Evaluation of Truck Cab Decontamination Procedures following Inoculation with Porcine Epidemic Diarrhea Virus and Porcine Reproductive and Respiratory Syndrome Virus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Inoculum
2.2. Preparation of Surfaces and Disinfectant
- No disinfectant.
- 1:256 dilution of Synergize (Neogen Corp, Lexington, KY, USA) applied through misting fumigation (Hurricane Ultra II Portable Electric Fogger, Curtis Dyna-Fog Ltd., Westfield, IN, USA).
- 1:256 dilution of Synergize applied through pump sprayer (Chapin Sure Spray 1 Gallon Tank Sprayer, Menards, Eau Claire, WI, USA).
- 1:64 dilution of Intervention (Virox, Oakville, ON, USA) applied through misting fumigation.
- 1:64 dilution of Intervention applied through pump sprayer.
- 10% bleach (7.55% sodium hypochlorite germicidal bleach; Clorox, Oakland, CA, USA) solution applied through pump sprayer.
- No chemical treatment, 10 h holding time.
- Gaseous fumigation over 10 h with chlorine dioxide (ProKure G; ProKure Solutions, Phoenix, AZ, USA).
2.3. Surface Inoculation and Disinfectant Application
2.4. Environment Sampling
2.5. Reverse Transcription Real-Time PCR Analysis
2.6. Bioassay Analysis
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holtkamp, D.J.; Kliebenstein, J.B.; Neumann, E.J.; Zimmerman, J.J.; Rotto, H.F.; Yoder, T.K.; Wang, C.; Yeske, P.E.; Mowrer, C.L.; Haley, C.A. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. J. Swine Health Prod. 2013, 21, 72–84. [Google Scholar]
- Valdes-Donoso, P.; Alvarez, J.; Jarvis, L.S.; Morrison, R.B.; Perez, A.M. Production losses from an endemic animal disease: Porcine reproductive and respiratory syndrome (PRRS) in selected midwest US sow farms. Front. Vet. Sci. 2018, 5, 102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, Z.; Li, H.; Yang, S.; Ren, F.; Bian, T.; Sun, L.; Zhou, B.; Zhou, L.; Qu, X. The economic impact of porcine reproductive and respiratory syndrome outbreak in four Chinese farms: Based on cost and revenue analysis. Front. Vet. Sci. 2022, 9, 1024720. [Google Scholar] [CrossRef]
- Renken, C.; Nathues, C.; Swam, H.; Fiebig, K.; Weiss, C.; Eddicks, M.; Ritzmann, M.; Natheus, H. Application of an economic calculator to determine the cost of porcine reproductive and respiratory syndrome at farm-level in 21 pig herds in Germany. Porcine Health Manag. 2021, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, E.S.; Zimmerman, J.J.; Thomas, P.; Moura, C.A.A.; Trevisan, G.; Holtkamp, D.J.; Wang, C.; Rademacher, C.; Silva, G.S.; Linhares, D.C.L. Whole-herd risk factors associated with wean-to-finish mortality under the conditions of a midwestern USA swine production system. Prev. Vet. Med. 2022, 198, 105545. [Google Scholar] [CrossRef] [PubMed]
- Niederwerder, M.C.; Hesse, R.A. Swine enteric coronavirus disease: A review of 4 years with porcine epidemic diarrhoea virus and porcine deltacoronavirus in the United States and Canada. Transbound. Emerg. Dis. 2018, 65, 660–675. [Google Scholar] [CrossRef] [PubMed]
- Morrison Swine Health Monitoring Project. (6 October 2023). PED Cumulative Incidence (Last Updated October 2023). Morrison Swine Health Monitoring Project. Available online: https://mshmp.umn.edu/reports#Charts (accessed on 7 January 2024).
