Evaluation of Synthetic GnRH-Analog Peforelin with Regard to Oocyte Differentiation and Follicular Development in C57BL/6J Mice
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Hormonal Treatment
2.2. Oocyte Collection and Analysis
2.3. Sperm Freezing and Thawing
2.4. In Vitro Fertilization
2.5. Histological Analysis
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gates, A.H.; Bozarth, J.L. Ovulation in the PMSG-Treated Immature Mouse: Effect of Dose, Age, Weight, Puberty, Season and Strain (BALB/c, 129 and C129F1 Hybrid). Biol. Reprod. 1978, 18, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Katsuyama, M.; Suzuki, W.; Saito, T.R.; Takahashi, K.W. Comparison of the Amounts of Hcg and Pmsg to Induce Ovulation in 50% of the Animals, Mice, Syrian Hamsters and Rats. Jikken Dobutsu. 1992, 41, 153–159. [Google Scholar]
- Park, S.J.; Kim, T.S.; Kim, J.M.; Chang, K.T.; Lee, H.S.; Lee, D.S. Repeated Superovulation via PMSG/hCG Administration Induces 2-Cys Peroxiredoxins Expression and Overoxidation in the Reproductive Tracts of Female Mice. Mol. Cells. 2015, 38, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Witt, R.R.; Hinds, L.A.; Rodger, J.C. Induction of Synchronous Oestrus but Not Ovulation After Pre-treatment with the GnRH Agonist, Lucrin(R) Depot, in the Tammar Wallaby. Theriogenology 2020, 145, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Manteca Vilanova, X.; Beaver, B.; Uldahl, M.; Turner, P.V. Recommendations for Ensuring Good Welfare of Horses Used for Industrial Blood, Serum, or Urine Production. Animals 2021, 11, 1466. [Google Scholar] [CrossRef]
- Behringer, R.; Gertsenstein, M.; Nagy, K.V.; Nagy, A. Administration of Gonadotropins for Superovulation in Mice. Cold. Spring Harb. Protoc. 2018, 1, 24–27. [Google Scholar] [CrossRef]
- Stamatiades, G.A.; Carroll, R.S.; Kaiser, U.B. GnRH-A Key Regulator of FSH. Endocrinology 2019, 160, 57–67. [Google Scholar] [CrossRef]
- Shoham, Z.; Insler, V. Recombinant Technique and Gonadotropins Production: New Era in Reproductive Medicine. Fertil. Steril. 1996, 66, 187–201. [Google Scholar] [CrossRef]
- Tien Thach, D.; Khac Cuong, B.; Van Tong, H.; Van Chi, V.; Kim Khue, N.; Thi Phuong Hien, N.; Van Hai, N.; Combarnous, Y.; Mong Diep Nguyen, T. Natural and Recombinant Equine Chorionic Gonadotropins past and Future in Animal Reproductive Technology. Vet. Integr. Sci. 2022, 20, 751–760. [Google Scholar]
- Baruselli, P.S.; de Abreu, L.; Catussi, B.L.C.; Oliveira, A.C.d.S.; Rebeis, L.M.; Gricio, E.A.; Albertini, S.; Sales, J.N.S.; Rodrigues, C.A. Use of New Recombinant Proteins for Ovarian Stimulation in Ruminants. Anim. Reprd. 2023, 20, e20230092. [Google Scholar] [CrossRef]
- Wang, M.; Huang, R.; Liang, X.; Mao, Y.; Shi, W.; Li, Q. Recombinant LH Supplementation Improves Cumulative Live Birth Rates in the GnRH Antagonist Protocol: A Multicenter Ret-Rospective Study Using a Propensity Score-Matching Analysis. Reprod. Biol. Endocrinol. 2022, 20, 114. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.C.; Mussio, P.E.; Villarraza, J.; Tardivo, M.B.; Antuña, S.; Fontana, D.; Ceaglio, N.; Prieto, C. Physicochemical Characterization of a Recombinant eCG and Comparative Studies with PMSG Commercial Preparations. Protein J. 2023, 42, 24–36. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, A. Gonadotropin-Releasing Hormone Analogs: Understanding Advantages and Limitations. J. Hum. Reprod Sci. 2014, 7, 170–174. [Google Scholar] [CrossRef]
