Effects of Feeding Systems on the Growth Performance, Carcass Characteristics, and Meat Quality in Sheep: A Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Search Strategy
2.2. Study Selection and Exclusion Criteria
2.3. Data Extraction and Quality Assessment
2.4. Statistical Analysis—Meta-Analysis
3. Results
3.1. Article Search and Study Characteristics
3.2. Quality Assessment and Data Extraction
3.3. Growth Performance
3.4. Carcass Attributes
3.5. Edible Quality Attributes of Longissimus Muscle
3.6. Nutritional Quality Attributes of Longissimus Muscle
4. Discussion
4.1. Growth Rate
4.2. Slaughter Performance
4.3. Meat Sensory Quality
4.4. Meat Nutritional Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Erasmus, S.W.; Muller, M.; Hoffman, L.C. Authentic sheep meat in the European Union: Factors influencing and validating its unique meat quality. J. Sci. Food Agr. 2017, 97, 1979–1996. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.Z.; Li, J.X.; Luo, Q.Y.; Wang, X.; Xiao, M.M.; Zhou, D.; Lu, Q.; Chen, X. Effect of Supplementation with Selenium-Yeast on Muscle Antioxidant Activity, Meat Quality, Fatty Acids and Amino Acids in Goats. Front. Vet. Sci. 2022, 8, 813672. [Google Scholar] [CrossRef] [PubMed]
- Nudda, A.; McGuire, M.K.; Battacone, G.; Manca, M.G.; Boe, R.; Pulina, G. Documentation of fatty acid profiles in lamb meat and lamb-based infant foods. J. Food Sci. 2011, 76, H43–H47. [Google Scholar] [CrossRef]
- Marche, C.; Poulain, M.; Nieddu, A.; Errigo, A.; Dore, M.P.; Pes, G.M. Is a plant-based diet effective to maintain a good psycho-affective status in old age? Results of a survey of a long-lived population from Sardinia. Nutr. Neurosci. 2024, 27, 382–391. [Google Scholar] [CrossRef]
- Zervas, G.; Tsiplakou, E. The effect of feeding systems on the characteristics of products from small ruminants. Small Rumin. Res. 2011, 101, 140–149. [Google Scholar] [CrossRef]
- Margetín, M.; Oravcová, M.; Margetínová, J.; Kubinec, R. Fatty acids in intramuscular fat of Ile de France lambs in two different production systems. Arch. Anim. Breed. 2018, 61, 395–403. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, L.; Zhao, M.; Zhang, X.; Chen, J.; Zhang, Z.; Cheng, X.; Ren, C. Feeding regimens affecting carcass and quality attributes of sheep and goat meat—A comprehensive review. Anim. Biosci. 2023, 36, 1314. [Google Scholar] [CrossRef] [PubMed]
- Karaca, S.; Yılmaz, A.; Kor, A.; Bingöl, M.; Cavidoğlu, İ.; Ser, G. The effect of feeding system on slaughter-carcass characteristics, meat quality, and fatty acid composition of lambs. Arch. Anim. Breed. 2016, 59, 121–129. [Google Scholar] [CrossRef]
- Ke, T.; Zhao, M.; Zhang, X.; Cheng, Y.; Sun, Y.; Wang, P.; Ren, C.; Cheng, X.; Zhang, Z.; Huang, Y. Review of feeding systems affecting production, carcass attributes, and meat quality of ovine and caprine species. Life 2023, 13, 1215. [Google Scholar] [CrossRef]
- da Silva, P.C.G.; Brandão Ferreira Ítavo, C.C.; Vinhas Ítavo, L.C.; de Nadai Bonin Gomes, M.; Dias Feijó, G.L.; Monteiro Ferelli, K.L.S.; da Silva Heimbach, N.; da Silva, J.A.; de Melo, G.K.A.; Filgueira Pereira, M.W. Carcass traits and meat quality of Texel lambs raised in Brachiaria pasture and feedlot systems. Anim. Sci. J. 2020, 91, e13394. [Google Scholar] [CrossRef]
- Karim, S.A.; Porwal, K.; Kumar, S.; Singh, V.K. Carcass traits of Kheri lambs maintained on different system of feeding management. Meat. Sci. 2007, 76, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, Y.; Luo, H.; Liu, X.; Liu, K. Influence of restricted grazing time systems on productive performance and fatty acid composition of Longissimus dorsi in growing lambs. Asian Australas. J. Anim. Sci. 2015, 28, 1105. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, H.; Majdoub-Mathlouthi, L.; Picard, B.; Listrat, A.; Durand, D.; Znaïdi, I.A.; Kraiem, K. Carcass traits, contractile muscle properties and meat quality of grazing and feedlot Barbarine lamb receiving or not olive cake. Small Rumin. Res. 2016, 145, 85–93. [Google Scholar] [CrossRef]