- Lunney, J.K.; Fang, Y.; Ladinig, A.; Chen, N.; Li, Y.; Rowland, B.; Renukaradhya, G.J. Porcine reproductive and respiratory syndrome virus (PRRSV): Pathogenesis and interaction with the immune system. Annu. Rev. Anim. Biosci. 2015, 4, 129–154. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Saif, L.J.; Wang, Q. Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control. Virus Res. 2020, 286, 198045. [Google Scholar] [CrossRef]
- Pileri, E.; Mateu, E. Review on the transmission porcine reproductive and respiratory syndrome virus between pigs and farms and impact on vaccination. Vet. Res. 2016, 47, 108. [Google Scholar] [CrossRef]
- Fedorka-Cray, P.; Hogg, A.; Gray, J.T.; Lorenzen, K.; Velasquez, J.; Von Behren, P. Feed and feed trucks as sources of Salmonella contamination in swine. J. Swine Health Prod. 1997, 5, 189–193. [Google Scholar]
- Dee, S.; Deen, J.; Otake, S.; Pijoan, C. An experimental model to evaluate the role of transport vehicles as a source of transmission of porcine reproductive and respiratory syndrome virus to susceptible pigs. Can. J. Vet. Res. 2004, 68, 208–214. [Google Scholar] [PubMed]
- Lowe, J.; Gauger, P.; Harmon, K.; Zhang, J.; Connor, J.; Yeske, P.; Loula, T.; Levis, I.; Dufresne, L.; Main, R. Role of transportation in spread of porcine epidemic diarrhea virus infection, United States. Emerg. Infect. Dis. 2014, 20, 872–874. [Google Scholar] [CrossRef] [PubMed]
- Elijah, C.G.; Harrison, O.L.; Blomme, A.K.; Woodworth, J.C.; Jones, C.K.; Paulk, C.B.; Gebhardt, J.T. Understanding the role of feed manufacturing and delivery within a series of porcine deltacoronavirus investigations. J. Swine Health Prod. 2022, 30, 17–23. [Google Scholar] [CrossRef]
- Gebhardt, J.T.; Dritz, S.S.; Elijah, C.G.; Jones, C.K.; Paulk, C.B.; Woodworth, J.C. Sampling and detection of African swine fever virus within a feed manufacturing and swine production system. Transbound. Emerg. Dis. 2022, 6, 103–114. [Google Scholar] [CrossRef]
- Dee, S.; Deen, J.; Burns, D.; Douthit, G.; Pijoan, C. An assessment of sanitation protocols for commercial transport vehicles contaminated with porcine reproductive and respiratory syndrome virus. Can. J. Vet. Res. 2004, 68, 208–214. [Google Scholar]
- Dee, S.; Deen, J.; Pijoan, C. Evaluation of 4 intervention strategies to prevent the mechanical transmission of porcine reproductive and respiratory syndrome virus. Can. J. Vet. Res. 2004, 68, 19–26. [Google Scholar]
- Dee, S.; Deen, J.; Burns, D.; Douthit, G.; Pijoan, C. An evaluation of disinfectants for the sanitation of porcine reproductive and respiratory syndrome virus-contaminated transport vehicles at cold temperatures. Can. J. Vet. Res. 2005, 69, 64–70. [Google Scholar]
- Baker, K.L.; Thomas, P.R.; Karriker, L.A.; Ramirez, A.; Zhang, J.; Wang, C.; Holtkamp, D.J. Evaluation of an accelerated hydrogen peroxide disinfectant to inactivate porcine epidemic diarrhea virus in swine feces on aluminum surfaces under freezing conditions. BMC Vet. Res. 2017, 13, 372. [Google Scholar] [CrossRef]
- Holtkamp, D.J.; Myers, J.; Thomas, P.R.; Karriker, L.A.; Ramirez, A.; Zhang, J.; Wang, C. Efficacy of accelerated hydrogen peroxide disinfectant to inactivate porcine epidemic diarrhea virus in swine feces on metal surfaces. Can. J. Vet. Res. 2017, 81, 100–107. [Google Scholar]
