Nitidine Chloride Alleviates Hypoxic Stress via PINK1-Parkin-Mediated Mitophagy in the Mammary Epithelial Cells of Milk Buffalo
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Treatment
2.2. EDU Detection
2.3. Immunofluorescence
2.4. Cell Apoptosis Detection
2.5. Detection of Cell Oxidative Damage Indices
2.6. Transmission Electron Microscopy (TEM) Analysis
2.7. Protein Separation and Western Blot Analysis
2.8. Metabolomics
2.8.1. Sample Preparation
2.8.2. UHPLC-OE-MS Analysis
2.9. Statistical Analysis
3. Results
3.1. NC Alleviates Hypoxia-Induced Cellular Damage in BMECs
3.2. NC Reduces Oxidative Stress Event of Hypoxia-Induced BMECs Cells Injury
3.3. NC Alleviates Hypoxia-Induced Mitophagy in BMECs
3.4. NC Alleviates Mitophagy by Reducing Activation of the PINK1-Parkin Pathway
3.5. UHPLC-OE-MS Untargeted Metabolomics Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruiz-Gonzalez, A.; Suissi, W.; Baumgard, L.H.; Martel-Kennes, Y.; Chouinard, P.Y.; Gervais, R.; Rico, D.E. Increased dietary vitamin D(3) and calcium partially alleviate heat stress symptoms and inflammation in lactating Holstein cows independent of dietary concentrations of vitamin E and selenium. J. Dairy Sci. 2023, 106, 3984–4001. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Cai, J.; Wang, D.; Liu, H.; Sun, H.; Liu, J. Heat stress affects dairy cow health status through blood oxygen availability. J. Anim. Sci. Biotechnol. 2023, 14, 112. [Google Scholar] [CrossRef] [PubMed]
- Petrocchi Jasinski, F.; Evangelista, C.; Basirico, L.; Bernabucci, U. Responses of Dairy Buffalo to Heat Stress Conditions and Mitigation Strategies: A Review. Animals 2023, 13, 1260. [Google Scholar] [CrossRef] [PubMed]
- Rahane, D.; Dhingra, T.; Chalavady, G.; Datta, A.; Ghosh, B.; Rana, N.; Borah, A.; Saraf, S.; Bhattacharya, P. Hypoxia and its effect on the cellular system. Cell Biochem. Funct. 2024, 42, e3940. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xue, C.; Lu, H.; Zhou, Y.; Guan, R.; Wang, J.; Zhang, Q.; Ke, T.; Aschner, M.; Zhang, W.; et al. Hypoxia causes mitochondrial dysfunction and brain memory disorder in a manner mediated by the reduction of Cirbp. Sci. Total Env. 2022, 806, 151228. [Google Scholar] [CrossRef]
- Xiong, M.; Zhao, Y.; Mo, H.; Yang, H.; Yue, F.; Hu, K. Intermittent hypoxia increases ROS/HIF-1alpha r‘elated oxidative stress and inflammation and worsens bleomycin-induced pulmonary fibrosis in adult male C57BL/6J mice. Int. Immunopharmacol. 2021, 100, 108165. [Google Scholar] [CrossRef]
- Gao, H.N.; Ren, F.Z.; Wen, P.C.; Xie, L.X.; Wang, R.; Yang, Z.N.; Li, Y.X. Yak milk-derived exosomal microRNAs regulate intestinal epithelial cells on proliferation in hypoxic environment. J. Dairy Sci. 2021, 104, 1291–1303. [Google Scholar] [CrossRef]
- Li, B.; Baima, Y.; De, J.; Wen, D.; Liu, Y.; Basang, Z.; Jiang, N. Hypoxic stress caused apoptosis of MDBK cells by p53/BCL6-mitochondrial apoptosis pathway. Anim. Biotechnol. 2024, 35, 2299241. [Google Scholar] [CrossRef]
