Effects of Different Levels of Green Tea Powder on Performance, Antioxidant Activity, Egg Mass, Quality, and Cecal Microflora of Chickens
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Green Tea Powder, Laying Hens, Feeding, and Experimental Design
2.2. Sample and Measurements
2.3. Statistical Analysis
3. Results
3.1. Production Performance
3.2. Serum Biochemical Indices, Antioxidant Status, and Immune Status
3.3. Egg Quality
3.4. Amino Acids and Cholesterol in Eggs
3.5. Status of Cecal Microflora of Laying Hens
4. Discussion
4.1. Production Performance
4.2. Serum Biochemical Indices, Antioxidant Status, and Immune Status
4.3. Egg Quality
4.4. Amino Acids and Cholesterol in Eggs
4.5. Status of Cecal Microflora of Laying Hens
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, D.; Sun, Z.; Gao, J.; Peng, J.; Wang, Z.; Zhao, Y.; Lin, Z.; Dai, W. Metabolomics combined with proteomics provides a novel interpretation of the compound differences among Chinese tea cultivars (Camellia sinensis var. sinensis) with different manufacturing suitabilities. Food Chem. 2022, 377, 131976. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.J.; Jackson, K.G.; Minihane, A.M. Green tea (Camellia sinensis) catechins and vascular function. Br. J. Nutr. 2009, 102, 1790–1802. [Google Scholar] [CrossRef] [PubMed]
- El-Hack, M.A.; Elnesr, S.; Alagawany, M.; Gado, A.; Noreldin, A.; Gabr, A. Impact of green tea (Camellia sinensis) and epigallocatechin gallate on poultry. World’s Poult. Sci. J. 2020, 76, 49–63. [Google Scholar] [CrossRef]
- Alig, B.N.; Malheiros, R.D.; Anderson, K.E. Evaluation of Physical Egg Quality Parameters of Commercial Brown Laying Hens Housed in Five Production Systems. Animals 2023, 13, 716. [Google Scholar] [CrossRef]
- Agriculture—Poultry Farming. New Findings on Poultry Farming from Feed Research Institute Summarized. Agric. Week 2018, 121. [Google Scholar]
- Wang, J.; Yue, H.; Wu, S.; Zhang, H.; Qi, G. Nutritional modulation of health, egg quality and environmental pollution of the layers. Anim. Nutr. 2017, 3, 91–96. [Google Scholar] [CrossRef]
- Vlaicu, P.A.; Untea, A.E.; Turcu, R.P.; Panaite, T.D.; Saracila, M. Rosehip (Rosa canina L.) Meal as a Natural Antioxidant on Lipid and Protein Quality and Shelf-Life of Polyunsaturated Fatty Acids Enriched Eggs. Antioxidants 2022, 11, 1948. [Google Scholar] [CrossRef]
- McKnite, A.M.; Perez-Munoz, M.E.; Lu, L.; Williams, E.G.; Brewer, S.; Andreux, P.A.; Bastiaansen, J.W.; Wang, X.; Kachman, S.D.; Auwerx, J.; et al. Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits. PLoS ONE 2012, 7, e39191. [Google Scholar] [CrossRef] [PubMed]
- Reygaert, W.; Jusufi, I. Green tea as an effective antimicrobial for urinary tract infections caused by Escherichia coli. Front. Microbiol. 2013, 4, 162. [Google Scholar] [CrossRef]
- Antioxidants; Study Data from Sichuan Agricultural University Update Understanding of Antioxidants (Effect of Tea Polyphenols on Production Performance, Egg Quality, and Hepatic Antioxidant Status of Laying Hens in Vanadium-Containing Diets). Chem. Chem. 2016, 2292. Available online: https://kns.cnki.net/kcms2/article/abstract?v=SY7jeTtuViJOodHs-X-kDfc0iqobkxAZ0PaolAcNJUMPo26gA87H3WOjdTawtaZ-CiXG75FMj_6e8S2i9mbYXMWTPG5Wtv2HuaxpmQHYhX4sFbiolXnCvbqL9VoMbRAGAWgdLy6m8Q1i8iZCSYXUE6DqCX6sSdUI5N5DO9UyLQ4P5jeQ2RVu0AlzBPvLSz51D2MR9rOX1QgRSpUzeztjxsNCp2lIYd0M&uniplatform=NZKPT&language=CHS (accessed on 14 October 2024).