- Baker, K.L.; Mowrer, C.L.; Zhang, J.; Chen, Q.; Ramirez, A.; Wang, C.; Karriker, L.A.; Holtkamp, D.J. Evaluation of a peroxygen-based disinfectant for inactivation of porcine epidemic diarrhea virus at low temperatures on metal surfaces. Vet. Microbiol. 2018, 214, 99–107. [Google Scholar] [CrossRef]
- Greiner, L.L. Evaluation of the likelihood of detection of porcine epidemic diarrhea virus or porcine deltacoronavirus ribonucleic acid in areas within feed mills. J. Swine Health Prod. 2016, 24, 198–204. [Google Scholar]
- Muckey, M.B.; Jones, C.K.; Woodworth, J.C.; Paulk, C.B.; Dritz, S.S.; Gebhardt, J.T. Using environmental sampling to evaluate the effectiveness of decontamination methods to reduce detection of porcine epidemic diarrhea virus RNA on feed manufacturing surfaces. Transl. Anim. Sci. 2021, 5, txab121. [Google Scholar] [CrossRef]
- Elijah, C.G.; Trujillo, J.D.; Jones, C.K.; Gaudreault, N.N.; Stark, C.R.; Cool, K.R.; Paulk, C.B.; Kwon, T.; Woodworth, J.C.; Morozov, I.; et al. Evaluating the distribution of African swine fever virus within a feed mill environment following manufacture of inoculated feed. PLoS ONE 2021, 16, e0256138. [Google Scholar] [CrossRef]
- Thomas, J.T.; Chen, Q.; Gauger, P.C.; Giménez-Lirola, L.G.; Sinha, A.; Harmon, K.M.; Madson, D.M.; Burrough, E.R.; Magstadt, D.R.; Salzbrenner, H.M.; et al. Effect of porcine epidemic diarrhea virus infectious doses on infection outcomes in naïve conventional neonatal and weaned pigs. PLoS ONE 2015, 10, e0139266. [Google Scholar] [CrossRef]
- Schumacher, L.L.; A Cochrane, R.; Huss, A.R.; Gebhardt, J.T.; Woodworth, J.C.; Stark, C.R.; Jones, C.K.; Bai, J.; Main, R.G.; Chen, Q.; et al. Feed batch sequencing to decrease the risk of porcine epidemic diarrhea virus (PEDV) cross-contamination during feed manufacturing. J. Anim. Sci. 2018, 96, 4562–4570. [Google Scholar] [CrossRef]
- Ruston, C.; Holtkamp, D.; Li, P.; Koziel, J.A.; Stephan, A.; Loesekann, T.; Torremorell, M.; Murray, D.; Wedel, K.; Johnson, C.; et al. Effectively using ultraviolet-C light for supply decontamination on swine farms. J. Swine Health Prod. 2022, 30, 101–106. [Google Scholar] [CrossRef]
- Dee, S.; Batista, L.; Deen, J.; Pijoan, C. Evaluation of an air-filtration system for preventing aerosol transmission of porcine reproductive and respiratory syndrome virus. Can J. Vet. Res. 2005, 69, 293–298. [Google Scholar] [PubMed]
- Stewart, S.C.; Dritz, S.S.; Woodworth, J.C.; Paulk, C.; Jones, C.K. A review of strategies to impact swine feed biosecurity. Anim. Health Res. Rev. 2020, 21, 61–68. [Google Scholar] [CrossRef]
- Dee, S.; Deen, J.; Rossow, K.; Wiese, C.; Otake, S.; Joo, H.S.; Pijoan, C. Mechanical transmission of porcine reproductive and respiratory syndrome virus throughout a coordinated sequence of events during cold weather. Can. J. Vet. Res. 2002, 66, 232–239. [Google Scholar]
- Dee, S.; Deen, J.; Rossow, K.; Wiese, C.; Eliason, R.; Otake, S.; Joo, H.S.; Pijoan, C. Mechanical transmission of porcine reproductive and respiratory syndrome virus throughout a coordinated sequence of events during warm weather. Can. J. Vet. Res. 2003, 67, 12–19. [Google Scholar]
- Neat, R.A.; Zhang, J.; Hoang, H.; McKeen, L.; Mowrer, C.L.; Holtkamp, D.J. Disinfection and conditions associated with thermo-assisted drying and decontamination inconsistently produce negative PRRSV rRT-PCR results on metal surfaces. Vet. Microbiol. 2021, 262, 109240. [Google Scholar] [CrossRef] [PubMed]