- de Jong, E.; Kauffold, J.; Engl, S.; Jourquin, J.; Maes, D. Effect of a GnRH Analogue (Maprelin) on the Reproductive Performance of Gilts and Sows. Theriogenology 2013, 80, 870–877. [Google Scholar] [CrossRef]
- Vangroenweghe, F.; Goossens, L.; Jourquin, J. An Evaluation of Gonadotropin-Releasing Hormone Analogue Administered to Gilts and Sows on Subsequent Reproductive Per-Formance and Piglet Birth Weight. Porcine Health Manag. 2016, 2, 1. [Google Scholar] [CrossRef] [PubMed]
- Russell, W.M.S.; Burch, R.L. The Principles of Humane Experimental Technique; Universities Federation for Animal Welfare: Wheathampstead, UK, 1959; Volume 238. [Google Scholar]
- Behringer, R.; Gertsenstein, M.; Nagy, K.; Nagy, A. Manipulating the Mouse Embryo: A Laboratory Manual; Cold Spring Harbour Press: Cold Spring Harbor, NY, USA, 2014; p. 4. [Google Scholar]
- Shindo, M.; Miyado, K.; Kang, W.; Fukami, M.; Miyado, M. Efficient Superovulation and Egg Collection from Mice. Bio. Protoc. 2022, 12, e4439. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, M.C.; Schotanus, G.; Wijnberg, I.D.; van der Kolk, J.H. Serum Amyloid A and Cortisol Concentrations in Pregnant Mares as Indicators of Stress Related to Blood Collection. Equine Vet. J. 2009, 41, 91–95. [Google Scholar]
- Munari, C.; Ponzio, P.; Alkhawagah, A.R.; Schiavone, A.; Mugnai, C. Effects of an Intravaginal GnRH Analogue Administration on Rabbit Reproductive Parameters and Welfare. Theriogenology 2019, 125, 122–128. [Google Scholar] [CrossRef]
- Thach, D.T.; Cuong, B.K.; Van Tong, H.; Van Chi, V.; Khue, N.K.; Hien, N.T.P.; Van Hai, N.; Combarnous, Y.; Nguyen, T.M.D. Reproductive Performance of Rabbit Does Artificially Inseminated via Intravaginal Administration of [Des-Gly 10, D-ALA6]-LHRH Ethylamide as Ovulation Inductor. Reprod. Domest. Anim. 2009, 44, 829–833. [Google Scholar]
- Lamas, S.; Carvalheira, J.; Gartner, F.; Amorim, I. C57BL/6J Mouse Superovulation: Schedule and Age Optimization to Increase Oocyte Yield and Reduce Animal Use. Zygote 2021, 29, 199–203. [Google Scholar] [CrossRef]
- Luo, C.; Zuniga, J.; Edison, E.; Palla, S.; Dong, W.; Parker-Thornburg, J. Superovulation Strategies for 6 Commonly Used Mouse Strains. J. Am. Assoc. Lab. Anim. Sci. 2011, 50, 471–478. [Google Scholar]
- Zhao, X.; Huang, J.X.; Zhang, H.; Gong, X.; Dong, J.; Ren, H.L.; Liu, Z.; Wang, X. A Comparison Study of Superovulation Strategies ForC57BL/6J and B6D2F1 Mice in CRISPR-Cas9 Mediated Genome Editing. Reprod. Fertil. Dev. 2021, 33, 772–781. [Google Scholar] [CrossRef]
- Byers, S.L.; Payson, S.J.; Taft, R.A. Performance of Ten Inbred Mouse Strains Following Assisted Reproductive Technologies(ARTs). Theriogenology 2006, 65, 1716–1726. [Google Scholar] [CrossRef]
- Gates, A.H. Viability and Developmental Capacity of Eggs from Immature Mice Treated with Gonadotrophins. Nature 1956, 177, 754–755. [Google Scholar] [CrossRef]
- Vasudevan, K.; Raber, J.; Sztein, J. Fertility Comparison Between Wild Type and Transgenic Mice by in vitro Fertilization. Transgenic Res. 2010, 19, 587–594. [Google Scholar] [CrossRef]
- Wang, L.-Y.; Wang, N.; Le, F.; Li, L.; Lou, H.-Y.; Liu, X.-Z.; Zheng, Y.-M.; Qian, Y.-Q.; Chen, Y.-L.; Jiang, X.-H.; et al. Superovulation Induced Changes of Lipid Metabolism in Ovaries and Embryos and Its Probable Mechanism. PLoS ONE. 2015, 10, e0132638. [Google Scholar] [CrossRef]
- Sang-Hwan, K.; Jong-Taek, Y. Morphological Changes in Mouse Ovary Due to Hormonal Hypersecretion and Matrix Metalloproteinase-2 Activity. Histol. Histopathol. 2021, 36, 527–534. [Google Scholar]