- Ding, W.; Dong, Y.; Zhang, X. Globular adiponectin protects hepatocytes against intermittent hypoxia-induced injury via Pink1/Parkin-mediated mitophagy induction. Sleep. Breath. 2022, 26, 1389–1397. [Google Scholar] [CrossRef]
- Hernansanz-Agustin, P.; Izquierdo-Alvarez, A.; Sanchez-Gomez, F.J.; Ramos, E.; Villa-Pina, T.; Lamas, S.; Bogdanova, A.; Martinez-Ruiz, A. Acute hypoxia produces a superoxide burst in cells. Free Radic. Biol. Med. 2014, 71, 146–156. [Google Scholar] [CrossRef]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial ROS-induced ROS release: An update and review. Biochim. Biophys. Acta 2006, 1757, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Kubli, D.A.; Gustafsson, A.B. Mitochondria and mitophagy: The yin and yang of cell death control. Circ. Res. 2012, 111, 1208–1221. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wu, J.; Xie, P.; Yu, J.; Li, X.; Wang, J.; Zheng, H. Sevoflurane postconditioning alleviates hypoxia-reoxygenation injury of cardiomyocytes by promoting mitochondrial autophagy through the HIF-1/BNIP3 signaling pathway. PeerJ 2019, 7, e7165. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, L.; Lian, C.; Lian, S.; Bao, S.; Zhang, J.; Wang, P.; Ma, J.; Li, Y. Nitidine chloride possesses anticancer property in lung cancer cells through activating Hippo signaling pathway. Cell Death Discov. 2020, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Yue, R.; Ma, J.; Li, W.; Zhao, Z.; Li, H.; Shen, Y.; Hu, Z.; Lv, C.; Xu, X.; et al. Nitidine chloride exerts anti-inflammatory action by targeting Topoisomerase I and enhancing IL-10 production. Pharmacol. Res. 2019, 148, 104368. [Google Scholar] [CrossRef]
- Bouquet, J.; Rivaud, M.; Chevalley, S.; Deharo, E.; Jullian, V.; Valentin, A. Biological activities of nitidine, a potential anti-malarial lead compound. Malar. J. 2012, 11, 67. [Google Scholar] [CrossRef]
- Lin, C.; Ge, L.; Tang, L.; He, Y.; Moqbel, S.A.A.; Xu, K.; Ma, D.; Zhou, X.; Ran, J.; Wu, L. Nitidine Chloride Alleviates Inflammation and Cellular Senescence in Murine Osteoarthritis Through Scavenging ROS. Front. Pharmacol. 2022, 13, 919940. [Google Scholar] [CrossRef]
- Lu, Q.; Luo, S.; Shi, Z.; Yu, M.; Guo, W.; Li, C. Nitidine chloride, a benzophenanthridine alkaloid from Zanthoxylum nitidum (Roxb.) DC., exerts multiple beneficial properties, especially in tumors and inflammation-related diseases. Front. Pharmacol. 2022, 13, 1046402. [Google Scholar] [CrossRef]
- Wang, L.; Ke, S.; Wang, L.; Huang, L.; Qi, L.; Zhan, Z.; Wu, K.; Zhang, M.; Liu, X.; Liu, X.; et al. Altered Caffeine Metabolism Is Associated With Recurrent Hypoglycemia in Type 2 Diabetes Mellitus: A UPLC-MS-Based Untargeted Metabolomics Study. Front. Endocrinol. Lausanne 2022, 13, 843556. [Google Scholar] [CrossRef]
- Semreen, M.H.; Alniss, H.; Cacciatore, S.; El-Awady, R.; Mousa, M.; Almehdi, A.M.; El-Huneidi, W.; Zerbini, L.; Soares, N.C. GC-MS based comparative metabolomic analysis of MCF-7 and MDA-MB-231 cancer cells treated with Tamoxifen and/or Paclitaxel. J. Proteom. 2020, 225, 103875. [Google Scholar] [CrossRef]
