Canonical Correlation of Milk Composition Parameters and Blood Biomarkers in High-Producing Dairy Cows During Different Lactation Stages
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Animals
2.2. Blood Sampling and Analysis
2.3. Milk Sampling and Analysis
2.4. Data Management and Statistical Analysis
3. Results
3.1. Serum Biochemistry and Milk Composition
3.2. Correlations Between Blood Markers and Milk Composition
4. Discussion
4.1. Blood Biomarkers of Dairy Cows
4.2. Milk Composition During Different Lactation Stages and Their Relationship with Serum Biochemistry
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kessel, S.; Stroehl, M.; Meyer, H.H.D.; Hiss, S.; Sauerwein, H.; Schwarz, F.J.; Bruckmaier, R.M. Individual Variability in Physiological Adaptation to Metabolic Stress during Early Lactation in Dairy Cows Kept under Equal Conditions. J. Anim. Sci. 2008, 86, 2903–2912. [Google Scholar] [CrossRef] [PubMed]
- Ringseis, R.; Gessner, D.K.; Eder, K. Molecular Insights into the Mechanisms of Liver-Associated Diseases in Early-Lactating Dairy Cows: Hypothetical Role of Endoplasmic Reticulum Stress. J. Anim. Physiol. Anim. Nutr. 2015, 99, 626–645. [Google Scholar] [CrossRef] [PubMed]
- Sundrum, A. Metabolic Disorders in the Transition Period Indicate That the Dairy Cows’ Ability to Adapt Is Overstressed. Animals 2015, 5, 978–1020. [Google Scholar] [CrossRef] [PubMed]
- Giannuzzi, D.; Toscano, A.; Pegolo, S.; Gallo, L.; Tagliapietra, F.; Mele, M.; Minuti, A.; Trevisi, E.; Ajmone Marsan, P.; Schiavon, S.; et al. Associations between Milk Fatty Acid Profile and Body Condition Score, Ultrasound Hepatic Measurements and Blood Metabolites in Holstein Cows. Animals 2022, 12, 1202. [Google Scholar] [CrossRef] [PubMed]
- Graber, M.; Kohler, S.; Müller, A.; Burgermeister, K.; Kaufmann, T.; Bruckmaier, R.M.; van Dorland, H.A. Identification of Plasma and Hepatic Parameters Related to Metabolic Robustness in Dairy Cows: Plasma and Hepatic Parameters Describing Robustness. J. Anim. Physiol. Anim. Nutr. 2012, 96, 75–84. [Google Scholar] [CrossRef]
- Loor, J.J.; Everts, R.E.; Bionaz, M.; Dann, H.M.; Morin, D.E.; Oliveira, R.; Rodriguez-Zas, S.L.; Drackley, J.K.; Lewin, H.A. Nutrition-Induced Ketosis Alters Metabolic and Signaling Gene Networks in Liver of Periparturient Dairy Cows. Physiol. Genom. 2007, 32, 105–116. [Google Scholar] [CrossRef]
- McCarthy, S.D.; Waters, S.M.; Kenny, D.A.; Diskin, M.G.; Fitzpatrick, R.; Patton, J.; Wathes, D.C.; Morris, D.G. Negative Energy Balance and Hepatic Gene Expression Patterns in High-Yielding Dairy Cows during the Early Postpartum Period: A Global Approach. Physiol. Genom. 2010, 42A, 188–199. [Google Scholar] [CrossRef]
- Vallejo-Timarán, D.; Reyes-Vélez, J.; VanLeeuwen, J.; Maldonado-Estrada, J.; Astaiza-Martínez, J. Incidence and Effects of Subacute Ruminal Acidosis and Subclinical Ketosis with Respect to Postpartum Anestrus in Grazing Dairy Cows. Heliyon 2020, 6, e03712. [Google Scholar] [CrossRef]
- Alemu, T.W.; Santschi, D.E.; Cue, R.I.; Duggavathi, R. Reproductive Performance of Lactating Dairy Cows with Elevated Milk β-Hydroxybutyrate Levels during First 6 Weeks of Lactation. J. Dairy Sci. 2023, 106, 5165–5181. [Google Scholar] [CrossRef]
- Leblanc, S. Monitoring Metabolic Health of Dairy Cattle in the Transition Period. J. Reprod. Dev. 2010, 56, S29–S35. [Google Scholar] [CrossRef]
- Hammon, H.M.; Stürmer, G.; Schneider, F.; Tuchscherer, A.; Blum, H.; Engelhard, T.; Genzel, A.; Staufenbiel, R.; Kanitz, W. Performance and Metabolic and Endocrine Changes with Emphasis on Glucose Metabolism in High-Yielding Dairy Cows with High and Low Fat Content in Liver after Calving. J. Dairy Sci. 2009, 92, 1554–1566. [Google Scholar] [CrossRef] [PubMed]
- Stengärde, L.; Tråvén, M.; Emanuelson, U.; Holtenius, K.; Hultgren, J.; Niskanen, R. Metabolic Profiles in Five High-Producing Swedish Dairy Herds with a History of Abomasal Displacement and Ketosis. Acta Vet. Scand. 2008, 50, 31. [Google Scholar] [CrossRef] [PubMed]