- Ozbilgin, M.K.; Oztatlici, M.; Ucoz, M. Effect of High dose Gonadotropin Stimulation on Follicular Atresia through Light Chain 3B and Voltage Dependent Anion Channel 2. J. Hum. Reprod. Sci. 2022, 15, 343–350. [Google Scholar] [CrossRef]
- Uslu, B.; Dioguardi, C.C.; Haynes, M.; Miao, D.-Q.; Kurus, M.; Hoffman, G.; Johnson, J. Quantifying Growing Versus Non-growing Ovarian Follicles in the Mouse. J. Ovarian Res. 2017, 10, 3. [Google Scholar] [CrossRef]
- Edgar, D.H.; Whalley, K.M.; Mills, J.A. Effects of High-Dose and Multiple-Dose Gonadotropin Stimulation on Mouse Oocyte Quality as Assessed by Preimplantation Development Following in Vitro Fertilization. J. Assist. Reprod. Genet. 1987, 4, 273–276. [Google Scholar] [CrossRef]
- Kanter, M.; Yildiz, C.; Meral, I.; Koc, A.; Tasal, I. Effects of a GnRH Agonist on Oocyte Number and Maturation in Mice Superovulated With eCG and hCG. Theriogenology 2004, 61, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Vergara, G.J.; Irwin, M.H.; Moffatt, R.J.; Pinkert, C.A. In Vitro Fertilization in Mice: Strain Differences in Response to Superovulation Protocols and Effect of Cumulus Cell Removal. Theriogenology 1997, 47, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
Primary follicles | The oocyte was surrounded by one layer of cuboidal granulosa cells (GCs) |
Secondary follicles | Showed at least two layers of GCs surrounding the oocyte but no antral cavity |
Tertiary follicles | Antral follicles were counted when more than two layers of healthy GCs around the oocyte were visible and an antrum was present |
Atretic follicles | In general, if more than three pyknotic nuclei within secondary or tertiary follicles were observed, atresia was assumed |
Corpus luteum | Large, pale-stained cells originate from granulosa cells of the follicle |
Trial 1 | Trial 2 | Trial 3 | |||||
---|---|---|---|---|---|---|---|
1.00 µg Peforelin | 5 IU PMSG | 0.50 µg Peforelin | 5 IU PMSG | 0.25 µg Peforelin | 5 IU PMSG | p | |
N | 14 | 110 | 31 * | 95 | 20 * | 67 | <0.05 |
2C | 14 | 73 | 26 * | 73 | 10 * | 18 | <0.05 |
4C | 14 | 63 | 22 * | 58 | 5 * | 18 | <0.05 |
Mo. | 11 | 63 | 22 * | 58 | 4 * | 15 | <0.05 |
Bl. | 11 | 55 | 20 * | 58 | 4 * | 15 | <0.05 |
Peforelin (0.25, 0.5, 1.0 µg) Fertilization Rate | PMSG Control (5 IU) Fertilization Rate | |
---|---|---|
Trial 1: 1.00 µg Peforelin | 100% | 66% |
Trial 2: 0.50 µg Peforelin | 83% | 76% |
Trial 3: 0.25 µg Peforelin | 50% | 26% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amberger, L.; Wagner, D.; Höflinger, S.; Zwicker, F.; Matzek, D.; Popper, B. Evaluation of Synthetic GnRH-Analog Peforelin with Regard to Oocyte Differentiation and Follicular Development in C57BL/6J Mice. Animals 2024, 14, 2866. https://doi.org/10.3390/ani14192866
Amberger L, Wagner D, Höflinger S, Zwicker F, Matzek D, Popper B. Evaluation of Synthetic GnRH-Analog Peforelin with Regard to Oocyte Differentiation and Follicular Development in C57BL/6J Mice. Animals. 2024; 14(19):2866. https://doi.org/10.3390/ani14192866
Chicago/Turabian StyleAmberger, Lena, Daniel Wagner, Sonja Höflinger, Frederik Zwicker, Dana Matzek, and Bastian Popper. 2024. "Evaluation of Synthetic GnRH-Analog Peforelin with Regard to Oocyte Differentiation and Follicular Development in C57BL/6J Mice" Animals 14, no. 19: 2866. https://doi.org/10.3390/ani14192866
APA StyleAmberger, L., Wagner, D., Höflinger, S., Zwicker, F., Matzek, D., & Popper, B. (2024). Evaluation of Synthetic GnRH-Analog Peforelin with Regard to Oocyte Differentiation and Follicular Development in C57BL/6J Mice. Animals, 14(19), 2866. https://doi.org/10.3390/ani14192866