- Costa, C.M.; Difante, G.S.; Costa, A.B.G.; Gurgel, A.L.C.; Ferreira Jr, M.A.; Santos, G.T. Grazing intensity as a management strategy in tropical grasses for beef cattle production: A meta-analysis. Animal 2021, 15, 100192. [Google Scholar] [CrossRef] [PubMed]
- Orzuna-Orzuna, J.F.; Godina-Rodríguez, J.E.; Garay-Martínez, J.R.; Lara-Bueno, A. Capsaicin as a Dietary Additive for Dairy Cows: A Meta-Analysis on Performance, Milk Composition, Digestibility, Rumen Fermentation, and Serum Metabolites. Animals 2024, 14, 1075. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Munn, Z.; Moola, S.; Riitano, D.; Lisy, K. The development of a critical appraisal tool for use in systematic reviews addressing questions of prevalence. Int. J. Health Policy Manag. 2014, 3, 123–128. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, H.; Zhang, X.; Hong, X.; Zhang, T. Prevalence and risk factors associated with feline infectious peritonitis (FIP) in Mainland China between 2008 and 2023: A systematic review and meta-analysis. Animals 2024, 14, 1220. [Google Scholar] [CrossRef]
- Lean, I.J.; Rabiee, A.R.; Duffield, T.F.; Dohoo, I.R. Invited review: Use of meta-analysis in animal health and reproduction: Methods and applications. J. Dairy Sci. 2009, 92, 3545–3565. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Borenstein, M.; Higgins, J.P.; Hedges, L.V.; Rothstein, H.R. Basics of meta-analysis: I2 is not an absolute measure of heterogeneity. Res. Synth. Methods 2017, 8, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Atti, N.; Mahouachi, M. Effects of feeding system and nitrogen source on lamb growth, meat characteristics and fatty acid composition. Meat. Sci. 2009, 81, 344–348. [Google Scholar] [CrossRef]
- Battacone, G.; Lunesu, M.F.; Rassu, S.P.G.; Nudda, A.; Pulina, G. Effect of suckling management and ewe concentrate level on methane-related carbon footprint of lamb meat in sardinian dairy sheep farming. Animals 2021, 11, 3605. [Google Scholar] [CrossRef] [PubMed]
- Bittante, G.; Cecchinato, A.; Tagliapietra, F.; Pazzola, M.; Vacca, G.M.; Schiavon, S. Effects of feeding system and CLA supplementation on animal, carcase and meat characteristics of fattened lambs and ewes. Ital. J. Anim. Sci. 2021, 20, 1270–1281. [Google Scholar] [CrossRef]
- Cañeque, V.; Velasco, S.; De Huidobro, F.R.; Pérez, C.; Lauzurica, S. Use of whole barley with a protein supplement to fatten lambs under different management systems and its effect on meat and carcass quality. Anim. Res. 2003, 52, 271–285. [Google Scholar] [CrossRef]
- da Silva, D.G.; de Paulo Macedo, V.; da Silveira, M.F.; Fluck, A.C.; Costa, O.A.D.; Piran Filho, F.A.; Bortoluzzi, C.; Franzosi, P. Non-carcass component yield of lambs finished in distinct production systems. Semin. Ciênc. Agrár. 2019, 40, 1215–1224. [Google Scholar] [CrossRef]
- de Menezes, B.M.; da Silva, D.G.; de Menezes Bisneto, B.M.; Bettencourt, A.F.; Pias, G.M.; dos Santos Pinho, A.P.; Isola, J.V.V.; Baungratz, A.R.; Paulo Macedo, V. Carcass and meat characteristics of Dorper x Santa Ines lambs finished in pasture, silvopastoral system, and feedlot. Semin. Ciênc. Agrár. 2021, 42 (Suppl. S2), 4039–4058. [Google Scholar] [CrossRef]
- Dian, P.H.M.; Andueza, D.; Barbosa, C.M.P.; Amoureux, S.; Jestin, M.; Carvalho, P.C.F.; Prado, I.N.; Prache, S. Methodological developments in the use of visible reflectance spectroscopy for discriminating pasture-fed from concentrate-fed lamb carcasses. Animal 2007, 1, 1198–1208. [Google Scholar] [CrossRef]
- Dervishi, E.; Joy, M.; Alvarez-Rodriguez, J.; Serrano, M.; Calvo, J.H. The forage type (grazing versus hay pasture) fed to ewes and the lamb sex affect fatty acid profile and lipogenic gene expression in the longissimus muscle of suckling lambs. J. Anim. Sci. 2012, 90, 54–66. [Google Scholar] [CrossRef]