- Yuan, Z.H.; Zhang, K.Y.; Ding, X.M.; Luo, Y.H.; Bai, S.P.; Zeng, Q.F.; Wang, J.P. Effect of tea polyphenols on production performance, egg quality, and hepatic antioxidant status of laying hens in vanadium-containing diets. Poult. Sci. 2016, 95, 1709–1717. [Google Scholar] [CrossRef]
- Cuervo, A.; Valdés, L.; Salazar, N.; de los Reyes-Gavilán, C.G.; Ruas-Madiedo, P.; Gueimonde, M.; González, S. Pilot study of diet and microbiota: Interactive associations of fibers and polyphenols with human intestinal bacteria. J. Agric. Food Chem. 2014, 62, 5330–5336. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrient Requirements of Poultry, 9th rev. ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- AOAC International. Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 1996. [Google Scholar]
- Wang, L.; Lin, X.; Wang, L.X.; Shao, J.L.; Chen, X.; Liu, L.; Mei, W. Determination and analysis of multifunctional componentts in tea. J. Food Saf. Qual. 1996, 10, 7779–7786. [Google Scholar] [CrossRef]
- Hrnčár, C.; Bujko, J. Effect of different levels of green tea (Camellia sinensis) on productive performance, carcass characteristics and organs of broiler chickens. Slovak J. Food Sci./Potravin. 2017, 11, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, I.; Hamamoto, R.; Uzu, K.; Imaizumi, K.; Nagao, K.; Yanagita, T.; Suzuki, Y.; Kobayashi, M.; Kakuda, T. Dietary gallate esters of tea catechins reduce deposition of visceral fat, hepatic triacylglycerol, and activities of hepatic enzymes related to fatty acid synthesis in rats. Biosci. Biotechnol. Biochem. 2005, 69, 1049–1053. [Google Scholar] [CrossRef]
- Murase, T.; Nagasawa, A.; Suzuki, J.; Hase, T.; Tokimitsu, I. Beneficial effects of tea catechins on diet-induced obesity: Stimulation of lipid catabolism in the liver. Int. J. Obes. 2002, 26, 1459–1464. [Google Scholar] [CrossRef]
- Amemiya-Kudo, M.; Shimano, H.; Hasty, A.H.; Yahagi, N.; Yoshikawa, T.; Matsuzaka, T.; Okazaki, H.; Tamura, Y.; Iizuka, Y.; Ohashi, K.; et al. Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes. J. Lipid Res. 2002, 43, 1220–1235. [Google Scholar] [CrossRef]
- Friedrich, M.; Petzke, K.J.; Raederstorff, D.; Wolfram, S.; Klaus, S. Acute effects of epigallocatechin gallate from green tea on oxidation and tissue incorporation of dietary lipids in mice fed a high-fat diet. Int. J. Obes. 2012, 36, 735–743. [Google Scholar] [CrossRef]
- Yeh, C.-W.; Chen, W.-J.; Chiang, C.-T.; Lin-Shiau, S.-Y.; Lin, J.-K. Suppression of fatty acid synthase in MCF-7 breast cancer cells by tea and tea polyphenols: A possible mechanism for their hypolipidemic effects. Pharmacogenom. J. 2003, 3, 267–276. [Google Scholar] [CrossRef]
- Shimano, H. Sterol regulatory element-binding proteins (SREBPs): Transcriptional regulators of lipid synthetic genes. Prog. Lipid Res. 2001, 40, 439–452. [Google Scholar] [CrossRef]
