The Influence of Oviductal and Uterine Fluid Supplementation on the In Vitro Development and Quality of Cloned Sheep Embryos
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Obtaining Reproductive Fluids (OF and UF)
2.2. Obtaining and Culturing Skin Fibroblasts for Use as Karyoplasts
2.3. In Vitro Oocyte Maturation (IVM)
2.4. Somatic Cell Nuclear Transfer (SCNT) through Handmade Cloning (HMC)
2.4.1. Cytoplast Preparation
2.4.2. Triplets’ Formation and Fusion
2.4.3. Activation of Cloned Embryos
2.4.4. In Vitro Culture of Cloned Embryos in the WOW System
2.5. In Vitro Production of Parthenogenetic Embryos
2.6. Evaluation of ROS and GSH Levels in Parthenogenetic and Cloned Embryos
2.7. Statistical Analysis
3. Results
3.1. Effects of OF and UF on the In Vitro Development of Parthenogenetic Embryos
3.2. Effects of OF and UF on the In Vitro Development of Cloned Embryos
3.3. Effects of OF and UF on the Presence and Levels of ROS and GSH in Parthenogenetic Embryos
3.4. Effects of OF and UF on the Presence and Levels of ROS and GSH in Cloned Embryos
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Viana, J.H.M. Statistics of embryo production and transfer in domestic farm animals. Embryo Technol. Newsl. 2022, 2021, 40. Available online: https://www.iets.org/Portals/0/Documents/Public/Committees/DRC/IETS_Data_Retrieval_Report_2021.pdf (accessed on 10 April 2024).
- Galli, C.; Lazzari, G. 25th Anniversary of cloning by somatic-cell nuclear transfer: Current applications of SCNT in advanced breeding and genome editing in livestock. Reproduction 2021, 162, F23–F32. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.A.; Pereira, A.F. Potential role of intraspecific and interspecific cloning in the conservation of wild mammals. Zygote 2019, 27, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Bolton, R.L.; Mooney, A.; Pettit, M.T.; Bolton, E.A.; Morgan, L.; Drake, G.J.; Appeltant, R.; Walker, S.L.; Gillis, J.D.; Hvilsom, C. Resurrecting biodiversity: Advanced assisted reproductive technologies and biobanking. Reprod. Fertil. 2022, 3, R121–R146. [Google Scholar] [CrossRef] [PubMed]
- Loi, P.; Palazzese, L.; Scapolo, P.A.; Fulka, J.; Fulka, H.; Czernik, M. 25th Anniversary of Cloning by Somatic-Cell Nuclear Transfer Scientific and technological approaches to improve SCNT efficiency in farm animals and pets. Reproduction 2021, 162, F33–F43. [Google Scholar] [CrossRef] [PubMed]
- Kalds, P.; Gao, Y.; Zhou, S.; Cai, B.; Huang, X.; Wang, X.; Chen, Y. Redesigning small ruminant genomes with CRISPR toolkit: Overview and perspectives. Theriogenology 2020, 147, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Avendaño, J.R.; Ambríz-García, D.A.; Cortez-Romero, C.; Trejo-Córdova, A.; Navarro-Maldonado, M.d.C. Current state of the efficiency of sheep embryo production through somatic cell nuclear transfer. Small Rumin. Res. 2022, 212, 106702. [Google Scholar] [CrossRef]
- Simmet, K.; Wolf, E.; Zakhartchenko, V. Manipulating the Epigenome in Nuclear Transfer Cloning: Where, When and How. Int. J. Mol. Sci. 2020, 22, 236. [Google Scholar] [CrossRef]