- Devincenzi, T.; Prunier, A.; Meteau, K.; Prache, S. How does barley supplementation in lambs grazing alfalfa affect meat sensory quality and authentication? Animal 2019, 13, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Frescura, R.B.M.; Pires, C.C.; Rocha, M.G.D.; Silva, J.H.S.D.; Müller, L. Effects of feeding systems on production of lambs to be slaughtered at 28 kg. Rev. Bras. Zootecn. 2005, 34, 1267–1277. [Google Scholar] [CrossRef]
- Silva, I.G.; Giometti, I.C.; Castilho, C.; Soriano, G.A.M.; Santos, A.O.; Guimarães, L.J.; Sena, G.C.; Rêgo, F.C.A.; Zundt, M. Different nutritional systems influence the tenderness and lipid oxidation of ewe lamb meat without altering gene expression. An. Acad. Bras. Cienc. 2023, 95 (Suppl. S2), e20220562. [Google Scholar] [CrossRef]
- Gabryszuk, M.; Kuźnicka, E.; Horbańczuk, K.; Oprządek, J. Effects of housing systems and the diet supplements on the slaughter value and concentration of mineral elements in the loin muscle of lambs. Asian. Austral. J. Anim. 2014, 27, 726. [Google Scholar] [CrossRef]
- Gruffat, D.; Durand, D.; Rivaroli, D.; Do Prado, I.N.; Prache, S. Comparison of muscle fatty acid composition and lipid stability in lambs stall-fed or pasture-fed alfalfa with or without sainfoin pellet supplementation. Animal 2020, 14, 1093–1101. [Google Scholar] [CrossRef]
- Majdoub-Mathlouthi, L.; Saïd, B.; Kraiem, K. Carcass traits and meat fatty acid composition of Barbarine lambs reared on rangelands or indoors on hay and concentrate. Animal 2015, 9, 2065–2071. [Google Scholar] [CrossRef]
- Ocak, S.; Ogun, S.; Yilmaz, O. Dorper sheep utilizing feed resources efficiently: A Mediterranean case study. Rev. Bras. Zootecn. 2016, 45, 489–498. [Google Scholar] [CrossRef]
- Önenç, S.S.; Özdoğan, M.; Aktumsek, A.; Taşkın, T. Meat quality and fatty acid composition of chios male lambs fed under traditional and intensive conditions. Emir. J. Food Agr. 2015, 27, 636–642. [Google Scholar] [CrossRef]
- Önk, K.; Sarı, M.; Aksoy, Y.; Tilki, M.; Tufan, T.; Yılmaz, İ. Effects of different fattening systems on fattening performance, slaughter and carcass characteristics of male Tuj lambs. Kafkas. Univ. Vet. Fak. 2017, 23, 109–115. [Google Scholar]
- Ekiz, B.; Yilmaz, A.; Ozcan, M.; Kocak, O. Effect of production system on carcass measurements and meat quality of Kivircik lambs. Meat. Sci. 2012, 90, 465–471. [Google Scholar] [CrossRef]
- Raghuvansi, S.K.S.; Prasad, R.; Tripathi, M.K.; Mishra, A.S.; Chaturvedi, O.H.; Misra, A.K.; Saraswat, B.L.; Jakhmola, R.C. Effect of complete feed blocks or grazing and supplementation of lambs on performance, nutrient utilisation, rumen fermentation and rumen microbial enzymes. Animal 2007, 1, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, G.; Álvarez Rodríguez, J.; Sanz Pascua, A.; Joy, M. The capability of alfalfa grazing-and concentrate-based feeding systems to produce homogeneous carcass quality in light lambs over time. Span. J. Agric. Res. 2014, 12, 167–179. [Google Scholar] [CrossRef]
- Horcada Ibáñez, A.L.; Urena, L.P.; Álvarez, C.; García Infante, M.; Ruiz, F.D.A. Assessment of use of nutritional and organoleptic traits to differentiate the origin of Montesina lambs breed under three feeding regimes. Food Biosci. 2024, 58, 103610. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Z.; Chen, Y.; Liu, X.; Liu, K.; Zhang, Y.; Luo, H. Carcass traits, meat quality, and volatile compounds of lamb meat from different restricted grazing time and indoor supplementary feeding systems. Foods 2021, 10, 2822. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Su, L.; Su, R.; Luo, Y.; Wang, B.; Yao, D.; Zhao, L.; Jin, Y. Effect of feeding regimen on meat quality, MyHC isoforms, AMPK, and PGC-1α genes expression in the biceps femoris muscle of Mongolia sheep. Food Sci. Nutr. 2020, 8, 2262–2270. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, B.; Liu, C.; Su, R.; Hou, Y.; Yao, D.; Zhao, L.; Su, L.; Jin, Y. Meat quality, fatty acids, volatile compounds, and antioxidant properties of lambs fed pasture versus mixed diet. Food Sci. Nutr. 2019, 7, 2796–2805. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.Y.; Zhao, K.; Duan, Z. Comparison and analysis on sheep meat quality and flavor under pasture-based fattening contrast to intensive pasture-based feeding system. Anim. Biosci. 2022, 35, 1069. [Google Scholar] [CrossRef]