- Liao, W.T.; Liu, J.; Zhou, S.M.; Xu, G.; Gao, Y.Q.; Liu, W.Y. UHPLC-QTOFMS-Based Metabolomic Analysis of the Hippocampus in Hypoxia Preconditioned Mouse. Front. Physiol. 2018, 9, 1950. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.T.; Liu, J.; Wang, S.M.; Xue, Z.; Zheng, F.; Feng, F.; Liu, W.Y. Metabolic profiling reveals that salidroside antagonizes hypoxic injury via modulating energy and lipid metabolism in cardiomyocytes. Biomed. Pharmacother. 2020, 122, 109700. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.W.; Li, B.; Zhou, C.S.; He, Q.H.; Zheng, Y.Z.; Tan, Z.L. Multi-Omics Analysis of Mammary Metabolic Changes in Dairy Cows Exposed to Hypoxia. Front. Vet. Sci. 2021, 8, 764135. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.J.; Jiang, H.; Liu, F.J.; Li, Z.; Xu, L.X.; Liu, C.; Lv, W.F.; Wang, J.; Gao, Y.; Liang, S.; et al. Affects the Lipid Composition by Regulating Mitochondrial Functions and MAPK Activation in Bovine Mammary Epithelial Cells. Animals 2022, 12, 3070. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.H.; Xia, W.; Qi, Y.T.; Yu, Y.; Sun, Q.Y.; Zhang, D.; Zhou, Z.M.; Qin, T.M.; Tao, C.Y.; Li, J.J. SIRT2 regulates apoptosis by inducing mitophagy in sheep cumulus cells. Theriogenology 2024, 218, 163–173. [Google Scholar] [CrossRef]
- Jung, U.; Kim, M.; Dowker-Key, P.; Noë, S.; Bettaieb, A.; Shepherd, E.; Voy, B. Hypoxia promotes proliferation and inhibits myogenesis in broiler satellite cells. Poult. Sci. 2024, 103, 103203. [Google Scholar] [CrossRef]
- Dong, J.; Sulik, K.K.; Chen, S.Y. Nrf2-mediated transcriptional induction of antioxidant response in mouse embryos exposed to ethanol in vivo: Implications for the prevention of fetal alcohol spectrum disorders. Antioxid. Redox Signal. 2023, 10, 2023–2033. [Google Scholar] [CrossRef]
- Chen, F.; Peng, S.; Li, C.; Yang, F.; Yi, Y.; Chen, X.; Xu, H.; Cheng, B.; Xu, Y.; Xie, X. Nitidine chloride inhibits mTORC1 signaling through ATF4-mediated Sestrin2 induction and targets IGF2R for lysosomal degradation. Life Sci. 2024, 353, 122918. [Google Scholar] [CrossRef]
- Liu, G.Y.; Sabatini, D.M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Bio. 2020, 21, 246. [Google Scholar] [CrossRef]
- Baskaran, R.; Kalaiselvi, P.; Huang, C.Y.; Padma, V.V. Neferine, a bisbenzylisoquinoline alkaloid, offers protection against cobalt chloride-mediated hypoxia-induced oxidative stress in muscle cells. Integr. Med. Res. 2015, 4, 231–241. [Google Scholar] [CrossRef]