- Eid, Y.; Ohtsuka, A.; Hayashi, K. Tea polyphenols reduce glucocorticoid-induced growth inhibition and oxidative stress in broiler chickens. Br. Poult. Sci. 2003, 44, 127–132. [Google Scholar] [CrossRef]
- Tuzcu, M.; Sahin, N.; Karatepe, M.; Cikim, G.; Kilinc, U.; Sahin, K. Epigallocatechin-3-gallate supplementation can improve antioxidant status in stressed quail. Br. Poult. Sci. 2008, 49, 643–648. [Google Scholar] [CrossRef]
- Sahin, K.; Orhan, C.; Tuzcu, M.; Ali, S.; Sahin, N.; Hayirli, A. Epigallocatechin-3-gallate prevents lipid peroxidation and enhances antioxidant defense system via modulating hepatic nuclear transcription factors in heat-stressed quails. Poult. Sci. 2010, 89, 2251–2258. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, H.; Qotbi, A.A.A.; Seidavi, A.; Norris, D.; Brown, D. Effects of different levels of coriander (Coriandrum sativum) seed powder and extract on serum biochemical parameters, microbiota, and immunity in broiler chicks. Sci. World J. 2014, 2014, 628979. [Google Scholar] [CrossRef]
- Nawal, A.A.; Nasr, R.M.; Abou, E.H.S.; Salama, S.A. The antioxidant effect of Green Tea Mega EGCG against electromagnetic radiation-induced oxidative stress in the hippocampus and striatum of rats. Electromagn. Biol. Med. 2017, 36, 63–73. [Google Scholar]
- Na, H.K.; Surh, Y.J. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem. Toxicol. 2008, 46, 1271–1278. [Google Scholar] [CrossRef]
- Coyle, C.H.; Philips, B.J.; Morrisroe, S.N.; Chancellor, M.B.; Yoshimura, N. Antioxidant effects of green tea and its polyphenols on bladder cells. Life Sci. 2008, 83, 12–18. [Google Scholar] [CrossRef]
- Dembinska-Kiec, A.; Mykkänen, O.; Kiec-Wilk, B.; Mykkänen, H. Antioxidant phytochemicals against type 2 diabetes. Br. J. Nutr. 2008, 99, ES109–ES117. [Google Scholar] [CrossRef]
- Cao, T.; Zhang, X.; Yang, D.; Wang, Y.-Q.; Qiao, Z.-D.; Huang, J.-M.; Zhang, P. Antioxidant effects of epigallocatechin-3-gallate on the aTC1-6 pancreatic alpha cell line. Biochem. Biophys. Res. Commun. 2018, 495, 693–699. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, H.; Li, W.; Miao, J.; Chen, N.; Shao, X.; Cao, Y. Polyphenols in Eucalyptus leaves improved the egg and meat qualities and protected against ethanol-induced oxidative damage in laying hens. J. Anim. Physiol. Anim. Nutr. 2018, 102, 214–223. [Google Scholar] [CrossRef]
- He, J.; Feng, G.; Ao, X.; Li, Y.; Qian, H.; Liu, J.; Bai, G.; He, Z. Effects of L-glutamine on growth performance, antioxidant ability, immunity and expression of genes related to intestinal health in weanling pigs. Livest. Sci. 2018, 189, 102–109. [Google Scholar] [CrossRef]