- Ding, H.; Deqingzhuoga; Gesangjiacuo; Zhang, J.; Zhang, X.; Tana. Effects of different rearing systems on carcase traits, physicochem ical properties, basic chemical composition, fatty acid profiles and amino acid profiles of Gangba lamb. Ital. J. Anim. Sci. 2024, 23, 362–372. [Google Scholar] [CrossRef]
- Li, Z.; Peng, C.; Wang, H.; Liu, X. Improved muscle fatty acid composition and oxidative stability in lambs grazing on sainfoin pasture. Vet. Anim. Sci. 2024, 23, 100337. [Google Scholar] [CrossRef]
- Howes, N.L.; Bekhit, A.E.D.A.; Burritt, D.J.; Campbell, A.W. Opportunities and implications of pasture-based lamb fattening to enhance the long-chain fatty acid composition in meat. Compr. Rev. Food Sci. Food Saf. 2015, 14, 22–36. [Google Scholar] [CrossRef]
- Xue, D.; Chen, H.; Zhao, X.; Xu, S.; Hu, L.; Xu, T.; Jiang, L.; Zhan, W. Rumen prokaryotic communities of ruminants under different feeding paradigms on the Qinghai-Tibetan Plateau. Syst. Appl. Microbiol. 2017, 40, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Koike, S.; Kobayashi, Y. Fibrolytic rumen bacteria: Their ecology and functions. J. Anim. Sci. 2009, 22, 131–138. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, X.; Chen, Y.; Ren, C.; Sun, Y.; Wang, P.; Cheng, X.; Zhang, Z.; Chen, J.; Huang, Y. Stall-Feeding of Sheep on Restricted Grazing: Effects on Performance and Serum Metabolites, Ruminal Fermentation, and Fecal Microbiota. Animals 2023, 13, 2644. [Google Scholar] [CrossRef] [PubMed]
- Chikwanha, O.C.; Muchenje, V.; Nolte, J.E.; Dugan, M.E.R.; Mapiye, C. Grape pomace (Vitis vinifera L. cv. Pinotage) supplementation in lamb diets: Effects on growth performance, carcass and meat quality. Meat. Sci. 2019, 147, 6–12. [Google Scholar] [PubMed]
- Wang, Y.; Wang, Q.; Dai, C.; Li, J.; Huang, P.; Li, Y.; Ding, X.; Huang, J.; Hussain, T.; Yang, H. Effects of dietary energy on growth performance, carcass characteristics, serum biochemical index, and meat quality of female Hu lambs. Anim. Nutr. 2020, 6, 499–506. [Google Scholar] [CrossRef]
- Flint, H.J.; Bayer, E.A.; Rincon, M.T.; Lamed, R.; White, B.A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol. 2008, 6, 121–131. [Google Scholar] [CrossRef]
- Su, Y.; Sun, X.; Zhao, S.; Hu, M.; Li, D.; Qi, S.; Jiao, X.; Sun, Y.; Wang, C.; Zhu, X.; et al. Dietary alfalfa powder supplementation improves growth and development, body health, and meat quality of Tibetan sheep. Food Chem. 2022, 396, 133709. [Google Scholar] [CrossRef]
- Listyarini, K.; Sumantri, C.; Rahayu, S.; Uddin, M.J.; Gunawan, A. Association study and expression analysis of olfactomedin like 3 gene related to meat quality, carcass characteristics, retail meat cut, and fatty acid composition in sheep. Anim. Biosci. 2022, 35, 1489. [Google Scholar] [CrossRef]
- Jiménez, L.E.R.; Naranjo, A.; Hernandez, J.C.A.; Ovalos, J.O.; Ortega, O.C.; Ronquillo, M.G. A meta-analysis on the effect of the feeding type and production system on the carcase quality of lambs. Ital. J. Anim. Sci. 2019, 18, 423–434. [Google Scholar] [CrossRef]