- Walter, L.L.; Gärtner, T.; Gernand, E.; Wehrend, A.; Donat, K. Effects of Parity and Stage of Lactation on Trend and Variability of Metabolic Markers in Dairy Cows. Animals 2022, 12, 1008. [Google Scholar] [CrossRef] [PubMed]
- Andrews, A.H. The Health of Dairy Cattle; Blackwell Science: Oxford/London/Edinburgh, UK, 2000; ISBN 978-0-632-04103-9. [Google Scholar]
- Ježek, J.; Cincović, M.R.; Nemec, M.; Belić, B.; Djoković, R.; Klinkon, M.; Starič, J. Beta-Hydroxybutyrate in Milk as Screening Test for Subclinical Ketosis in Dairy Cows. Pol. J. Vet. Sci. 2017, 20, 507–512. [Google Scholar] [CrossRef]
- Glatz-Hoppe, J.; Boldt, A.; Spiekers, H.; Mohr, E.; Losand, B. Relationship between Milk Constituents from Milk Testing and Health, Feeding, and Metabolic Data of Dairy Cows. J. Dairy Sci. 2020, 103, 10175–10194. [Google Scholar] [CrossRef]
- Churakov, M.; Karlsson, J.; Edvardsson Rasmussen, A.; Holtenius, K. Milk Fatty Acids as Indicators of Negative Energy Balance of Dairy Cows in Early Lactation. Animal 2021, 15, 100253. [Google Scholar] [CrossRef]
- Jenkins, N.T.; Peña, G.; Risco, C.; Barbosa, C.C.; Vieira-Neto, A.; Galvão, K.N. Utility of Inline Milk Fat and Protein Ratio to Diagnose Subclinical Ketosis and to Assign Propylene Glycol Treatment in Lactating Dairy Cows. Can. Vet. J. Rev. Veterinaire Can. 2015, 56, 850–854. [Google Scholar]
- Tremblay, M.; Kammer, M.; Lange, H.; Plattner, S.; Baumgartner, C.; Stegeman, J.A.; Duda, J.; Mansfeld, R.; Döpfer, D. Identifying Poor Metabolic Adaptation during Early Lactation in Dairy Cows Using Cluster Analysis. J. Dairy Sci. 2018, 101, 7311–7321. [Google Scholar] [CrossRef]
- Mills, S.; Ross, R.P.; Hill, C.; Fitzgerald, G.F.; Stanton, C. Milk Intelligence: Mining Milk for Bioactive Substances Associated with Human Health. Int. Dairy J. 2011, 21, 377–401. [Google Scholar] [CrossRef]
- Osorio, J.S.; Trevisi, E.; Ji, P.; Drackley, J.K.; Luchini, D.; Bertoni, G.; Loor, J.J. Biomarkers of Inflammation, Metabolism, and Oxidative Stress in Blood, Liver, and Milk Reveal a Better Immunometabolic Status in Peripartal Cows Supplemented with Smartamine M or MetaSmart. J. Dairy Sci. 2014, 97, 7437–7450. [Google Scholar] [CrossRef]
- Bland, J.H.; Grandison, A.S.; Fagan, C.C. Evaluation of Milk Compositional Variables on Coagulation Properties Using Partial Least Squares. J. Dairy Res. 2015, 82, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Canive, M.; Casais, R.; Jimenez, J.A.; Blanco-Vazquez, C.; Amado, J.; Garrido, J.M.; Juste, R.A.; Alonso-Hearn, M. Correlations between Single Nucleotide Polymorphisms in Bovine CD209, SLC11A1, SP110 and TLR2 Genes and Estimated Breeding Values for Several Traits in Spanish Holstein Cattle. Heliyon 2020, 6, e04254. [Google Scholar] [CrossRef] [PubMed]
- Leitner, G.; Krifucks, O.; Merin, U.; Lavi, Y.; Silanikove, N. Interactions between Bacteria Type, Proteolysis of Casein and Physico-Chemical Properties of Bovine Milk. Int. Dairy J. 2006, 16, 648–654. [Google Scholar] [CrossRef]
- Martí-De Olives, A.; Le Roux, Y.; Rubert-Alemán, J.; Peris, C.; Molina, M.P. Short Communication: Effect of Subclinical Mastitis on Proteolysis in Ovine Milk. J. Dairy Sci. 2011, 94, 5369–5374. [Google Scholar] [CrossRef]
- Miluchová, M.; Gábor, M.; Candrák, J. The Effect of the Genotypes of the CSN2 Gene on Test-Day Milk Yields in the Slovak Holstein Cow. Agriculture 2023, 13, 154. [Google Scholar] [CrossRef]
- Silanikove, N.; Leitner, G.; Merin, U.; Prosser, C.G. Recent Advances in Exploiting Goat’s Milk: Quality, Safety and Production Aspects. Small Rumin. Res. 2010, 89, 110–124. [Google Scholar] [CrossRef]
- Sundekilde, U.K.; Frederiksen, P.D.; Clausen, M.R.; Larsen, L.B.; Bertram, H.C. Relationship between the Metabolite Profile and Technological Properties of Bovine Milk from Two Dairy Breeds Elucidated by NMR-Based Metabolomics. J. Agric. Food Chem. 2011, 59, 7360–7367. [Google Scholar] [CrossRef]