- Zeitz, J.; Neufeld, K.; Potthast, C.; Kroismayr, A.; Most, E.; Eder, K. Effects of dietary supplementation of the lignocelluloses fibrecell and opticell on performance, expression of inflammation-related genes and the gut microbiome of broilers. Poult. Sci. 2019, 98, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Schweiggert, R.M.; Carle, R. Carotenoid deposition in plant and animal foods and its impact on bioavailability. Crit. Rev. Food Sci. Nutr. 2017, 57, 1807–1830. [Google Scholar] [CrossRef]
- Uuganbayar, D.; Bae, I.H.; Choi, K.S.; Shin, I.S.; Firman, J.D.; Yang, C.J. Effects of green tea powder on laying performance and egg quality in laying hens. Asian-Australas. J. Anim. Sci. 2005, 18, 1769–1774. [Google Scholar] [CrossRef]
- Higashi-Okai, K.; Yamazaki, M.; Nagamori, H.; Okai, Y. Identification and antioxidant activity of several pigments from the residual green tea (Camellia sinensis) after hot water extraction. J. UOEH 2001, 23, 335–344. [Google Scholar] [CrossRef]
- Kao, Y.-H.; Hiipakka, R.A.; Liao, S. Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 2000, 141, 980–987. [Google Scholar] [CrossRef]
- Muharlien, M. Improving the egg quality trough addition of green tea in diet on laying hen. Jurnal Ilmu dan Teknologi Hasil Ternak 2012, 5, 532–537. [Google Scholar]
- Bar, A. Differential Regulation of Calbindin in the Calcium-Transporting Organs of Birds with High Calcium Requirements. J. Poult. Sci. 2009, 46, 267–285. [Google Scholar] [CrossRef]
- Walters, M.E.; Esfandi, R.; Tsopmo, A. Potential of food hydrolyzed proteins and peptides to chelate iron or calcium and enhance their absorption. Foods 2018, 7, 172. [Google Scholar] [CrossRef]
- Xia, B.; Liu, Y.; Sun, D.; Liu, J.; Zhu, Y.; Lu, L. Effects of green tea powder supplementation on egg production and egg quality in laying hens. J. Appl. Anim. Res. 2018, 46, 927–931. [Google Scholar] [CrossRef]
- Chen, X.; Li, T.; He, K.; Geng, Z.; Wan, X. Dietary green tea powder supplementation enriched egg nutrients and physicochemical property in an indigenous chicken breed. Poult. Sci. 2021, 100, 388–395. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, M.; Ho, C.-T.; Guo, X.; Wu, Z.; Weng, P.; Yan, M.; Cao, J. Metagenomics analysis of gut microbiota modulatory effect of green tea polyphenols by high fat diet-induced obesity mice model. J. Funct. Foods 2018, 46, 268–277. [Google Scholar] [CrossRef]
- Ariana, M.; Samie, A.; Edriss, M.A.; Jahanian, R. Effects of powder and extract form of green tea and marigold, and α-tocopheryl acetate on performance, egg quality and egg yolk cholesterol levels of laying hens in late phase of production. J. Med. Plants Res. 2011, 5, 2710–2716. [Google Scholar]
- Zou, X.; Xiao, R.; Li, H.; Liu, T.; Liao, Y.; Wang, Y.; Wu, S.; Li, Z. Effect of a novel strain of Lactobacillus brevis M8 and tea polyphenol diets on performance, meat quality and intestinal microbiota in broilers. Ital. J. Anim. Sci. 2018, 17, 396–407. [Google Scholar] [CrossRef]