- Liang, Y.; Bao, Y.; Gao, X.; Deng, K.; An, S.; Wang, Z.; Huang, X.; Liu, D.; Liu, Z.; Wang, F.; et al. Effects of spirulina supplementation on lipid metabolism disorder, oxidative stress caused by high-energy dietary in Hu sheep. Meat. Sci. 2020, 164, 108094. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, M.; Zhang, X.; Wei, H.; Liu, L.; Zhang, Z.; Cheng, X.; Wang, G.; Ren, C. Indoor feeding combined with restricted grazing time improves body health, slaughter performance, and meat quality in Huang-huai sheep. Anim. Biosci. 2023, 36, 1655. [Google Scholar] [CrossRef] [PubMed]
- Salim, A.P.A.A.; Ferrari, R.G.; Monteiro, M.L.G.; Mano, S.B. Effect of different feeding systems on color of longissimus muscle from Bos cattle: A systematic review and meta-analysis. Meat. Sci. 2022, 192, 108871. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, X.; Song, P.; Zhao, J.; Zhang, J.; Zhao, J. Skeletal muscle mass, meat quality and antioxidant status in growing lambs supplemented with guanidinoacetic acid. Meat. Sci. 2022, 192, 108906. [Google Scholar] [CrossRef] [PubMed]
- Fruet, A.P.B.; Trombetta, F.; Stefanello, F.S.; Speroni, C.S.; Donadel, J.Z.; De Souza, A.N.M.; Júnior, A.R.; Tonetto, C.J.; Wagner, R.; De Mello, A.; et al. Effects of feeding legume-grass pasture and different concentrate levels on fatty acid profile, volatile compounds, and off-flavor of the M. longissimus thoracis. Meat. Sci. 2018, 140, 112–118. [Google Scholar] [CrossRef]
- Jurie, C.; Ortigues-Marty, I.; Picard, B.; Micol, D.; Hocquette, J.F. The separate effects of the nature of diet and grazing mobility on metabolic potential of muscles from Charolais steers. Livest. Sci. 2006, 104, 182–192. [Google Scholar] [CrossRef]
- Patino, H.O.; Medeiros, F.S.; Pereira, C.H.; Swanson, K.C.; McManus, C. Productive performance, meat quality and fatty acid profile of steers finished in confinement or supplemented at pasture. Animal 2015, 9, 966–972. [Google Scholar] [CrossRef]
- Qi, K.; Men, X.; Wu, J.; Xu, Z. Rearing pattern alters porcine myofiber type, fat deposition, associated microbial communities and functional capacity. BMC. Microbiol. 2019, 19, 181. [Google Scholar] [CrossRef]
- Jama, N.; Muchenje, V.; Chimonyo, M.; Strydom, P.E.; Dzama, K.; Raats, J.G. Cooking loss components of beef from Nguni, Bonsmara and Angus steers. Afr. J. Agr. Res. 2008, 3, 416–420. [Google Scholar]
- Maiorano, G.; Ciarlariello, A.; Cianciullo, D.; Roychoudhury, S.; Manchisi, A. Effect of suckling management on productive performance, carcass traits and meat quality of Comisana lambs. Meat. Sci. 2009, 83, 577–583. [Google Scholar] [CrossRef]
- Zhao, X.; Zuo, S.; Guo, Y.; Zhang, C.; Wang, Y.; Peng, S.; Liu, M.; Wang, B.; Zhang, H.; Luo, H. Carcass meat quality, volatile compound profile, and gene expression in Tan sheep under different feeding regimes. Food Biosci. 2023, 56, 103213. [Google Scholar] [CrossRef]
- Cividini, A.; Levart, A.; Žgur, S.; Kompan, D. Fatty acid composition of lamb meat from the autochthonous Jezersko–Solčava breed reared in different production systems. Meat. Sci. 2014, 97, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Brand, T.S.; Van Der Merwe, D.A.; Hoffman, L.C.; Geldenhuys, G. The effect of dietary energy content on quality characteristics of Boer goat meat. Meat. Sci. 2018, 139, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Majdoub, L.; Vermorei, M.L.; Ortigues-Marty, I. Net nutrient metabolism inhindlimb of growing lambs supplemented with propionate: Animal and humangrowth and development, Regulatory mechanisms, session: Regulation ofmuscle growthand lipid metabolism. In Proceedings of the French-Polish Symposium, Paris, France, 24 September 2001. [Google Scholar]
- Troy, D.J.; Tiwari, B.K.; Joo, S.T. Health implications of beef intramuscular fat consumption. Korean J. Food Sci. Anim. Resour. 2016, 36, 577. [Google Scholar] [CrossRef] [PubMed]
Acronym | Terms and Cross-References |
---|---|
Population (P) | (“Lamb” OR “Sheep” OR “Ovine” OR “Ram” OR “Wether” OR “Ewe”) |
AND | |
Intervention (I) and comparison (C) | (“Feeding method” OR “Feeding pattern” OR “Grazing” OR “Barn fattening” OR “Feeding regimens” OR “Rearing systems” OR “confinement” OR “feeding system”) |