- Wang, E.; Cha, M.; Wang, S.; Wang, Q.; Wang, Y.; Li, S.; Wang, W. Feeding Corn Silage or Grass Hay as Sole Dietary Forage Sources: Overall Mechanism of Forages Regulating Health-Promoting Fatty Acid Status in Milk of Dairy Cows. Foods 2023, 12, 303. [Google Scholar] [CrossRef]
- Cashman, K.D. Milk Minerals (Including Trace Elements) and Bone Health. Int. Dairy J. 2006, 16, 1389–1398. [Google Scholar] [CrossRef]
- van Knegsel, A.T.M.; Mollenhorst, H.; Goselink, R.M.A.; de Haas, Y. Milk Analysis and Cow Health: Predicting Dairy Cow Life Span with Milk Sampling in Early Lactation; Wageningen Livestock Research: Wageningen, The Netherlands, 2020. [Google Scholar]
- Andjelić, B.; Djoković, R.; Cincović, M.; Bogosavljević-Bošković, S.; Petrović, M.; Mladenović, J.; Čukić, A. Relationships between Milk and Blood Biochemical Parameters and Metabolic Status in Dairy Cows during Lactation. Metabolites 2022, 12, 733. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Dairy Cattle; National Academy Press: Washington, DC, USA, 2001; ISBN 0-309-51521-1. [Google Scholar]
- Rolinec, M.; Bíro, D.; Šimko, M.; Juráček, M.; Hanušovský, O.; Schubertová, Z.; Chadimová, L.; Gálik, B. Grape Pomace Ingestion by Dry Cows Does Not Affect the Colostrum Nutrient and Fatty Acid Composition. Animals 2021, 11, 1633. [Google Scholar] [CrossRef] [PubMed]
- Juráček, M.; Vašeková, P.; Massányi, P.; Kováčik, A.; Bíro, D.; Šimko, M.; Gálik, B.; Rolinec, M.; Hanušovský, O.; Kolláthová, R.; et al. The Effect of Dried Grape Pomace Feeding on Nutrients Digestibility and Serum Biochemical Profile of Wethers. Agriculture 2021, 11, 1194. [Google Scholar] [CrossRef]
- Kovacik, A.; Arvay, J.; Tusimova, E.; Harangozo, L.; Tvrda, E.; Zbynovska, K.; Cupka, P.; Andrascikova, S.; Tomas, J.; Massanyi, P. Seasonal Variations in the Blood Concentration of Selected Heavy Metals in Sheep and Their Effects on the Biochemical and Hematological Parameters. Chemosphere 2017, 168, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Kovacikova, E.; Kovacik, A.; Halenar, M.; Tokarova, K.; Chrastinova, L.; Ondruska, L.; Jurcik, R.; Kolesar, E.; Valuch, J.; Kolesarova, A. Potential Toxicity of Cyanogenic Glycoside Amygdalin and Bitter Apricot Seed in Rabbits-Health Status Evaluation. J. Anim. Physiol. Anim. Nutr. 2019, 103, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.A.C.; Botelho Duarte Gomes, V.D.S.; Mezzomo, R.; Maciel, R.P. Multivariate Relationship between Major Constituents and Casein Fractions in Buffalo Milk Using Canonical Correlation Analysis. Int. Dairy J. 2023, 142, 105651. [Google Scholar] [CrossRef]
- Gross, J.; van Dorland, H.A.; Bruckmaier, R.M.; Schwarz, F.J. Performance and Metabolic Profile of Dairy Cows during a Lactational and Deliberately Induced Negative Energy Balance with Subsequent Realimentation. J. Dairy Sci. 2011, 94, 1820–1830. [Google Scholar] [CrossRef]
- Horst, E.A.; Kvidera, S.K.; Baumgard, L.H. Invited Review: The Influence of Immune Activation on Transition Cow Health and Performance—A Critical Evaluation of Traditional Dogmas. J. Dairy Sci. 2021, 104, 8380–8410. [Google Scholar] [CrossRef]
- Garnero, P.; Delmas, P.D. Assessment of the Serum Levels of Bone Alkaline Phosphatase with a New Immunoradiometric Assay in Patients with Metabolic Bone Disease. J. Clin. Endocrinol. Metab. 1993, 77, 1046–1053. [Google Scholar] [CrossRef]
- Beddhu, S.; Ma, X.; Baird, B.; Cheung, A.K.; Greene, T. Serum Alkaline Phosphatase and Mortality in African Americans with Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2009, 4, 1805–1810. [Google Scholar] [CrossRef]
- Peters, E.; Heemskerk, S.; Masereeuw, R.; Pickkers, P. Alkaline Phosphatase: A Possible Treatment for Sepsis-Associated Acute Kidney Injury in Critically Ill Patients. Am. J. Kidney Dis. 2014, 63, 1038–1048. [Google Scholar] [CrossRef]
- MSD Veterinary Manual Serum Biochemical Analysis Reference Ranges—Special Subjects. Available online: https://www.msdvetmanual.com/special-subjects/reference-guides/serum-biochemical-analysis-reference-ranges (accessed on 2 February 2023).