- Lian, C.J.; Huang, Y.L.; Hu, P.; Cao, Y.C.; Zhang, Z.Q.; Feng, F.; Zhang, J. Nitidine Chloride Triggers Autophagy and Apoptosis of Ovarian Cancer Cells through Akt/mTOR Signaling Pathway. Curr. Pharm. Des. 2023, 29, 1524–1534. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Teng, L.; Chen, L.L.; Ma, H.C.; Liu, H.W.; Zhang, X.B. Engineering of a near-infrared fluorescent probe for real-time simultaneous visualization of intracellular hypoxia and induced mitophagy. Chem. Sci. 2018, 9, 5347. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.K.; Hong, Y.L.; Liu, C.Y.; Lin, W.Q.; Liang, K.; Deng, S.Q.; Zhang, X.J.; Zeng, J.X.; Wang, S. Jiawei Bai-Hu-decoction ameliorated heat stroke-induced brain injury by inhibiting TLR4/NF-κB signal and mitophagy of glial cell. J. Ethnopharmacol. 2024, 334, 118571. [Google Scholar] [CrossRef] [PubMed]
- Sulkshane, P.; Ram, J.; Thakur, A.; Reis, N.; Kleifeld, O.; Glickman, M.H. Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia. Redox Biol. 2021, 45, 102047. [Google Scholar] [CrossRef] [PubMed]
- Figge, M.T.; Reichert, A.S.; Meyer-Hermann, M.; Osiewacz, H.D. Deceleration of Fusion-Fission Cycles Improves Mitochondrial Quality Control during Aging. PLoS Comput. Biol. 2012, 8, e1002576. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Lin, N.; Dong, D.L.; Ma, J.Y.; Su, J.; Sun, L.K. PGAM5: A crucial role in mitochondrial dynamics and programmed cell death. Eur. J. Cell Biol. 2021, 100, 151144. [Google Scholar] [CrossRef]
- Lin, D.S.; Huang, Y.W.; Ho, C.S.; Hung, P.L.; Hsu, M.H.; Wang, T.J.; Wu, T.Y.; Lee, T.H.; Huang, Z.D.; Chang, P.C.; et al. Oxidative Insults and Mitochondrial DNA Mutation Promote Enhanced Autophagy and Mitophagy Compromising Cell Viability in Pluripotent Cell Model of Mitochondrial Disease. Cells 2019, 8, 65. [Google Scholar] [CrossRef]
- Danese, A.; Patergnani, S.; Maresca, A.; Peron, C.; Raimondi, A.; Caporali, L.; Marchi, S.; La Morgia, C.; Del Dotto, V.; Zanna, C.; et al. Pathological mitophagy disrupts mitochondrial homeostasis in Leber’s hereditary optic neuropathy. Cell Rep. 2022, 40, 111124. [Google Scholar] [CrossRef]
- Han, R.; Liu, Y.; Li, S.; Li, X.J.; Yang, W. PINK1-PRKN mediated mitophagy: Differences between in vitro and in vivo models. Autophagy 2023, 19, 1396–1405. [Google Scholar] [CrossRef]
- Yi, S.; Zheng, B.; Zhu, Y.; Cai, Y.; Sun, H.; Zhou, J. Melatonin ameliorates excessive PINK1/Parkin-mediated mitophagy by enhancing SIRT1 expression in granulosa cells of PCOS. Am. J. Physiol. Endocrinol. Metab. 2020, 319, E91–E101. [Google Scholar] [CrossRef]
- Li, J.J.; Wang, Y.J.; Wang, C.M.; Li, Y.J.; Yang, Q.; Cai, W.Y.; Chen, Y.; Zhu, X.X. Shenlian extract decreases mitochondrial autophagy to regulate mitochondrial function in microvascular to alleviate coronary artery no-reflow. Phytother. Res. 2023, 37, 1864–1882. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Huang, X.; Zheng, H.; Huang, G.; Li, W.; Liu, X.; Liang, J.; Cao, Y.; Hu, Y.; Huang, Y. SFRP2 Improves Mitochondrial Dynamics and Mitochondrial Biogenesis, Oxidative Stress, and Apoptosis in Diabetic Cardiomyopathy. Oxid. Med. Cell Longev. 2021, 2021, 9265016. [Google Scholar] [CrossRef] [PubMed]
- Boone, C.; Lewis, S.C. Bridging lipid metabolism and mitochondrial genome maintenance. J. Bio. Chem. 2024, 300, 107498. [Google Scholar] [CrossRef] [PubMed]