- Sawai, K.; Takahashi, M.; Fujii, T.; Moriyasu, S.; Hirayama, H.; Minamihashi, A.; Hashizume, T.; Onoe, S. DNA Methylation Status of Bovine Blastocyst Embryos Obtained from Various Procedures. J. Reprod. Dev. 2011, 57, 236–241. [Google Scholar] [CrossRef]
- Beaujean, N.; Taylor, J.; Gardner, J.; Wilmut, I.; Meehan, R.; Young, L. Effect of Limited DNA Methylation Reprogramming in the Normal Sheep Embryo on Somatic Cell Nuclear Transfer1. Biol. Reprod. 2004, 71, 185–193. [Google Scholar] [CrossRef]
- Loi, P.; Clinton, M.; Vackova, I.; Fulka, J.; Feil, R.; Palmieri, C.; Della Salda, L.; Ptak, G. Placental abnormalities associated with post-natal mortality in sheep somatic cell clones. Theriogenology 2005, 65, 1110–1121. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, C.; Loi, P.; Ptak, G.; Della Salda, L. Review Paper: A Review of the Pathology of Abnormal Placentae of Somatic Cell Nuclear Transfer Clone Pregnancies in Cattle, Sheep, and Mice. Vet. Pathol. 2008, 45, 865–880. [Google Scholar] [CrossRef]
- Ni, W.; You, S.; Cao, Y.; Li, C.; Wei, J.; Wang, D.; Qiao, J.; Zhao, X.; Hu, S.; Quan, R. Aberrant expression of miR-127, miR-21 and miR-16 in placentas of deceased cloned sheep. Res. Vet. Sci. 2016, 105, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Nava-Trujillo, H.; Rivera, R.M. Review: Large offspring syndrome in ruminants: Current status and prediction during pregnancy. Animal 2023, 17, 100740. [Google Scholar] [CrossRef]
- Young, L.E.; Schnieke, A.E.; McCreath, K.J.; Wieckowski, S.; Konfortova, G.; Fernandes, K.; Ptak, G.; Kind, A.J.; Wilmut, I.; Loi, P.; et al. Conservation of IGF2-H19 and IGF2R imprinting in sheep: Effects of somatic cell nuclear transfer. Mech. Dev. 2003, 120, 1433–1442. [Google Scholar] [CrossRef]
- Wang, F.; Pan, J.; Zhao, L.X.; Liu, Y.Y.; Zhang, L.; Wang, S.Y.; Li, L.; Zhou, H.M.; Zhang, D. Discovery of DNA Methylation Status of Peg3, Cdkn1c and Gtl2 in Cloned and Natural Lambs. Prog. Biochem. Biophys 2016, 43, 706–715. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, Y.; Guo, Y.; Tang, H.; Wei, H.; Liu, S.; Wang, X.; Wang, L.; Zhou, P. TRIM28 regulates Igf2-H19 and Dlk1-Gtl2 imprinting by distinct mechanisms during sheep fibroblast proliferation. Gene 2017, 637, 152–160. [Google Scholar] [CrossRef]
- Cajas, Y.N.; Cañón-Beltrán, K.; de la Blanca, M.G.M.; Sánchez, J.M.; Fernandez-Fuertes, B.; González, E.M.; Rizos, D. Role of reproductive fluids and extracellular vesicles in embryo–maternal interaction during early pregnancy in cattle. Reprod. Fertil. Dev. 2021, 34, 117–138. [Google Scholar] [CrossRef] [PubMed]
- Coy, P.; Romar, R.; Romero-Aguirregomezcorta, J. The embryo culture media in the era of epigenetics: Is it time to go back to nature? Anim. Reprod. 2022, 19, e20210132. [Google Scholar] [CrossRef]
- Calle, A.; Fernandez-Gonzalez, R.; Ramos-Ibeas, P.; Laguna-Barraza, R.; Perez-Cerezales, S.; Bermejo-Alvarez, P.; Ramirez, M.A.; Gutierrez-Adan, A. Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology 2012, 77, 785–793. [Google Scholar] [CrossRef]