- van Dorland, H.A.; Graber, M.; Kohler, S.; Steiner, A.; Bruckmaier, R.M. Comparison of Hepatic Adaptation in Extreme Metabolic Phenotypes Observed in Early Lactation Dairy Cows On-Farm. J. Anim. Physiol. Anim. Nutr. 2014, 98, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Moore, F. Interpreting Serum Chemistry Profiles in Dairy Cows. Vet. Med. 1985 USA 1997, 92, 903–912. [Google Scholar]
- Mills, S.E.; Beitz, D.C.; Young, J.W. Characterization of Metabolic Changes during a Protocol for Inducing Lactation Ketosis in Dairy Cows. J. Dairy Sci. 1986, 69, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Oetzel, G.R. Monitoring and Testing Dairy Herds for Metabolic Disease. Vet. Clin. N. Am. Food Anim. Pract. 2004, 20, 651–674. [Google Scholar] [CrossRef]
- Van Saun, R.J.; Todd, A.; Varga, G.A. Serum Mineral Status and Risk of Periparturient Disease. In Proceedings of the XXIV World Buiatrics Congress, Nice, France, 15 October 2006. [Google Scholar]
- Brscic, M.; Cozzi, G.; Lora, I.; Stefani, A.L.; Contiero, B.; Ravarotto, L.; Gottardo, F. Short Communication: Reference Limits for Blood Analytes in Holstein Late-Pregnant Heifers and Dry Cows: Effects of Parity, Days Relative to Calving, and Season. J. Dairy Sci. 2015, 98, 7886–7892. [Google Scholar] [CrossRef]
- Obućinski, D.; Soleša, D.; Kučević, D.; Prodanović, R.; Tomaš Simin, M.; Ljubojević Pelić, D.; Đuragić, O.; Puvača, N. Management of Blood Lipid Profile and Oxidative Status in Holstein and Simmental Dairy Cows during Lactation. Mljekarstvo 2019, 69, 116–124. [Google Scholar] [CrossRef]
- Kessler, E.C.; Gross, J.J.; Bruckmaier, R.M.; Albrecht, C. Cholesterol Metabolism, Transport, and Hepatic Regulation in Dairy Cows during Transition and Early Lactation. J. Dairy Sci. 2014, 97, 5481–5490. [Google Scholar] [CrossRef]
- Van, Q.C.D.; Knapp, E.; Hornick, J.-L.; Dufrasne, I. Influence of Days in Milk and Parity on Milk and Blood Fatty Acid Concentrations, Blood Metabolites and Hormones in Early Lactation Holstein Cows. Animals 2020, 10, 2081. [Google Scholar] [CrossRef]
- Tušimová, E.; Kováčik, A.; Harangozo, Ľ.; Lukáč, N.; Kolesárová, A.; Vollmannová, A.; Kováčik, J. Internal Milieau of Dairy Cows at the Beginning of Lactation and Its Influence on Composition of Raw Milk. J. Microbiol. Biotechnol. Food Sci. 2015, 4, 116–119. [Google Scholar] [CrossRef]
- Emmanuel, D.G.V.; Dunn, S.M.; Ametaj, B.N. Feeding High Proportions of Barley Grain Stimulates an Inflammatory Response in Dairy Cows. J. Dairy Sci. 2008, 91, 606–614. [Google Scholar] [CrossRef]
- Feingold, K.; Staprans, I.; Memon, R.; Moser, A.; Shigenaga, J.; Doerrler, W.; Dinarello, C.; Grunfeld, C. Endotoxin Rapidly Induces Changes in Lipid Metabolism That Produce Hypertriglyceridemia: Low Doses Stimulate Hepatic Triglyceride Production While High Doses Inhibit Clearance. J. Lipid Res. 1992, 33, 1765–1776. [Google Scholar] [CrossRef] [PubMed]