- Power, S.E.; O’Toole, P.W.; Stanton, C.; Ross, R.P.; Fitzgerald, G.F. Intestinal microbiota, diet and health. Br. J. Nutr. 2013, 111, 387–402. [Google Scholar] [CrossRef] [PubMed]
- Butel, M.-J. Probiotics, gut microbiota and health. Med. Mal. Infect. 2014, 44, 1–8. [Google Scholar] [CrossRef]
- Seo, D.-B.; Jeong, H.W.; Cho, D.; Lee, B.J.; Lee, J.H.; Choi, J.Y.; Bae, I.-H.; Lee, S.-J. Fermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice. J. Med. Food 2015, 18, 549–556. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Z.; Guo, H.; He, D.; Zhao, H.; Wang, Z.; Zhang, W.; Liao, L.; Zhang, C.; Ni, L. The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high-fat-induced obese mice. Food Funct. 2016, 7, 4869–4879. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, X.; Sun, Y.; Hu, B.; Sun, Y.; Jabbar, S.; Zeng, X. Fermentation in vitro of EGCG, GCG and EGCG3"Me isolated from Oolong tea by human intestinal microbiota. Food Res. Int. 2013, 54, 1589–1595. [Google Scholar] [CrossRef]
- Lee, H.C.; Jenner, A.M.; Low, C.S.; Lee, Y.K. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol. 2006, 157, 876–884. [Google Scholar] [CrossRef]
- Rastmanesh, R. High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction. Chem.-Biol. Interact. 2011, 189, 1–8. [Google Scholar] [CrossRef]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef] [PubMed]
Items | Treatments | |||
---|---|---|---|---|
Control | Trial Group I | Trial Group II | Trial Group III | |
Ingredients (%) | ||||
Green Tea Powder | 0.00 | 0.80 | 1.60 | 2.40 |
Corn | 65.00 | 64.47 | 63.95 | 63.42 |
Soybean meal | 21.00 | 20.73 | 20.45 | 20.18 |
Wheat bran | 3.00 | 3.00 | 3.00 | 3.00 |
Premix 1 | 2.50 | 2.50 | 2.50 | 2.50 |
Limestone | 3.50 | 3.50 | 3.50 | 3.50 |
Calcium sand | 4.00 | 4.00 | 4.00 | 4.00 |
CaHPO4 | 1.00 | 1.00 | 1.00 | 1.00 |
Total | 100 | 100 | 100 | 100 |
Analytical composition (%) 2 | ||||
DM | 95.17 | 94.82 | 94.07 | 93.88 |
ME (MJ/kg) | 17.25 | 17.15 | 17.06 | 16.96 |
CP | 17.24 | 17.63 | 17.83 | 18.08 |
EE | 3.75 | 2.84 | 2.29 | 1.82 |
Ash | 3.46 | 3.38 | 3.47 | 3.20 |
Ca | 1.67 | 1.85 | 2.07 | 2.15 |
P | 0.11 | 0.14 | 0.17 | 0.20 |
Asp | 1.88 | 1.66 | 1.65 | 1.67 |
Thr | 0.75 | 0.67 | 0.66 | 0.66 |
Ser | 0.97 | 0.86 | 0.85 | 0.84 |
Glu | 3.71 | 3.29 | 3.24 | 3.22 |
Gly | 0.83 | 0.74 | 0.73 | 0.73 |
Ala | 1.03 | 0.93 | 0.88 | 0.88 |
Val | 0.93 | 0.83 | 0.81 | 0.81 |
Met | 0.43 | 0.36 | 0.40 | 0.44 |
Ile | 0.82 | 0.73 | 0.72 | 0.73 |
Leu | 1.75 | 1.57 | 1.52 | 1.50 |
Tyr | 0.78 | 0.68 | 0.67 | 0.68 |
Phe | 0.98 | 0.87 | 0.85 | 0.86 |
His | 0.51 | 0.45 | 0.45 | 0.45 |
Lys | 1.09 | 0.95 | 0.96 | 0.98 |
Arg | 1.30 | 1.15 | 1.15 | 1.16 |
Pro | 1.20 | 1.09 | 1.04 | 1.05 |
Items | Content (%) |
---|---|
M | 8.24 |
CP | 27.61 |
EE | 2.75 |
FAA | 2.33 |
TP | 24.41 |
CAFF | 3.71 |
GA | 0.16 |
EGC | 0.42 |
C | 0.19 |
EGCG | 6.37 |