- Milazzotto, M.P.; Ispada, J.; de Lima, C.B. Metabolism-epigenetic interactions on in vitro produced embryos. Reprod. Fertil. Dev. 2022, 35, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Soleilhavoup, C.; Riou, C.; Tsikis, G.; Labas, V.; Harichaux, G.; Kohnke, P.; Reynaud, K.; de Graaf, S.P.; Gerard, N.; Druart, X. Proteomes of the Female Genital Tract During the Oestrous Cycle. Mol. Cell Proteom. 2016, 15, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Cebrian-Serrano, A.; Salvador, I.; García-Roselló, E.; Pericuesta, E.; Pérez-Cerezales, S.; Gutierrez-Adán, A.; Coy, P.; Silvestre, M. Effect of the Bovine Oviductal Fluid on In Vitro Fertilization, Development and Gene Expression of In Vitro-Produced Bovine Blastocysts. Reprod. Domest. Anim. 2012, 48, 331–338. [Google Scholar] [CrossRef]
- Lopera-Vasquez, R.; Hamdi, M.; Maillo, V.; Gutierrez-Adan, A.; Bermejo-Alvarez, P.; Ramírez, M.Á.; Yáñez-Mó, M.; Rizos, D. Effect of bovine oviductal extracellular vesicles on embryo development and quality in vitro. Reproduction 2017, 153, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, M.; Lopera-Vasquez, R.; Maillo, V.; Sanchez-Calabuig, M.J.; Núnez, C.; Gutierrez-Adan, A.; Rizos, D. Bovine oviductal and uterine fluid support in vitro embryo development. Reprod. Fertil. Dev. 2018, 30, 935–945. [Google Scholar] [CrossRef]
- Barrera, A.D.; García, E.V.; Hamdi, M.; Sánchez-Calabuig, M.J.; López-Cardona, P.; Balvís, N.F.; Rizos, D.; Gutiérrez-Adán, A. Embryo culture in presence of oviductal fluid induces DNA methylation changes in bovine blastocysts. Reproduction 2017, 154, 1–12. [Google Scholar] [CrossRef]
- Canovas, S.; Ivanova, E.; Romar, R.; García-Martínez, S.; Soriano-Úbeda, C.; García-Vázquez, A.F.; Saadeh, H.; Andrews, S.; Kelsey, G.; Coy, P. DNA methylation and gene expression changes derived from assisted reproductive technologies can be decreased by reproductive fluids. eLife 2017, 6, e23670. [Google Scholar] [CrossRef]
- You, J.; Kim, J.; Lim, J.; Lee, E. Anthocyanin stimulates in vitro development of cloned pig embryos by increasing the intracellular glutathione level and inhibiting reactive oxygen species. Theriogenology 2010, 74, 777–785. [Google Scholar] [CrossRef]
- Su, J.; Wang, Y.; Xing, X.; Zhang, L.; Sun, H.; Zhang, Y. Melatonin significantly improves the developmental competence of bovine somatic cell nuclear transfer embryos. J. Pineal Res. 2015, 59, 455–468. [Google Scholar] [CrossRef]
- Nadri, P.; Ansari-Mahyari, S.; Jafarpour, F.; Mahdavi, A.H.; Vash, N.T.; Lachinani, L.; Dormiani, K.; Nasr-Esfahani, M.H. Melatonin accelerates the developmental competence and telomere elongation in ovine SCNT embryos. PLoS ONE 2022, 17, e0267598. [Google Scholar] [CrossRef]
- Koo, O.J.; Jang, G.; Kwon, D.K.; Kang, J.T.; Kwon, O.S.; Park, H.J.; Kang, S.K.; Lee, B.C. Electrical activation induces reactive oxygen species in porcine embryos. Theriogenology 2008, 70, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Deluao, J.C.; Winstanley, Y.; Robker, R.L.; Pacella-Ince, L.; Gonzalez, M.B.; McPherson, O.N. Oxidative stress and reproductive function: Reactive oxygen species in the mammalian pre-implantation embryo. Reproduction 2022, 164, F95–F108. [Google Scholar] [CrossRef]
- Carrasco, L.C.; Coy, P.; Avilés, M.; Gadea, J.; Romar, R. Glycosidase determination in bovine oviducal fluid at the follicular and luteal phases of the oestrous cycle. Reprod. Fertil. Dev. 2008, 20, 808–817. [Google Scholar] [CrossRef]