- Gozho, G.N.; Plaizier, J.C.; Krause, D.O.; Kennedy, A.D.; Wittenberg, K.M. Subacute Ruminal Acidosis Induces Ruminal Lipopolysaccharide Endotoxin Release and Triggers an Inflammatory Response. J. Dairy Sci. 2005, 88, 1399–1403. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Tao, H.; Chang, G.; Zhang, K.; Xu, L.; Shen, X. Lipopolysaccharide Derived from the Rumen Down-Regulates Stearoyl-CoA Desaturase 1 Expression and Alters Fatty Acid Composition in the Liver of Dairy Cows Fed a High-Concentrate Diet. BMC Vet. Res. 2015, 11, 52. [Google Scholar] [CrossRef] [PubMed]
- Masuyama, H.; Hiramatsu, Y. Potential Role of Estradiol and Progesterone in Insulin Resistance through Constitutive Androstane Receptor. J. Mol. Endocrinol. 2011, 47, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Lopez-Villalobos, N.; Sneddon, N.W.; Shalloo, L.; Franzoi, M.; De Marchi, M.; Penasa, M. Invited Review: Milk Lactose—Current Status and Future Challenges in Dairy Cattle. J. Dairy Sci. 2019, 102, 5883–5898. [Google Scholar] [CrossRef]
- Pyörälä, S. Indicators of Inflammation in the Diagnosis of Mastitis. Vet. Res. 2003, 34, 565–578. [Google Scholar] [CrossRef]
- Konjačić, M.; Kelava, N.; Ivkić, Z.; Ivanković, A.; Prpić, Z.; Vnučec, I.; Ramljak, J.; Mijić, P. Non-Nutritional Factors of Milk Urea Concentration in Holstein Cows from Large Dairy Farms in Croatia. Mljekarstvo 2010, 60, 166–174. [Google Scholar]
- Frank, B.; Swensson, C. Relationship Between Content of Crude Protein in Rations for Dairy Cows and Milk Yield, Concentration of Urea in Milk and Ammonia Emissions. J. Dairy Sci. 2002, 85, 1829–1838. [Google Scholar] [CrossRef]
- Kováčik, J.; Kalafová, A.; Tušimová, E. Relations between Selected Indicators of Blood and Milk of Dairy Cows with Metabolic Disorders. J. Microbiol. Biotechnol. Food Sci. 2013, 2, 1980–1987. [Google Scholar]
- Yoon, J.T.; Lee, J.H.; Kim, C.K.; Chung, Y.C.; Kim, C.-H. Effects of Milk Production, Season, Parity and Lactation Period on Variations of Milk Urea Nitrogen Concentration and Milk Components of Holstein Dairy Cows. Asian-Australas. J. Anim. Sci. 2004, 17, 479–484. [Google Scholar] [CrossRef]
- Butler, W.R.; Calaman, J.J.; Beam, S.W. Plasma and Milk Urea Nitrogen in Relation to Pregnancy Rate in Lactating Dairy Cattle. J. Anim. Sci. 1996, 74, 858. [Google Scholar] [CrossRef] [PubMed]
- Broderick, G.A.; Clayton, M.K. A Statistical Evaluation of Animal and Nutritional Factors Influencing Concentrations of Milk Urea Nitrogen. J. Dairy Sci. 1997, 80, 2964–2971. [Google Scholar] [CrossRef] [PubMed]
- Campanile, G.; De Filippo, C.; Di Palo, R.; Taccone, W.; Zicarelli, L. Influence of Dietary Protein on Urea Levels in Blood and Milk of Buffalo Cows. Livest. Prod. Sci. 1998, 55, 135–143. [Google Scholar] [CrossRef]
- Bendelja Ljoljić, D.; Dolenčić Špehar, I.; Prpić, Z.; Vnučec, I.; Samaržija, D. Urea Concentration in Goat Milk: Importance of Determination and Factors of Variability. J. Cent. Eur. Agric. 2020, 21, 707–721. [Google Scholar] [CrossRef]
- Härter, C.J.; Castagnino, D.S.; Rivera, A.R.; Lima, L.D.; Silva, H.G.O.; Mendonça, A.N.; Bonfim, G.F.; Liesegang, A.; St-Pierre, N.; Teixeira, I.A.M.A. Mineral Metabolism in Singleton and Twin-Pregnant Dairy Goats. Asian-Australas. J. Anim. Sci. 2015, 28, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.D.; Kozloski, G.V.; Bonnecarrère Sanchez, L.M.; Ruggia Chiesa, A.P.; Härter, C.J.; Fiorentini, G.; Oliveira, L.; Cadorin, R.L. Effect of Harvesting Period on the Nutritive Value of Rice Grass (Echinochloa sp.) Hay given as Sole Diet to Lambs. Small Rumin. Res. 2008, 75, 217–225. [Google Scholar] [CrossRef]