- Bowman, A.S.; Nolting, J.M.; Nelson, S.W.; Bliss, N.; Stull, J.W.; Wang, Q.; Premanandan, C. Effects of disinfection on the molecular detection of porcine epidemic diarrhea virus. J. Vet. Mic. 2015, 179, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Gerba, C.P.; Kennedy, D. Enteric Virus Survival during household laundering and impact of disinfection with Ssodium hypochlorite. Appl. Environ. Microbiol. 2007, 73, 4425–4428. [Google Scholar] [CrossRef] [PubMed]
- Honisch, M.; Stamminger, R.; Bockmühl, D. Impact of wash cycle time, temperature, and detergent formulation on the hygiene effectiveness of domestic laundering. J. Appl. Microbiol. 2014, 117, 1787–1797. [Google Scholar] [CrossRef]
- Rabuza, U.; Sostar-Turk, S.; Fijan, S. Efficiency of four sampling methods used to detect two common nosocomial pathogens on textile. Text. Res. J. 2012, 82, 2099–2105. [Google Scholar] [CrossRef]
- Creamer, E.; Humphreys, H. The contribution of beds to healthcare-associated infection: The importance of adequate decontamination. J. Hosp. Infect. 2008, 69, 8–23. [Google Scholar] [CrossRef]
- Schumacher, L.L.; Huss, A.R.; Cochrane, R.A.; Stark, C.R.; Woodworth, J.C.; Bai, J.; Poulsen, E.G.; Chen, Q.; Main, R.G.; Zhang, J.; et al. Characterizing the rapid spread of porcine epidemic diarrhea virus (PEDV) through an animal food manufacturing facility. PLoS ONE 2017, 12, e0187309. [Google Scholar] [CrossRef]
Surface Type | Disinfectant Treatment |
---|---|
Rubber (n = 8) | No disinfectant |
No chemical, 10 h downtime | |
Gaseous fumigation, 10 h downtime | |
Misting fumigation, Intervention | |
Misting fumigation, Synergize | |
Pump sprayer, Intervention | |
Pump sprayer, Synergize | |
Pump sprayer, 10% bleach | |
Plastic (n = 4) | No disinfectant |
No chemical, 10 h downtime | |
Gaseous fumigation, 10 h downtime | |
Pump sprayer, 10% bleach | |
Fabric (n = 4) | No disinfectant |
No chemical, 10 h downtime | |
Gaseous fumigation, 10 h downtime | |
Pump sprayer, 10% bleach |
Item | Surface Type | |||||
---|---|---|---|---|---|---|
Fabric | Plastic | Rubber | ||||
PEDV | PRRSV | PEDV | PRRSV | PEDV | PRRSV | |
Proportion PCR positive | ||||||
No disinfectant 2 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 |
Misting fumigation 3 | ||||||
Intervention 4 | 3/3 | 3/3 | 3/3 | 3/3 | 2/3 | 2/3 |
Synergize 5 | 2/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 |
Pump sprayer 6 | ||||||
Intervention | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 |
Synergize | 2/3 | 3/3 | 2/3 | 3/3 | 3/3 | 3/3 |
10% Bleach 7 | 2/3 | 0/3 | 3/3 | 3/3 | 1/3 | 0/3 |
10 h downtime 8 | ||||||
No chemical | 3/3 | 2/3 | 3/3 | 3/3 | 3/3 | 3/3 |
Gaseous treatment 9 | 3/3 | 1/3 | 3/3 | 3/3 | 3/3 | 3/3 |
Cycle threshold 10 | ||||||
No disinfectant | 34.6 | 37.2 | 26.7 | 30.6 | 26.7 | 31.4 |
Misting fumigation | ||||||
Intervention | 33.4 | 38.2 | 28.1 | 31.6 | 34.2 | 36.7 |
Synergize | 36.2 | 36.4 | 29.7 | 34.2 | 30.3 | 33.3 |
Pump sprayer | ||||||
Intervention | 34.8 | 37.5 | 28.3 | 31.3 | 28.8 | 32.0 |
Synergize | 37.3 | 38.7 | 33.0 | 32.6 | 30.6 | 33.5 |
10% Bleach | 40.7 | 45.0 | 26.7 | 31.2 | 41.2 | 45.0 |
10 h downtime | ||||||
No chemical | 36.4 | 40.3 | 27.8 | 29.8 | 29.7 | 30.2 |