- Dahabiyeh, L.A.; Nimer, R.M.; Sumaily, K.M.; Alabdaljabar, M.S.; Jacob, M.; Sabi, E.M.; Hussein, M.H.; Abdel Rahman, A. Metabolomics profiling distinctively identified end-stage renal disease patients from chronic kidney disease patients. Sci. Rep. 2023, 13, 6161. [Google Scholar] [CrossRef]
- Gao, Y.; Long, Q.; Yang, H.; Hu, Y.; Xu, Y.; Tang, C.; Gu, C.; Yong, S. Transcriptomics and metabolomics study in mouse kidney of the molecular mechanism underlying energy metabolism response to hypoxic stress in highland areas. Exp. Ther. Med. 2023, 26, 533. [Google Scholar] [CrossRef]
- Komatsu, S.; Egishi, M.; Ohno, T. The Changes of Amino-Acid Metabolism between Wheat and Rice during Early Growth under Flooding Stress. Int. J. Mol. Sci. 2024, 25, 5229. [Google Scholar] [CrossRef]
- Xing, J.; Qi, X.; Liu, G.; Li, X.; Gao, X.; Bou, G.; Bai, D.; Zhao, Y.; Du, M.; Dugarjaviin, M.; et al. A Transcriptomic Regulatory Network among miRNAs, lncRNAs, circRNAs, and mRNAs Associated with L-leucine-induced Proliferation of Equine Satellite Cells. Animals 2023, 13, 208. [Google Scholar] [CrossRef]
- de Medeiros, B.Z.; Wessler, L.B.; Duarte, M.B.; Lemos, I.S.; Candiotto, G.; Canarim, R.O.; Dos Santos, P.C.L.; Torres, C.A.; Scaini, G.; Rico, E.P.; et al. Exposure to leucine induces oxidative stress in the brain of zebrafish. Metab. Brain Dis. 2022, 37, 1155–1161. [Google Scholar] [CrossRef]
- Kong, Z.; Li, B.; Zhou, C.; He, Q.; Zheng, Y.; Tan, Z. Comparative Analysis of Metabolic Differences of Jersey Cattle in Different High-Altitude Areas. Front. Vet. Sci. 2021, 8, 713913. [Google Scholar] [CrossRef]
- Liang, J.; Kou, S.; Chen, C.; Raza, S.H.A.; Wang, S.; Ma, X.; Zhang, W.J.; Nie, C. Effects of Clostridium butyricum on growth performance, metabonomics and intestinal microbial differences of weaned piglets. BMC Microbiol. 2021, 21, 85. [Google Scholar] [CrossRef]
- Wang, J.; Xue, Z.; Hua, C.; Lin, J.; Shen, Z.; Song, Y.; Ying, H.; Lv, Q.; Wang, M.; Zhou, B. Metabolomic Analysis of the Ameliorative Effect of Enhanced Proline Metabolism on Hypoxia-Induced Injury in Cardiomyocytes. Oxid. Med. Cell Longev. 2020, 2020, 8866946. [Google Scholar] [CrossRef] [PubMed]
- Phang, J.M.; Liu, W.; Zabirnyk, O. Proline metabolism and microenvironmental stress. Annu. Rev. Nutr. 2010, 30, 441–463. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Xu, L.; Song, H.; Feng, J.; Zhou, C.; Yang, M.J.; Shi, P.; Li, Y.R.; Guo, Y.J.; Li, H.Z.; et al. Effect of heat and hypoxia stress on mitochondrion and energy metabolism in the gill of hard clam. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023, 266, 109556. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Yong, Q.; Lu, Y.; Wang, L.; Zheng, Y.; Zhao, L.; Li, P.; Peng, C.; Jia, W.; Liu, F. Gentiopicroside improves non-alcoholic steatohepatitis by activating PPARalpha and suppressing HIF1. Front. Pharmacol. 2024, 15, 1335814. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, Z.; Li, R.; Wang, Y.; Zhou, J.; Xu, H.; Wang, G.; Qiu, X.; Wang, X. Metabolomic Analysis of the Takifugu Obscurus Gill under Acute Hypoxic Stress. Animals 2022, 12, 2611. [Google Scholar] [CrossRef]