- Heuer, C.; Van Straalen, W.M.; Schukken, Y.H.; Dirkzwager, A.; Noordhuizen, J.P.T.M. Prediction of Energy Balance in a High Yielding Dairy Herd in Early Lactation: Model Development and Precision. Livest. Prod. Sci. 2000, 65, 91–105. [Google Scholar] [CrossRef]
- Nielsen, N.I.; Ingvartsen, K.L.; Larsen, T. Diurnal Variation and the Effect of Feed Restriction on Plasma and Milk Metabolites in TMR-fed Dairy Cows. J. Vet. Med. Ser. A 2003, 50, 88–97. [Google Scholar] [CrossRef]
Item | BL | PL | ML | EL |
Corn silage (%) | 34.0 | 36.0 | 37.0 | 41.0 |
Meadow Haylage (%) | 34.0 | 35.0 | 36.0 | 40.0 |
Homemade mix (%) | 17.0 | 17.5 | 15.5 | - |
High-moisture corn (%) | 7.8 | 9.3 | 9.5 | 6.3 |
Cottonseed (%) | 3.1 | 1.2 | 0.9 | - |
Wheat straw (%) | 3.1 | 1.0 | 1.1 | - |
Mineral premix * (%) | 1.0 | - | - | 0.7 |
Rapeseed scrap (%) | - | - | - | 5.2 |
Oats grain (%) | - | - | - | 5.1 |
DDGS 1 (%) | - | - | - | 1.6 |
Magnesium (%) | - | - | - | 0.07 |
Nutrient Composition (% of the dry matter) | BL | PL | ML | EL |
Crude protein (%) | 17.22 | 19.72 | 16.74 | 14.85 |
Crude fiber (%) | 20.35 | 18.50 | 19.29 | 20.92 |
NDF 2 (%) | 32.67 | 30.81 | 31.12 | 33.54 |
ADF 3 (%) | 19.88 | 19.43 | 21.65 | 22.14 |
Crude fat (%) | 4.30 | 5.89 | 4.03 | 3.36 |
NSC 4 (%) | 36.12 | 40.83 | 39.13 | 32.11 |
Ash (%) | 8.67 | 7.20 | 7.00 | 7.91 |
Calcium (%) | 1.12 | 1.07 | 0.99 | 0.83 |
Phosphorus (%) | 0.93 | 0.81 | 0.68 | 0.61 |
Sodium (%) | 0.45 | 0.42 | 0.31 | 0.19 |
Potassium (%) | 1.41 | 1.28 | 1.10 | 0.94 |
NEL 5 (MJ/kg) | 6.86 | 6.69 | 6.56 | 6.21 |
Parameter | Intra-Assay Coefficient (%) | Inter-Assay Coefficient (%) | Sensitivity |
---|---|---|---|
Ca | ≤0.89 | ≤1.02 | 0.05 mmol L−1 |
P | ≤1.20 | ≤1.53 | 0.065 mmol L−1 |
Mg | ≤0.87 | ≤1.21 | 0.02 mmol L−1 |
UREA | ≤1.91 | ≤2.04 | 0.33 mmol L−1 |
TP | ≤0.90 | ≤1.30 | 0.05 g L−1 |
GLU | ≤1.05 | ≤3.80 | 0.22 mmol L−1 |
AST | ≤2.36 | ≤2.16 | 0.03 μkat L−1 |
ALT | ≤2.90 | ≤2.05 | 0.07 μkat L−1 |
GGT | ≤1.43 | ≤0.90 | 0.03 μkat L−1 |
ALP | ≤1.16 | ≤1.10 | 0.05 μkat L−1 |
CHOL | ≤0.95 | ≤1.10 | 0.08 mmol L−1 |
D-BHB | ≤3.77 | ≤5.16 | 0.1 mmol L−1 |
BILI | ≤2.11 | ≤3.03 | 1.2 μmol L−1 |
TG | ≤1.61 | ≤1.23 | 0.01 mmol L−1 |
Parameter | Unit | BL | PL | ML | EL | p Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SEM | Mean | SEM | Mean | SEM | Mean | SEM | |||
Serum Parameters | ||||||||||
Ca | mmol L−1 | 1.98 | 0.09 | 1.91 | 0.11 | 1.82 | 0.11 | 2.15 | 0.09 | 0.151 |
P * | mmol L−1 | 1.80 | 0.10 | 1.90 | 0.13 | 1.94 | 0.08 | 2.22 | 0.17 | 0.220 |
Mg * | mmol L−1 | 0.96 ab | 0.05 | 1.05 a | 0.06 | 0.92 ab | 0.04 | 0.86 b | 0.03 | 0.016 |
UREA | mmol L−1 | 3.60 | 0.23 | 4.20 | 0.20 | 3.91 | 0.19 | 3.72 | 0.23 | 0.218 |
TP | g L−1 | 73.09 | 1.86 | 79.47 | 1.91 | 79.33 | 2.35 | 75.39 | 2.32 | 0.095 |
GLU | mmol L−1 | 3.33 b | 0.13 | 3.73 ab | 0.17 | 3.61 ab | 0.09 | 4.04 a | 0.13 | 0.004 |