Gaseous treatment | 36.8 | 44.4 | 28.3 | 31.9 | 28.6 | 33.2 |
Item | Proportion PCR Positive | Ct Value 2 | ||||
---|---|---|---|---|---|---|
Fabric | Plastic | Rubber | Fabric | Plastic | Rubber | |
No disinfectant 3 | 6/6 | 6/6 | 6/6 | 35.9 c,d,e,f,g,h | 28.6 a,b | 29.0 a,b |
Misting fumigation 4 | ||||||
Intervention 5 | 6/6 | 6/6 | 5/6 | 35.8 a,b,c,d,e,f,g,h | 29.8 a,b,c,d | 35.4 a,b,c,d,e,f,g,h |
Synergize 6 | 5/6 | 6/6 | 6/6 | 36.6 a,b,c,d,e,f,g,h | 31.9 a,b,c,d,e,f | 31.8 a,b,c,d,e,f |
Pump sprayer 7 | ||||||
Intervention | 6/6 | 6/6 | 6/6 | 36.1 b,d,e,f,g,h | 29.8 a,c | 30.4 a,b,c,d,e,f |
Synergize | 5/6 | 5/6 | 6/6 | 38.0 e,f,g,h | 32.8 a,b,c,d,e,f,g | 32.0 a,b,c,d,e,f |
10% Bleach 8 | 2/6 | 6/6 | 1/6 | 42.9 h | 29.0 a,b,c,d | 43.1 h |
10 h downtime 9 | ||||||
No chemical | 5/6 | 6/6 | 6/6 | 38.4 f,g,h | 28.8 a,b,c,d | 30.0 a,b,c,d |
Gaseous treatment 10 | 4/6 | 6/6 | 6/6 | 40.6 g,h | 30.1 a,b,c,d,e | 30.9 a,b,c,d,e,f |
Item | Proportion PCR Positive | Ct Value | SEM | p= |
---|---|---|---|---|
Disinfectant | 1.11 | 0.016 | ||
No disinfectant 2 | 18/18 | 31.2 a | ||
Hurricane fumigation 3 | ||||
Intervention 4 | 16/18 | 33.7 a,b | ||
Synergize 5 | 17/18 | 33.4 a,b | ||
Pump sprayer 6 | ||||
Intervention | 18/18 | 32.1 a | ||
Synergize | 16/18 | 34.3 a,b | ||
10% Bleach 7 | 9/18 | 38.3 b | ||
10 h Downtime | ||||
No chemical 8 | 17/18 | 32.4 a | ||
Gaseous treatment 9 | 16/18 | 33.9 a,b | ||
Surface Type | 0.53 | <0.0001 | ||
Fabric | 39/48 | 38.0 c | ||
Plastic | 47/48 | 30.1 a | ||
Rubber | 41/48 | 32.8 b | ||
Virus | 0.48 | <0.0001 | ||
PEDV | 62/72 | 32.0 a | ||
PRRSV | 62/72 | 35.3 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Houston, G.E.; Jones, C.K.; Evans, C.; Otott, H.K.; Stark, C.R.; Bai, J.; Poulsen Porter, E.G.; de Almeida, M.N.; Zhang, J.; Gauger, P.C.; et al. Evaluation of Truck Cab Decontamination Procedures following Inoculation with Porcine Epidemic Diarrhea Virus and Porcine Reproductive and Respiratory Syndrome Virus. Animals 2024, 14, 280. https://doi.org/10.3390/ani14020280
Houston GE, Jones CK, Evans C, Otott HK, Stark CR, Bai J, Poulsen Porter EG, de Almeida MN, Zhang J, Gauger PC, et al. Evaluation of Truck Cab Decontamination Procedures following Inoculation with Porcine Epidemic Diarrhea Virus and Porcine Reproductive and Respiratory Syndrome Virus. Animals. 2024; 14(2):280. https://doi.org/10.3390/ani14020280
Chicago/Turabian StyleHouston, Grace E., Cassandra K. Jones, Caitlin Evans, Haley K. Otott, Charles R. Stark, Jianfa Bai, Elizabeth G. Poulsen Porter, Marcelo N. de Almeida, Jianqiang Zhang, Phillip C. Gauger, and et al. 2024. "Evaluation of Truck Cab Decontamination Procedures following Inoculation with Porcine Epidemic Diarrhea Virus and Porcine Reproductive and Respiratory Syndrome Virus" Animals 14, no. 2: 280. https://doi.org/10.3390/ani14020280
APA StyleHouston, G. E., Jones, C. K., Evans, C., Otott, H. K., Stark, C. R., Bai, J., Poulsen Porter, E. G., de Almeida, M. N., Zhang, J., Gauger, P. C., Blomme, A. K., Woodworth, J. C., Paulk, C. B., & Gebhardt, J. T. (2024). Evaluation of Truck Cab Decontamination Procedures following Inoculation with Porcine Epidemic Diarrhea Virus and Porcine Reproductive and Respiratory Syndrome Virus. Animals, 14(2), 280. https://doi.org/10.3390/ani14020280