AND | |
Outcome (O) | (“Animal performance” OR “Weight gain” OR “performance” OR “meat quality”) |
NOT | |
Study design (S) | (“Review” OR “Meta-analysis”) |
Author | No. of Comparisons | Study Design | Country | Species/Cultivar | N | Treatments | Evaluated Variables 1 |
---|---|---|---|---|---|---|---|
[23] | 2 | RCT | Tunisia | Barbarine male lambs | 28 | Stall-feeding/grazing pasture plus supplementation | ADG; SLW; CCW; DP; protein; IMF; Ash |
[24] | 2 | RCT | Italy | Sarda nursing ewes | 48 | Stall-feeding/grazing pasture plus supplementation | ADG; SLW |
[25] | 2 | RCT | Italy | Alpagota, Brogna and Foza lambs | 36 | Stall-feeding/pasture-grazing | ADG; HCW; DP; L*; a*; b* |
[26] | 2 | RCT | Spain | Talaverana-breed lambs | 53 | Stall-feeding/grazing pasture plus supplementation | ADG; SLW; CCW; DP; L*; a*; b*; CL; WHC |
[27] | 2 | RCT | Brazil | Dorper x Santa Ynez crossbred lambs | 72 | Stall-feeding/grazing pasture plus supplementation | ADG; SLW |
[10] | 3 | RCT | Brazil | Texel breed | 30 | Stall-feeding/pasture-grazing/grazing pasture plus supplementation | SLW; HCW; CCW; DP; REA; L*; a*; b*; WBSE; CL |
[28] | 3 | RCT | Brazil | Dorper x Santa Ynez crossbred lambs | 72 | Stall-feeding/pasture-grazing/grazing pasture plus supplementation | ADG; SLW; HCW; CCW; DP; REA; DL |
[29] | 2 | RCT | French | Limousine-breed lambs | 307 | Stall-feeding/pasture-grazing | ADG; SLW; CCW |
[30] | 2 | RCT | Spain | Churra Tensina breed lambs | 48 | Stall-feeding/pasture-grazing | SLW; IMF |
[31] | 3 | RCT | France | Romane lambs | 36 | Stall-feeding/pasture-grazing/grazing pasture plus supplementation | ADG; SLW; CCW; L*; a*; b* |
[32] | 2 | RCT | Brazil | Cruzas Ile de France x Texel | 12 | Stall-feeding/pasture-grazing | ADG; HCW; CCW; DP; REA |
[33] | 3 | RCT | Brazil | Ewe lambs | 24 | Stall-feeding/pasture -razing/grazing pasture plus supplementation | SLW; ADG; Moisture; CP; Ash; EE |
[34] | 2 | RCT | Poland | Polish Merino ram lambs | 49 | Stall-feeding/pasture-grazing | ADG; SLW; CCW; REA |
[35] | 3 | RCT | France | Romane lambs | 36 | Stall-feeding/pasture-grazing/grazing pasture plus supplementation | EE |
[36] | 2 | RCT | Tunisia | Weaned male lambs | 24 | Stall-feeding/grazing pasture plus supplementation | ADG; SLW; HCW; CCW; DP; L*; a*; b*; IMF |
[37] | 3 | RCT | Turkey | Dorper lambs | 45 | Stall-feeding/pasture-grazing/grazing pasture plus supplementation | ADG; SLW; HCW; CCW; DP; L*; a*; b*; WBSE; CL; DL |
[38] | 2 | RCT | Turkey | Chios lambs | 34 | Stall-feeding/grazing pasture plus supplementation | L*; a*; b*; CL; Moisture; protein |
[39] | 3 | RCT | Turkey | Tuj lambs | 39 | Stall-feeding/pasture-grazing/grazing pasture plus supplementation | ADG; SLW; HCW; CCW; DP; REA |
[40] | 2 | RCT | Turkey | Kivircik male lambs | 22 | Stall-feeding/pasture-grazing | SLW; HCW; WBSF; L*; a*; b*; CL; DL |
[8] | 2 | RCT | Turkey | Norduz lambs | 30 | Stall-feeding/pasture-grazing | L*; a*; b*; Moisture; CP; Ash; EE; |
[41] | 2 | RCT | India | Malpura lambs | 22 | Stall-feeding/grazing pasture plus supplementation | ADG |
[42] | 3 | RCT | Spain | Rasa Aragonesa lambs | 94 | Stall-feeding/pasture-grazing/grazing pasture plus supplementation | ADG; SLW; HCW; CCW; DP |
[43] | 3 | RCT | Spain | Montesina lamb | 30 | Stall-feeding/pasture-grazing/grazing pasture plus supplementation | Moisture; CP; EE; Ash; L*; a*; b*; WHC |
[44] | 3 | RCT | China | Tan lambs | 50 | Stall-feeding/pasture-grazing/grazing pasture plus supplementation | SLW; DP; REA; L*; a*; b*; CL; Moisture; protein; Ash |
[12] | 3 | RCT | China | Tan lambs | 50 | Stall-feeding/pasture-grazing/grazing pasture plus supplementation | ADG; SLW; HCW; IMF |
[45] | 2 | RCT | China | Mongolia lambs | 20 | Stall-feeding/pasture-grazing | SLW; HCW; L*; a*; b*; WBSE; Moisture; protein; IMF; Ash |