AST * | µkat L−1 | 2.21 | 0.19 | 2.29 | 0.18 | 1.97 | 0.17 | 2.19 | 0.21 | 0.394 |
ALT * | µkat L−1 | 0.47 | 0.05 | 0.58 | 0.04 | 0.54 | 0.02 | 0.53 | 0.03 | 0.175 |
GGT * | µkat L−1 | 0.65 b | 0.06 | 0.90 a | 0.06 | 0.77 ab | 0.05 | 0.77 ab | 0.06 | 0.036 |
ALP | µkat L−1 | 1.44 | 0.14 | 1.64 | 0.11 | 1.56 | 0.12 | 1.87 | 0.16 | 0.145 |
CHOL | mmol L−1 | 3.21 c | 0.25 | 6.63 a | 0.36 | 5.27 b | 0.34 | 5.13 b | 0.35 | 0.001 |
D-BHB * | mmol L−1 | 0.79 a | 0.09 | 0.42 b | 0.03 | 0.46 b | 0.04 | 0.59 b | 0.03 | 0.002 |
BILI * | µmol L−1 | 15.68 | 0.61 | 15.17 | 0.59 | 15.93 | 0.52 | 14.10 | 0.87 | 0.332 |
TG * | mmol L−1 | 0.19 | 0.02 | 0.21 | 0.02 | 0.24 | 0.02 | 0.19 | 0.02 | 0.157 |
Milk Composition/Performance | ||||||||||
Ca | g L−1 | 1.36 | 0.07 | 1.25 | 0.05 | 1.34 | 0.09 | 1.29 | 0.03 | 0.599 |
P * | g L−1 | 0.92 ab | 0.05 | 0.77 b | 0.04 | 0.81 b | 0.03 | 0.89 | 0.02 | 0.004 |
Mg | mg L−1 | 87.57 | 3.87 | 90.04 | 3.19 | 90.96 | 3.97 | 84.13 | 3.03 | 0.550 |
Fat * | % | 4.65 | 0.58 | 4.42 | 0.73 | 3.62 | 0.28 | 4.60 | 0.23 | 0.122 |
Protein * | % | 3.32 b | 0.16 | 3.20 b | 0.09 | 3.37 b | 0.10 | 3.72 a | 0.08 | 0.001 |
Lactose * | % | 4.80 | 0.05 | 4.86 | 0.05 | 4.87 | 0.05 | 4.85 | 0.06 | 0.552 |
Urea | mg dL−1 | 22.40 | 1.68 | 22.22 | 1.02 | 21.38 | 1.62 | 20.36 | 1.14 | 0.726 |
Milk yield | kg d−1 | 32.20 b | 0.76 | 38.26 a | 0.68 | 34.42 b | 0.70 | 33.02 b | 0.97 | 0.001 |
F:P ratio * | 1.36 | 0.12 | 1.17 | 0.11 | 1.06 | 0.07 | 1.24 | 0.07 | 0.152 |
Blood Biomarkers | Milk Composition Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
Lact. Stage | Ca | P | Mg | Fat | Protein | Lactose | Urea | F:P Ratio | |
Lact. stage | −0.0010 | 0.1058 | −0.0687 | 0.0687 | 0.4209 * | 0.1279 | −0.0965 | −0.0476 | |
Ca | 0.1026 | 0.2462 * | −0.0088 | −0.3173 * | −0.0893 | 0.0424 | 0.2236 * | 0.2255 * | −0.0337 |
P | 0.2209 * | −0.5897 * | 0.3905 * | −0.2180 | 0.0271 | 0.1864 | 0.2411 * | −0.4444 * | −0.0022 |
Mg | −0.2390 * | 0.2990 * | −0.4156 * | 0.4219 * | −0.2503 * | −0.3130 * | 0.1191 | 0.1922 | −0.1661 |
UREA | −0.0064 | 0.1775 | −0.2967 * | −0.1396 | −0.1350 | −0.1682 | 0.1352 | 0.5643 * | −0.0913 |
TP | 0.0867 | −0.0713 | −0.2394 * | 0.1700 | −0.1470 | 0.0008 | −0.0978 | 0.1626 | −0.2518 * |
GLU | 0.3375 * | 0.1205 | 0.1718 | −0.1990 | 0.0653 | 0.1816 | −0.0247 | 0.1630 | −0.0347 |
AST | −0.0869 | 0.1058 | −0.0778 | 0.0084 | 0.0111 | −0.0402 | 0.0676 | −0.0039 | −0.0476 |
ALT | 0.1411 | 0.4896 * | −0.2965 * | 0.1002 | −0.1297 | 0.0114 | 0.1371 | 0.4054 * | −0.0657 |
GGT | 0.0880 | −0.1505 | −0.1221 | −0.0952 | −0.2538 * | −0.1284 | 0.2866 * | −0.1503 | −0.1873 |
ALP | 0.2159 | −0.1020 | 0.3140 * | −0.0244 | 0.0058 | 0.1600 | 0.1553 | −0.3740 * | 0.0011 |
CHOL | 0.2834 * | 0.0584 | −0.2708 * | 0.0372 | −0.2419 * | −0.0335 | 0.4424 * | 0.1432 | −0.2177 * |
D-BHB | −0.1274 | −0.0898 | 0.1904 | −0.2508 * | 0.1811 | 0.1392 | 0.0421 | −0.0719 | 0.2344 * |
BILI | −0.0957 | −0.2332 | 0.0224 | 0.0853 | 0.1146 | 0.0976 | −0.1956 | −0.2277 * | 0.0468 |
TG | 0.0320 | −0.3769 * | −0.0034 | 0.3161 * | 0.1163 | −0.0006 | −0.1118 | −0.4667 * | 0.0359 |
Blood Biomarkers | Milk Composition Parameters | |||||||