EC | 1.02 |
GCG | 0.09 |
ECG | 4.80 |
Items | Groups | p-Value | |||
---|---|---|---|---|---|
Control | Trial Group I | Trial Group II | Trial Group III | ||
ADFI (g) | 84.21 ± 3.32 | 84.11 ± 3.61 | 86.81 ± 5.31 | 85.71 ± 8.06 | 0.438 |
ADG (g) | 2.05 ± 0.25 a | 2.27 ± 0.46 a | 0.77 ± 0.20 b | 0.81 ± 0.21 b | 0.010 |
EP (pieces/d) | 0.32 ± 0.04 | 0.32 ± 0.02 | 0.34 ± 0.02 | 0.36 ± 0.04 | 0.277 |
FCR | 4.63 ± 0.69 | 4.86 ± 0.28 | 4.79 ± 0.55 | 4.50 ± 0.35 | 0.260 |
Items | Groups | p-Value | |||
---|---|---|---|---|---|
Control | Trial Group I | Trial Group II | Trial Group III | ||
Serum biochemical parameters | |||||
TP (g/L) | 31.59 ± 5.79 | 32.16 ± 7.93 | 32.26 ± 5.18 | 31.54 ± 6.08 | 0.852 |
ALB (g/L) | 26.55 ± 4.36 | 23.41 ± 5.33 | 27.31 ± 4.48 | 24.23 ± 4.91 | 0.069 |
IgA (g/L) | 5.50 ± 0.89 ab | 6.77 ± 0.69 a | 3.64 ± 0.66 b | 3.92 ± 0.96 b | 0.017 |
IgG (g/L) | 1.34 ± 0.34 | 1.45 ± 0.12 | 1.45 ± 0.24 | 1.60 ± 0.45 | 0.246 |
IgM (g/L) | 3.79 ± 1.02 b | 10.13 ± 3.30 a | 4.22 ± 0.77 b | 6.15 ± 1.34 b | 0.010 |
Serum redox status | |||||
SOD (U/mL) | 132.3 ± 25.51 | 137.01 ± 18.27 | 133.92 ± 21.22 | 124.77 ± 30.44 | 0.448 |
MDA(nmoL/mL) | 9.05 ± 1.01 a | 3.67 ± 0.21 b | 4.07 ± 0.32 b | 3.13 ± 0.35 b | 0.010 |
GSH-Px (U/mL) | 661.95 ± 155.37 a | 592.92 ± 79.42 a | 435.40 ± 31.11 b | 455.75 ± 57.23 b | 0.011 |
Items | Groups | p-Value | |||
---|---|---|---|---|---|
Control | Trial Group I | Trial Group II | Trial Group III | ||
AEW (g) | 48.56 ± 5.49 | 48.3 ± 3.61 | 46.92 ± 3.29 | 48.69 ± 2.71 | 0.218 |
AH (mm) | 3.89 ± 0.94 | 4.16 ± 0.99 | 3.95 ± 1.07 | 4.21 ± 0.82 | 0.372 |
YC | 7.11 ± 1.64 b | 7.61 ± 1.75 ab | 8.47 ± 1.46 a | 7.59 ± 1.21 ab | 0.010 |
HU | 62.25 ± 10.35 | 65.86 ± 9.70 | 63.74 ± 12.30 | 65.55 ± 8.94 | 0.351 |
EYW (g) | 16.84 ± 1.78 a | 16.38 ± 1.15 ab | 15.65 ± 1.24 b | 16.76 ± 2.14 a | 0.033 |
ES (N/m2) | 35.32 ± 6.80 a | 30.65 ± 5.90 ab | 26.51 ± 5.88 b | 30.74 ± 8.33 ab | 0.010 |
ESI | 1.34 ± 0.06 | 1.37 ± 0.07 | 1.35 ± 0.01 | 1.35 ± 0.01 | 0.256 |
ET (mm) | 0.32 ± 0.02 a | 0.30 ± 0.04 b | 0.29 ± 0.03 b | 0.29 ± 0.04 b | 0.030 |
Items | Groups | p-Value | |||
---|---|---|---|---|---|
Control | Trial Group I | Trial Group II | Trial Group III | ||
Cholesterol (mg/100 g) | 454.33 ± 31.50 | 440.00 ± 42.76 | 471.00 ± 14.11 | 487.00 ± 34.37 | 0.069 |
Amino acid (g/100 g) | |||||
Asp | 0.44 ± 0.02 b | 0.45 ± 0.01 ab | 0.46 ± 0.02 ab | 0.47 ± 0.01 a | 0.029 |
Thr | 1.30 ± 0.04 b | 1.33 ± 0.02 ab | 1.34 ± 0.04 ab | 1.39 ± 0.04 a | 0.012 |
Ser | 0.70 ± 0.03 b | 0.72 ± 0.01 b | 0.73 ± 0.02 ab | 0.76 ± 0.02 a | 0.028 |
Glu | 1.81 ± 0.06 b | 1.84 ± 0.03 ab | 1.87 ± 0.04 ab | 1.92 ± 0.01 a | 0.014 |
Gly | 0.29 ± 0.01 b | 0.29 ± 0.06 a | 0.30 ± 0.01 ab | 0.31 ± 0.01 a | 0.037 |
Ala | 0.52 ± 0.02 b | 0.53 ± 0.02 b | 0.54 ± 0.02 ab | 0.56 ± 0.01 a | 0.014 |