[46] | 2 | RCT | China | Mongolia lambs | 24 | Stall-feeding/pasture-grazing | SLW; L*; a*; b*; WBSE; protein; IMF; Ash |
[47] | 2 | RCT | China | Hulunbuir lambs | 44 | Stall-feeding/pasture-grazing | SLW; HCW; DP; L*; a*; b*; WBSE; CL; DL; WHC; Moisture; IMF |
[48] | 3 | RCT | China | Gangba lambs | 30 | Stall-feeding/pasture-grazing/grazing pasture plus supplementation | DP; CL; DL; Moisture; CP; Ash; EE |
[49] | 2 | RCT | China | Small Tail Han lambs | 24 | Stall-feeding/pasture-grazing | EE; L*; a*; b* |
Item | NC | Mean | Minimum | Maximum | SD | ||||
---|---|---|---|---|---|---|---|---|---|
SF | PG | SF | PG | SF | PG | SF | PG | ||
Growth rate | |||||||||
ADG (g/d) 1 | 24 | 206.45 | 172.64 | 22.20 | 53.90 | 332.00 | 317.00 | 96.94 | 82.83 |
Carcass attributes | |||||||||
SLW (kg) | 34 | 33.78 | 30.30 | 10.80 | 10.70 | 48.60 | 46.30 | 9.33 | 7.98 |
HCW (kg) | 24 | 15.64 | 13.89 | 9.96 | 9.70 | 23.56 | 17.26 | 4.13 | 2.48 |
CCW (kg) | 20 | 15.65 | 13.73 | 10.70 | 8.66 | 22.10 | 21.20 | 3.50 | 3.68 |
DP (%) | 20 | 45.91 | 44.50 | 40.42 | 37.50 | 51.06 | 51.37 | 3.44 | 3.84 |
REA (cm2) | 12 | 12.75 | 10.68 | 8.96 | 8.85 | 14.70 | 12.60 | 2.18 | 1.65 |
Edible quality of longissimus muscle | |||||||||
Lightness | 24 | 38.00 | 36.43 | 23.01 | 25.21 | 44.80 | 41.37 | 6.90 | 5.16 |
Redness | 24 | 14.03 | 14.35 | 6.60 | 6.70 | 22.56 | 22.46 | 6.18 | 5.47 |
Yellowness | 24 | 8.27 | 9.05 | 1.62 | 0.76 | 14.17 | 13.49 | 3.93 | 3.66 |
WBSE (N) | 12 | 34.08 | 40.87 | 5.80 | 7.11 | 55.55 | 71.28 | 19.29 | 20.69 |
Cooking loss (%) | 12 | 25.30 | 26.31 | 14.73 | 14.75 | 36.59 | 39.71 | 9.35 | 11.34 |
Drip loss (%) | 10 | 3.42 | 3.92 | 1.33 | 1.29 | 9.06 | 9.11 | 3.29 | 3.17 |
Nutritional quality of longissimus muscle | |||||||||
Moisture (%) | 12 | 72.82 | 73.94 | 68.93 | 71.76 | 75.90 | 76.17 | 2.36 | 1.53 |
Protein (%) | 14 | 21.66 | 21.73 | 18.88 | 18.92 | 24.94 | 24.55 | 2.03 | 2.03 |
Intramuscular fat (%) | 22 | 3.76 | 2.66 | 1.64 | 1.05 | 6.57 | 4.25 | 1.45 | 1.04 |
Ash (%) | 14 | 1.05 | 1.01 | 0.87 | 0.84 | 1.21 | 1.25 | 0.12 | 0.15 |
Item | NC | Mean | Minimum | Maximum | SD | ||||
---|---|---|---|---|---|---|---|---|---|
SF | GPS | SF | GPS | SF | GPS | SF | GPS | ||
Growth rate | |||||||||
ADG (g/d) 1 | 36 | 187.78 | 177.08 | 22.20 | 17.80 | 332.00 | 299.00 | 91.07 | 86.43 |
Carcass attributes | |||||||||
SLW (kg) | 44 | 33.20 | 32.03 | 9.37 | 10.20 | 48.60 | 46.90 | 9.46 | 8.47 |
HCW (kg) | 26 | 14.65 | 14.02 | 9.96 | 9.20 | 19.89 | 19.51 | 3.49 | 2.75 |
CCW (kg) | 30 | 16.64 | 15.19 | 10.70 | 9.00 | 23.20 | 21.90 | 3.87 | 3.91 |
DP (%) | 34 | 45.92 | 45.71 | 40.42 | 39.40 | 54.63 | 51.25 | 3.69 | 2.57 |
REA (cm2) | 18 | 12.48 | 11.67 | 8.96 | 9.86 | 14.70 | 14.84 | 2.69 | 1.57 |
Edible quality of longissimus muscle | |||||||||
Lightness | 26 | 43.11 | 42.10 | 37.66 | 37.64 | 65.28 | 62.04 | 7.03 | 6.33 |
Redness | 26 | 14.68 | 15.55 | 3.88 | 4.36 | 22.02 | 24.22 | 6.12 | 6.03 |
Yellowness | 26 | 9.26 | 9.71 | 3.14 | 3.02 | 14.17 | 14.65 | 4.35 | 4.04 |
WBSE (N) | 8 | 33.45 | 33.06 | 19.03 | 24.33 | 38.26 | 38.26 | 9.61 | 6.16 |
Cooking loss (%) | 22 | 30.55 | 31.06 | 22.13 | 19.49 | 36.59 | 38.58 | 5.95 | 6.85 |
Drip loss (%) | 6 | 4.77 | 4.22 | 1.61 | 2.00 | 9.06 | 6.58 | 3.85 | 2.29 |
Nutritional quality of longissimus muscle | |||||||||
Moisture (%) | 14 | 74.08 | 74.30 | 68.93 | 71.57 | 76.52 | 76.88 | 2.78 | 1.91 |
Protein (%) | 18 | 33.56 | 34.69 | 18.88 | 19.51 | 76.70 | 80.80 | 24.20 | 25.54 |
Intramuscular fat (%) | 20 | 6.56 | 5.44 | 1.64 | 1.93 | 20.30 | 17.00 | 6.96 | 5.41 |
Ash (%) | 16 | 1.92 | 1.99 | 1.01 | 0.85 | 4.30 | 5.10 | 1.44 | 1.78 |
Feeding Regimen | Outcomes | No. of Comparisons | SMD (95% CI) | Heterogeneity | Publication Bias Egger | ||
---|---|---|---|---|---|---|---|
Random Effect | p-Value | I2 | p-Value | ||||
Pasture-grazing | SLW (kg) 1 | 17 | −0.55 (−0.71, −0.39) | <0.001 | 88.9 | <0.001 | <0.001 |