- Jiang, M.; Yang, H.; Peng, R.; Han, Q.; Jiang, X. (1)H NMR-based metabolomic analysis of cuttlefish, Sepia pharaonis (Ehrenberg, 1831) exposed to hypoxia stresses and post-anoxia recovery. Sci. Total Environ. 2020, 726, 138317. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, Y.; Ming, R.Y.; Chen, H.; Hu, D.Y.; Lu, P. Insight into the differences in the toxicity mechanisms of dinotefuran enantiomers in zebrafish by UPLC-Q/TOF-MS. Environ. Sci. Pollut. Res. 2022, 29, 70833–70841. [Google Scholar] [CrossRef]
- Dai, X.H.; Liu, M.Z.; Xu, S.Y.; Zhao, H.; Li, X.Z.; Bai, Y.J.; Zou, Y.A.; An, Y.F.; Fan, F.; Zhang, J.; et al. Metabolomics profile of plasma in acute diquat-poisoned patients using gas chromatography-mass spectrometry. Food Chem. Toxicol. 2023, 176, 113765. [Google Scholar] [CrossRef]
- Xue, Z.; Wu, D.; Zhang, J.; Pan, Y.; Kan, R.; Gao, J.; Zhou, B. Protective effect and mechanism of procyanidin B2 against hypoxic injury of cardiomyocytes. Heliyon 2023, 9, e21309. [Google Scholar] [CrossRef]
- Barrera, J.C.A.; Ondo-Mendez, A.; Giera, M.; Kostidis, S. Metabolomic and Lipidomic Analysis of the Colorectal Adenocarcinoma Cell Line HT29 in Hypoxia and Reoxygenation. Metabolites 2023, 13, 875. [Google Scholar] [CrossRef]
- Jiang, Y.; Qi, M.; Zhang, J.; Wen, Y.; Sun, J.; Liu, Q. Metabolomic Profiling Analysis of Physiological Responses to Acute Hypoxia and Reoxygenation in Juvenile Qingtian Paddy Field Carp Cyprinus Carpio Var Qingtianensis. Front. Physiol. 2022, 13, 853850. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.; Zondler, L.; Ludwig, N.; Kardell, M.; Luneburg, C.; Henke, K.; Mersmann, S.; Margraf, A.; Spieker, T.; Tekath, T.; et al. Glutamine prevents acute kidney injury by modulating oxidative stress and apoptosis in tubular epithelial cells. JCI Insight 2022, 7, e163161. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Q.; Liu, L.; Shi, Y.; Hong, Y.; Xu, W.; Xu, H.; Feng, J.; Xie, M.; Li, Y.; et al. The Therapeutic Potential of Four Main Compounds of Zanthoxylum nitidum (Roxb.) DC: A Comprehensive Study on Biological Processes, Anti-Inflammatory Effects, and Myocardial Toxicity. Pharmaceuticals 2024, 17, 524. [Google Scholar] [CrossRef] [PubMed]
Group | MS2 Name | VIP | p-Value | Log2 (Fold Change) |
---|---|---|---|---|
Hypoxia group vs. control group | Glycine | 2.06503945 | 0.0115174 | 1.56481073 |
L-Proline | 1.8146664 | 0.0057282 | 0.27900371 | |
L-Valine | 1.94696133 | 0.01744092 | 0.31340213 | |
L-Phenylalanine | 1.82832093 | 0.01943034 | 0.42218272 | |
L-Leucine | 1.97497522 | 0.00369183 | 0.47928603 | |
L-Tyrosine | 2.14542951 | 0.00292428 | 0.59032371 | |
L-Arginine | 2.08233247 | 0.019683 | 6.06119033 | |
L-Threonine | 1.82951319 | 0.00912492 | 0.36857934 | |
L-Lysine | 1.77506075 | 0.02069434 | 0.51409962 | |
L-Serine | 1.68919665 | 0.0159576 | 0.34383581 | |