- Navarro-Maldonado, M.D.C.; Hernández-Martínez, S.; Vázquez-Avendaño, J.R.; Martínez-Ibarra, J.L.; Zavala-Vega, N.L.; Vargas-Miranda, B.; Rivera-Rebolledo, J.A.; Ambríz-García, D.A. Deriva de células epiteliales de tejido de piel descongelado de Ovis canadensis mexicana para la formación de un banco de germoplasma. Acta Zoo. Mex. 2015, 31, 275–282. [Google Scholar] [CrossRef]
- Ward, F.; Lonergan, P.; Enright, B.; Boland, M. Factors affecting recovery and quality of oocytes for bovine embryo production in vitro using ovum pick-up technology. Theriogenology 2000, 54, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Avendaño, J.R.; Hernández-Martínez, S.; Hernández-Pichardo, J.E.; Rivera-Rebolledo, J.A.; Ambriz-García, D.A.; Navarro-Maldonado, M.D.C. Efecto del uso de medio secuencial humano en la producción de blastocistos de hembra ovis canadensis mexicana por clonación manual. Acta Zoo. Mex. 2017, 33, 328–338. [Google Scholar] [CrossRef]
- Martínez, S.H.; Pichardo, J.E.H.; Avendaño, J.R.V.; García, D.A.A.; Maldonado, M.D.C.N. Developmental dynamics of cloned Mexican bighorn sheep embryos using morphological quality standards. Vet. Med. Sci. 2020, 6, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Vajta, G.; Lewis, I.M.; Hyttel, P.; Thouas, G.A.; Trounson, A.O. Somatic Cell Cloning without Micromanipulators. Cloning 2001, 3, 89–95. [Google Scholar] [CrossRef]
- Vajta, G.; Korösi, T.; Du, Y.; Nakata, K.; Ieda, S.; Kuwayama, M.; Nagy, Z.P. The Well-of-the-Well system: An efficient approach to improve embryo development. Reprod. Biomed. Online 2008, 17, 73–81. [Google Scholar] [CrossRef]
- Nina, M.; Ayala, C.; Susaño, R. Fluido uterino de llama (Lama glama), como medio para potenciar el desarrollo embrionario de vacas (Bos taurus) en cultivos in vitro. RIIARn 2021, 8, 138–145. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Song, E.S.; Kim, E.S.; Cong, P.Q.; Lee, S.H.; Lee, J.W.; Yi, Y.J.; Park, C.S. Effects of Oviductal Fluid, Culture Media and Zona Pellucida Removal on the Development of Porcine Embryos by Nuclear Transfer. Asian Australas. J. Anim. Sci. 2009, 22, 962–968. [Google Scholar] [CrossRef]
- Pradeep, M.; Jagadeesh, J.; De, A.; Kaushik, J.; Malakar, D.; Kumar, S.; Dang, A.; Das, S.; Mohanty, A. Purification, sequence characterization and effect of goat oviduct-specific glycoprotein on in vitro embryo development. Theriogenology 2011, 75, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Bragança, G.; Alcântara-Neto, A.; Batista, R.; Brandão, F.; Freitas, V.; Mermillod, P.; Souza-Fabjan, J. Oviduct fluid during IVF moderately modulates polyspermy in in vitro-produced goat embryos during the non-breeding season. Theriogenology 2021, 168, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Banliat, C.; Tsikis, G.; Labas, V.; Teixeira-Gomes, A.-P.; Com, E.; Lavigne, R.; Pineau, C.; Guyonnet, B.; Mermillod, P.; Saint-Dizier, M. Identification of 56 Proteins Involved in Embryo–Maternal Interactions in the Bovine Oviduct. Int. J. Mol. Sci. 2020, 21, 466. [Google Scholar] [CrossRef]
