± 3.34 | 97.08 ± 2.57 | 95.83 ±2.88 | 0.001 |
Sperm Head Length (µm) | 2.16 ± 0.25 | 2.19 ± 0.28 | 2.09 ± 0.26 | 0.001 |
Sperm Damage | 33.16 ± 11.45 | 10.41 ± 5.61 | 15.66 ± 10.24 | 0.001 |
Survival Fish (%) | 94.87 | 92.3 | 56.41 | 0.001 |
Post Thawing | ||||
Sperm Motility for Extender 4 (E4) (%) | 79.00 ± 4.18 | 91.00 ± 4.18 | 89.00 ± 4.18 | 0.001 |
Survival Rate until Eyed-Egg Stage | 13.84 ± 1.23 | 40.00 ± 7.93 | - | 0.001 |
Percentage Deformed Larvae (E4) (%) | 41.20 ± 9.43 | 17.07 ± 5.14 | 0.001 | |
Total Length Larvae (mm) | 3.54 ±0.11 | 4.78 ±0.52 | - | 0.001 |
Sperm Damage (E4) | 47.91 ± 15.12 | 18.50 ± 6.78 | 27.00 ± 10.43 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taheri-Khas, Z.; Gharzi, A.; Vaissi, S.; Heshmatzad, P.; Kalhori, Z. Hormone-Driven Temperature Optimization for Elevated Reproduction in Goldfish (Carassius auratus) under Laboratory Conditions. Animals 2024, 14, 2701. https://doi.org/10.3390/ani14182701
Taheri-Khas Z, Gharzi A, Vaissi S, Heshmatzad P, Kalhori Z. Hormone-Driven Temperature Optimization for Elevated Reproduction in Goldfish (Carassius auratus) under Laboratory Conditions. Animals. 2024; 14(18):2701. https://doi.org/10.3390/ani14182701
Chicago/Turabian StyleTaheri-Khas, Zeynab, Ahmad Gharzi, Somaye Vaissi, Pouria Heshmatzad, and Zahra Kalhori. 2024. "Hormone-Driven Temperature Optimization for Elevated Reproduction in Goldfish (Carassius auratus) under Laboratory Conditions" Animals 14, no. 18: 2701. https://doi.org/10.3390/ani14182701
APA StyleTaheri-Khas, Z., Gharzi, A., Vaissi, S., Heshmatzad, P., & Kalhori, Z. (2024). Hormone-Driven Temperature Optimization for Elevated Reproduction in Goldfish (Carassius auratus) under Laboratory Conditions. Animals, 14(18), 2701. https://doi.org/10.3390/ani14182701