L-Tryptophan | 1.99323675 | 0.00311541 | 0.37794000 | |
D-Serine | 1.72542243 | 0.02710168 | 0.47073115 | |
NC group vs. control group | L-Proline | 1.659236081 | 0.000632453 | 0.51476555 |
L-Valine | 1.722235647 | 0.000137293 | 0.43199016 | |
L-Arginine | 1.670055128 | 0.002407597 | 2.22884474 | |
L-Serine | 1.180211779 | 0.020463962 | −0.49094164 | |
L-Tryptophan | 1.554519661 | 0.000793316 | −0.46717967 | |
L-Glutamine | 1.51173143 | 0.00077209 | 0.84978503 | |
L-Histidine | 1.01517057 | 0.00127704 | 1.08186686 | |
Ornithine | 1.2597684 | 0.01981797 | −0.24623455 | |
Creatine | 1.1578884 | 0.00026026 | −1.25428645 | |
Putrescine | 1.1294524 | 0.04979805 | 0.49235220 | |
Fumaric acid | 1.56449674 | 0.00158428 | −0.94732761 | |
Phosphocreatine | 1.80772302 | 1.3803 × 10−9 | −3.88623870 | |
Sphinganine | 1.50844256 | 0.01995072 | 3.14467020 | |
3-Dehydrosphinganine | 1.28612153 | 0.01472151 | 0.61942296 | |
Sphingosine | 1.48125934 | 0.01420779 | 1.04958982 | |
Dephospho-CoA | 1.70834635 | 5.6155 × 10−6 | 1.50128981 | |
Uracil | 1.17502289 | 0.03087762 | 0.60378648 | |
Hypoxia group vs. NC group | L-Proline | 1.34323632 | 0.03605266 | −0.23576184 |
L-Phenylalanine | 1.32179184 | 0.02690625 | 0.37615720 | |
L-Leucine | 1.3151479 | 0.02560117 | 0.31427600 | |
L-Tyrosine | 1.78363715 | 0.00051011 | 0.73299900 | |
L-Arginine | 1.28769964 | 0.02423434 | 3.83234558 | |
L-Threonine | 1.88995394 | 0.00017607 | 0.50570638 | |
L-Lysine | 1.38158028 | 0.01888125 | 0.65851161 | |
L-Serine | 1.64398014 | 0.0009724 | 0.83477745 | |
L-Tryptophan | 1.92948048 | 3.9033 × 10−5 | 0.84511967 | |
L-Glutamine | 1.99459396 | 0.00057333 | −0.76479694 | |
Creatine | 1.36071106 | 5.3666 × 10−5 | 1.38760715 | |
Putrescine | 1.77582442 | 0.00121064 | −1.04116564 | |
Phosphocreatine | 1.98055947 | 0.00138537 | 3.85284781 | |
D-Serine | 1.41171874 | 0.00897215 | 0.73022943 | |
Pyruvic acid | 1.46697958 | 0.01852634 | 1.30657351 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Z.; Pan, H.; Wang, Z.; Abla, A.; Wei, Y. Nitidine Chloride Alleviates Hypoxic Stress via PINK1-Parkin-Mediated Mitophagy in the Mammary Epithelial Cells of Milk Buffalo. Animals 2024, 14, 3016. https://doi.org/10.3390/ani14203016
Kong Z, Pan H, Wang Z, Abla A, Wei Y. Nitidine Chloride Alleviates Hypoxic Stress via PINK1-Parkin-Mediated Mitophagy in the Mammary Epithelial Cells of Milk Buffalo. Animals. 2024; 14(20):3016. https://doi.org/10.3390/ani14203016
Chicago/Turabian StyleKong, Zhiwei, Haichang Pan, Zi Wang, Alida Abla, and Yingming Wei. 2024. "Nitidine Chloride Alleviates Hypoxic Stress via PINK1-Parkin-Mediated Mitophagy in the Mammary Epithelial Cells of Milk Buffalo" Animals 14, no. 20: 3016. https://doi.org/10.3390/ani14203016
APA StyleKong, Z., Pan, H., Wang, Z., Abla, A., & Wei, Y. (2024). Nitidine Chloride Alleviates Hypoxic Stress via PINK1-Parkin-Mediated Mitophagy in the Mammary Epithelial Cells of Milk Buffalo. Animals, 14(20), 3016. https://doi.org/10.3390/ani14203016