HCW (kg) | 12 | −0.28 (−0.53, −0.03) | 0.031 | 93.6 | <0.001 | 0.055 | |
CCW (kg) | 10 | −0.68 (−0.86, −0.49) | <0.001 | 91.8 | <0.001 | 0.325 | |
DP (%) | 10 | 0.02 (−0.24, 0.29) | 0.879 | 89.7 | <0.001 | 0.721 | |
REA (cm2) | 6 | −1.57 (−1.99, −1.14) | <0.001 | 75.7 | 0.001 | 0.707 | |
Grazing pasture plus supplementation | SLW (kg) | 22 | 0.06 (−0.15, 0.27) | 0.588 | 91.7 | <0.001 | 0.535 |
HCW (kg) | 13 | 0.08 (−0.20, 0.36) | 0.578 | 92.4 | <0.001 | 0.903 | |
CCW (kg) | 15 | −0.17 (−0.42, 0.07) | 0.159 | 79.2 | <0.001 | 0.001 | |
DP (%) | 17 | 0.15 (−0.08, 0.39) | 0.201 | 87.4 | <0.001 | 0.711 | |
REA (cm2) | 9 | 0.42 (−0.03, 0.86) | 0.065 | 92.3 | <0.001 | 0.348 |
Feeding Regimen | Outcomes | No. of Comparisons | SMD (95% CI) 1 | Heterogeneity | Publication Bias Egger | ||
---|---|---|---|---|---|---|---|
Random Effect | p-Value | I2 | p-Value | ||||
Pasture-grazing | Lightness | 12 | −0.63 (−0.91, −0.35) | <0.001 | 93.7 | <0.001 | 0.064 |
Redness | 12 | −0.03 (−0.28, 0.21) | 0.801 | 86.8 | <0.001 | 0.451 | |
Yellowness | 12 | 0.36 (0.09, 0.63) | 0.009 | 93.0 | <0.001 | 0.537 | |
Warner–Bratzler shear force (N) | 6 | 1.13 (0.73, 1.52) | <0.001 | 91.9 | <0.001 | 0.260 | |
Cooking loss (%) | 6 | 0.51 (0.10, 0.91) | 0.015 | 94.6 | <0.001 | 0.133 | |
Drip loss (%) | 5 | 0.06 (−0.32, 0.45) | 0.751 | 92.7 | <0.001 | 0.086 | |
Grazing pasture plus supplementation | Lightness | 13 | −0.57 (−0.82, −0.32) | <0.001 | 74.3 | <0.001 | 0.200 |
Redness | 13 | 0.70 (0.44, 0.96) | <0.001 | 78.6 | <0.001 | 0.051 | |
Yellowness | 13 | 0.47 (0.21, 0.74) | <0.001 | 87.7 | <0.001 | 1.000 | |
Warner–Bratzler shear force (N) | 4 | 0.44 (−0.12, 1.00) | <0.001 | 89.1 | <0.001 | 0.089 | |
Cooking loss (%) | 11 | 0.74 (0.44, 1.03) | <0.001 | 88.7 | <0.001 | 0.533 | |
Drip loss (%) | 3 | 0.49 (−0.11, 1.10) | 0.111 | 95.2 | <0.001 | 0.296 |
Feeding Regimen | Outcomes | No. of Comparisons | SMD (95% CI) 1 | Heterogeneity | Publication Bias Egger | ||
---|---|---|---|---|---|---|---|
Random Effect | p-Value | I2 | p-Value | ||||
Pasture-grazing | Moisture (%) | 6 | 0.37 (0.03, 0.71) | 0.031 | 0.00 | 0.478 | 0.060 |
Protein (%) | 7 | 0.17 (−0.21, 0.55) | 0.392 | 92.6 | <0.001 | 0.548 | |
IMF (%) | 11 | −1.06 (−1.34, −0.78) | <0.001 | 92.0 | <0.001 | <0.001 | |
Ash (%) | 7 | −0.80 (−1.15, −0.46) | <0.001 | 67.8 | 0.005 | 1.000 | |
Grazing pasture plus supplementation | Moisture (%) | 7 | −0.40 (−0.74, −0.06) | 0.021 | 76.4 | <0.001 | 0.035 |
Protein (%) | 9 | 0.72 (0.38, 1.06) | <0.001 | 86.3 | <0.001 | 0.009 | |
IMF (%) | 7 | −0.88 (−1.22, −0.54) | <0.001 | 84.8 | <0.001 | 0.012 | |
Ash (%) | 8 | −0.77 (−1.15, −0.39) | <0.001 | 85.8 | <0.001 | 0.711 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Zhang, X.; Wei, H.; Wang, S.; Ye, Y.; He, L.; Zhang, K.; Lu, Y.; Zhang, Z.; Huang, Y. Effects of Feeding Systems on the Growth Performance, Carcass Characteristics, and Meat Quality in Sheep: A Meta-Analysis. Animals 2024, 14, 2738. https://doi.org/10.3390/ani14182738
Wang W, Zhang X, Wei H, Wang S, Ye Y, He L, Zhang K, Lu Y, Zhang Z, Huang Y. Effects of Feeding Systems on the Growth Performance, Carcass Characteristics, and Meat Quality in Sheep: A Meta-Analysis. Animals. 2024; 14(18):2738. https://doi.org/10.3390/ani14182738
Chicago/Turabian StyleWang, Wenjie, Xiaoan Zhang, Huiqing Wei, Sunze Wang, Yang Ye, Li He, Kefan Zhang, Yuan Lu, Zijun Zhang, and Yafeng Huang. 2024. "Effects of Feeding Systems on the Growth Performance, Carcass Characteristics, and Meat Quality in Sheep: A Meta-Analysis" Animals 14, no. 18: 2738. https://doi.org/10.3390/ani14182738
APA StyleWang, W., Zhang, X., Wei, H., Wang, S., Ye, Y., He, L., Zhang, K., Lu, Y., Zhang, Z., & Huang, Y. (2024). Effects of Feeding Systems on the Growth Performance, Carcass Characteristics, and Meat Quality in Sheep: A Meta-Analysis. Animals, 14(18), 2738. https://doi.org/10.3390/ani14182738