- Algarra, B.; Maillo, V.; Avilés, M.; Gutiérrez-Adán, A.; Rizos, D.; Jiménez-Movilla, M. Effects of recombinant OVGP1 protein on in vitro bovine embryo development. J. Reprod. Dev. 2018, 64, 433–443. [Google Scholar] [CrossRef]
- Avendaño, J.R.V.; Romero, C.C.; García, D.A.A.; Barrera, M.D.L.A.F.; Ortega, M.P.C.; Rodríguez, H.L.; Flores, G.B.; Maldonado, M.d.C.N. Physicochemical characteristics and protein profile of oviductal and uterine fluids from domestic sheep. Austral. J. Vet. Sci. 2024, 56, 67–74. [Google Scholar] [CrossRef]
- Koch, J.M.; Ramadoss, J.; Magness, R.R. Proteomic Profile of Uterine Luminal Fluid from Early Pregnant Ewes. J. Proteome Res. 2010, 9, 3878–3885. [Google Scholar] [CrossRef]
- Burns, G.; Brooks, K.; Wildung, M.; Navakanitworakul, R.; Christenson, L.K.; Spencer, T.E. Extracellular Vesicles in Luminal Fluid of the Ovine Uterus. PLoS ONE 2014, 9, e90913. [Google Scholar] [CrossRef]
- Rosenzweig, R.; Nillegoda, N.B.; Mayer, M.P.; Bukau, B. The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 2019, 20, 665–680. [Google Scholar] [CrossRef]
- Al-Katanani, Y.; Hansen, P. Induced thermotolerance in bovine two-cell embryos and the role of heat shock protein 70 in embryonic development. Mol. Reprod. Dev. 2002, 62, 174–180. [Google Scholar] [CrossRef]
- Velazquez, M.; Parrilla, I.; Van Soom, A.; Verberckmoes, S.; Kues, W.; Niemann, H. Sampling techniques for oviductal and uterine luminal fluid in cattle. Theriogenology 2010, 73, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Itze-Mayrhofer, C.; Brem, G. Quantitative proteomic strategies to study reproduction in farm animals: Female reproductive fluids. J. Proteom. 2020, 225, 103884. [Google Scholar] [CrossRef] [PubMed]
- Voiculescu, S.; Zygouropoulos, N.; Zahiu, C.; Zagrean, A. Role of melatonin in embryo fetal development. J. Med. Life 2014, 7, 488–492. [Google Scholar] [PubMed]
- Qu, P.; Luo, S.; Du, Y.; Zhang, Y.; Song, X.; Yuan, X.; Lin, Z.; Li, Y.; Liu, E. Extracellular vesicles and melatonin benefit embryonic develop by regulating reactive oxygen species and 5-methylcytosine. J. Pineal Res. 2020, 68, e12635. [Google Scholar] [CrossRef] [PubMed]
- Soto-Heras, S.; Paramio, M.-T. Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Res. Vet. Sci. 2020, 132, 342–350. [Google Scholar] [CrossRef]
- Liu, R.-H.; Li, Y.-H.; Jiao, L.-H.; Wang, X.-N.; Wang, H.; Wang, W.-H. Extracellular and intracellular factors affecting nuclear and cytoplasmic maturation of porcine oocytes collected from different sizes of follicles. Zygote 2002, 10, 253–260. [Google Scholar] [CrossRef]
- Panda, S.K.; George, A.; Saha, A.P.; Sharma, R.; Manik, R.S.; Chauhan, M.S.; Palta, P.; Singla, S.K. Effect of Cytoplasmic Volume on Developmental Competence of Buffalo (Bubalus bubalis) Embryos Produced Through Hand-Made Cloning. Cell Reprogramming 2011, 13, 257–262. [Google Scholar] [CrossRef]
- Liu, X.; Luo, C.; Deng, K.; Wu, Z.; Wei, Y.; Jiang, J.; Lu, F.; Shi, D.; Liu, X.; Luo, C.; et al. Cytoplasmic volume of recipient oocytes affects the nucleus reprogramming and the developmental competence of HMC buffalo embryos. J. Vet. Med. Sci. 2018, 80, 1291–1300. [Google Scholar] [CrossRef]