---|---|---|---|---|---|---|---|---|
Ca | P | Mg | Fat | Protein | Lactose | Urea | F:P Ratio | |
Ca | 0.3713 * | −0.1399 | −0.1577 | −0.0048 | 0.1384 | 0.1366 | −0.1828 | −0.0951 |
P | −0.4620 * | 0.2871 * | 0.0733 | −0.3220 * | −0.1787 | −0.3324 * | 0.1620 | 0.2735 * |
Mg | −0.1031 | −0.4030 * | 0.5316 * | 0.0886 | −0.1027 | 0.1465 | −0.1466 | 0.0967 |
UREA | −0.0787 | 0.0418 | −0.0239 | 0.2256 | −0.1321 | 0.0141 | 0.4569 * | −0.0807 |
TP | −0.1827 | 0.0469 | 0.0033 | −0.0415 | −0.0289 | −0.1788 | 0.0595 | −0.1123 |
GLU | −0.2571 | 0.2062 | −0.0462 | 0.1482 | −0.0706 | −0.1480 | 0.1243 | −0.0215 |
AST | 0.1006 | −0.0788 | −0.0595 | 0.0342 | 0.1044 | 0.0889 | −0.1774 | 0.0751 |
ALT | 0.1705 | −0.1904 | 0.1025 | 0.0279 | 0.0456 | 0.0622 | 0.1539 | −0.0914 |
GGT | −0.0623 | −0.0719 | −0.0672 | −0.0814 | 0.0030 | −0.0143 | 0.0031 | −0.0366 |
ALP | 0.0783 | 0.0033 | 0.1299 | −0.0760 | −0.0602 | 0.1095 | −0.2997 * | 0.0519 |
CHOL | −0.1350 | −0.3327 * | 0.2539 | 0.1817 | 0.0588 | 0.3445 * | −0.1415 | −0.0653 |
D-BHB | −0.0976 | 0.1579 | −0.2221 | 0.0410 | 0.0944 | −0.0524 | 0.0714 | 0.0820 |
BILI | 0.1296 | −0.0028 | −0.1063 | 0.0647 | 0.1604 | −0.1195 | −0.0670 | −0.2326 |
TG | −0.0791 | −0.3478 * | 0.3756 * | 0.2333 | −0.0769 | 0.2820 * | −0.1562 | 0.0191 |
Number of Canonical Function | Canonical Correlation | Eigenvalue | Percentage of Variation | p Value |
---|---|---|---|---|
1 | 0.853 | 2.672 | 0.363 | 0.000 * |
2 | 0.823 | 2.097 | 0.285 | 0.000 * |
3 | 0.739 | 1.202 | 0.163 | 0.002 * |
4 | 0.602 | 0.567 | 0.077 | 0.133 |
5 | 0.554 | 0.443 | 0.060 | 0.428 |
6 | 0.441 | 0.242 | 0.033 | 0.836 |
7 | 0.285 | 0.088 | 0.012 | 0.964 |
8 | 0.209 | 0.046 | 0.006 | 0.921 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovacikova, E.; Kovacik, A.; Harangozo, L.; Tokarova, K.; Knazicka, Z.; Tvrda, E.; Jambor, T.; Tomka, M.; Massanyi, P.; Lukac, N. Canonical Correlation of Milk Composition Parameters and Blood Biomarkers in High-Producing Dairy Cows During Different Lactation Stages. Animals 2024, 14, 3294. https://doi.org/10.3390/ani14223294
Kovacikova E, Kovacik A, Harangozo L, Tokarova K, Knazicka Z, Tvrda E, Jambor T, Tomka M, Massanyi P, Lukac N. Canonical Correlation of Milk Composition Parameters and Blood Biomarkers in High-Producing Dairy Cows During Different Lactation Stages. Animals. 2024; 14(22):3294. https://doi.org/10.3390/ani14223294
Chicago/Turabian StyleKovacikova, Eva, Anton Kovacik, Lubos Harangozo, Katarina Tokarova, Zuzana Knazicka, Eva Tvrda, Tomas Jambor, Marian Tomka, Peter Massanyi, and Norbert Lukac. 2024. "Canonical Correlation of Milk Composition Parameters and Blood Biomarkers in High-Producing Dairy Cows During Different Lactation Stages" Animals 14, no. 22: 3294. https://doi.org/10.3390/ani14223294
APA StyleKovacikova, E., Kovacik, A., Harangozo, L., Tokarova, K., Knazicka, Z., Tvrda, E., Jambor, T., Tomka, M., Massanyi, P., & Lukac, N. (2024). Canonical Correlation of Milk Composition Parameters and Blood Biomarkers in High-Producing Dairy Cows During Different Lactation Stages. Animals, 14(22), 3294. https://doi.org/10.3390/ani14223294