- Raja, A.; Sahare, A.; Jyotsana, B.; Priya, D.; Palta, P.; Chauhan, M.; Manik, R.; Singla, S. Reducing the cytoplasmic volume during hand-made cloning adversely affects the developmental competence and quality, and alters relative abundance of mRNA transcripts and epigenetic status of buffalo (Bubalus bubalis) embryos. Anim. Reprod. Sci. 2019, 208, 106136. [Google Scholar] [CrossRef]
- Averill-Bates, D.A. The antioxidant glutathione. Vitam. Horm. 2023, 121, 109–141. [Google Scholar] [CrossRef]
- Saint-Dizier, M.; Schoen, J.; Chen, S.; Banliat, C.; Mermillod, P. Composing the Early Embryonic Microenvironment: Physiology and Regulation of Oviductal Secretions. Int. J. Mol. Sci. 2019, 21, 223. [Google Scholar] [CrossRef] [PubMed]
- Wales, R. The Uterus of the Ewe II. Chemical Analysis of Uterine Fluid Collected by Cannulation. Aust. J. Biol. Sci. 1973, 26, 947. [Google Scholar] [CrossRef] [PubMed]
OF–UF (%) | No. | Cleavage | 4 to 16 Cells | Morula | Blastocysts | Fragmented |
---|---|---|---|---|---|---|
0.0 | 140 | 82.9 ± 3.6 a (116) | 34.5 ± 4.9 a (40) | 53.4 ± 8.1 a (62) | 43.1 ± 7.5 a (50) | 12.1 ± 8.6 a (14) |
0.5 | 132 | 81.1 ± 4.0 a (107) | 45.8 ± 6.5 a (49) | 48.6 ± 6.7 a (52) | 31.8 ± 5.7 a (34) | 5.6 ± 4.8 a (6) |
1.0 | 129 | 73.6 ± 6.1 a (95) | 32.6 ± 10.9 a (31) | 57.9 ± 12.6 a (55) | 29.5 ± 4.0 a (28) | 9.5 ± 3.9 a (9) |
2.0 | 55 | 74.5 ± 12.5 a (41) | 100 b (41) | 0 b | 0 b | 0 a |
OF–UF (%) | No. | Cleavage | 4 to 16 cells | Morula | Blastocysts | Fragmented |
---|---|---|---|---|---|---|
0.0 | 78 | 97.4 ± 2.9 a (76) | 26.3 ± 8.0 a (20) | 48.7 ± 9.2 a (37) | 27.6 ± 5.5 a (21) | 25.0 ± 3.7 a (19) |
0.5 | 76 | 98.7 ± 0.9 a (75) | 37.3 ± 9.4 a (28) | 45.3 ± 6.5 a (34) | 20.0 ± 4.1 a (15) | 17.3 ± 4.7 a (13) |
1.0 | 66 | 100 a (66) | 62.1 ± 7.0 a (41) | 27.3 ± 7.0 b (18) | 7.6 ± 3.0 b (5) | 10.6 ± 4.0 a (7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vazquez-Avendaño, J.R.; Cortez-Romero, C.; Ambríz-García, D.A.; Rodríguez-Suástegui, J.L.; Hernández-Pichardo, J.E.; Navarro-Maldonado, M.d.C. The Influence of Oviductal and Uterine Fluid Supplementation on the In Vitro Development and Quality of Cloned Sheep Embryos. Animals 2024, 14, 2894. https://doi.org/10.3390/ani14192894
Vazquez-Avendaño JR, Cortez-Romero C, Ambríz-García DA, Rodríguez-Suástegui JL, Hernández-Pichardo JE, Navarro-Maldonado MdC. The Influence of Oviductal and Uterine Fluid Supplementation on the In Vitro Development and Quality of Cloned Sheep Embryos. Animals. 2024; 14(19):2894. https://doi.org/10.3390/ani14192894
Chicago/Turabian StyleVazquez-Avendaño, José Roberto, César Cortez-Romero, Demetrio Alonso Ambríz-García, José Luis Rodríguez-Suástegui, José Ernesto Hernández-Pichardo, and María del Carmen Navarro-Maldonado. 2024. "The Influence of Oviductal and Uterine Fluid Supplementation on the In Vitro Development and Quality of Cloned Sheep Embryos" Animals 14, no. 19: 2894. https://doi.org/10.3390/ani14192894
APA StyleVazquez-Avendaño, J. R., Cortez-Romero, C., Ambríz-García, D. A., Rodríguez-Suástegui, J. L., Hernández-Pichardo, J. E., & Navarro-Maldonado, M. d. C. (2024). The Influence of Oviductal and Uterine Fluid Supplementation on the In Vitro Development and Quality of Cloned Sheep Embryos. Animals, 14(19), 2894. https://doi.org/10.3390/ani14192894