Val | 0.51 ± 0.02 b | 0.52 ± 0.01 ab | 0.52 ± 0.02 ab | 0.54 ± 0.01 a | 0.010 |
Met | 0.44 ± 0.01 | 0.44 ± 0.02 | 0.43 ± 0.01 | 0.44 ± 0.01 | 0.290 |
Ile | 0.44 ± 0.02 b | 0.45 ± 0.01 ab | 0.46 ± 0.01 ab | 0.47 ± 0.01 a | 0.046 |
Leu | 0.78 ± 0.04 b | 0.80 ± 0.02 ab | 0.80 ± 0.03 ab | 0.83 ± 0.02 a | 0.023 |
Tyr | 0.36 ± 0.01 | 0.36 ± 0.01 | 0.36 ± 0.02 | 0.37 ± 0.01 | 0.217 |
Phe | 0.48 ± 0.02 b | 0.49 ± 0.01 ab | 0.49 ± 0.01 ab | 0.50 ± 0.01 a | 0.037 |
Lys | 0.50 ± 0.02 b | 0.51 ± 0.01 ab | 0.52 ± 0.01 ab | 0.53 ± 0.01 a | 0.013 |
His | 0.24 ± 0.02 | 0.23 ± 0.01 | 0.23 ± 0.01 | 0.22 ± 0.01 | 0.125 |
Arg | 0.45 ± 0.02 b | 0.46 ± 0.015 b | 0.47 ± 0.02 ab | 0.50 ± 0.02 a | 0.010 |
Pro | 1.09 ± 0.05 b | 1.12 ± 0.04 b | 1.13 ± 0.02 b | 1.55 ± 0.03 a | 0.010 |
TAA | 10.36 ± 0.37 b | 10.52 ± 0.18 b | 10.66 ± 0.26 b | 11.36 ± 0.11 a | 0.010 |
EAA | 4.45 ± 0.16 b | 4.53 ± 0.05 ab | 4.56 ± 0.11 ab | 4.70 ± 0.10 a | 0.023 |
NEAA | 5.91 ± 0.21 b | 5.60 ± 0.13 b | 6.10 ± 0.15 a | 6.67 ± 0.11 a | 0.010 |
EAA/TAA (%) | 42.97 | 43.05 | 42.79 | 41.37 | |
EAA/NEAA (%) | 75.34 | 75.58 | 74.81 | 70.57 |
Items | Control | Trial Group I | Trial Group II | Trial Group III | p-Value |
---|---|---|---|---|---|
Valid sequence | 36,462 ± 4022 b | 36,064 ± 3696 b | 40,932 ± 2817 a | 39,787 ± 1913 ab | 0.022 |
OTUs | 1071 ± 102 | 1027 ± 82 | 1060 ± 64 | 1057 ± 78 | 0.688 |
Shannon index | 4.62 ± 0.38 | 4.62 ± 0.16 | 4.52 ± 0.30 | 4.74 ± 0.33 | 0.256 |
Simpson index | 0.03 ± 0.02 | 0.03 ± 0.01 | 0.04 ± 0.02 | 0.03 ± 0.01 | 0.312 |
Ace index | 756.12 ± 57.90 | 750.16 ± 21.46 | 733.32 ± 83.72 | 767.34 ± 103.17 | 0.545 |
Chao1 index | 767.91 ± 48.71 | 759.74 ± 32.61 | 742.44 ± 74.01 | 780.52 ± 106.80 | 0.489 |
Coverage/% | 99.70 | 99.70 | 99.70 | 99.70 | 0.512 |
Items | Groups | p-Value | |||
---|---|---|---|---|---|
Control | Trial Group I | Trial Group II | Trial Group III | ||
Bacteroidota | 48.46 ± 9.62 b | 56.50 ± 8.71 a | 53.60 ± 11.45 ab | 54.17 ± 6.65 ab | 0.037 |
Firmicutes | 41.99 ± 10.03 a | 34.92 ± 4.37 b | 36.49 ± 10.89 ab | 37.05 ± 5.75 ab | 0.041 |
Desulfobacterota | 2.52 ± 0.69 | 1.75 ± 0.20 | 2.05 ± 0.57 | 2.30 ± 0.66 | 0.595 |
Actinobacteriota | 2.28 ± 0.22 | 0.86 ± 0.08 | 1.23 ± 0.06 | 1.19 ± 0.09 | 0.106 |
Spirochaetota | 0.79 ± 0.12 | 1.75 ± 0.17 | 1.34 ± 0.38 | 0.89 ± 0.07 | 0.390 |
Synergistota | 1.50 ± 0.12 | 0.75 ± 0.09 | 1.03 ± 0.19 | 0.98 ± 0.06 | 0.587 |
Proteobacteria | 0.71 ± 0.09 | 0.89 ± 0.05 | 0.92 ± 0.09 | 1.27 ± 0.01 | 0.219 |
unclassified | 0.38 ± 0.05 | 1.14 ± 0.08 | 1.06 ± 0.16 | 0.27 ± 0.09 | 0.538 |
WPS-2 | 0.64 ± 0.05 | 0.35 ± 0.06 | 0.77 ± 0.05 | 0.52 ± 0.09 | 0.637 |
Verrucomicrobiota | 0.16 ± 0.03 | 0.03 ± 0.02 | 0.12 ± 0.02 | 0.05 ± 0.01 | 0.218 |
Items | Groups | p-Value | |||
---|---|---|---|---|---|
Control | Trial Group I | Trial Group II | Trial Group III | ||
Bacteroidaceae | 17.18 ± 3.98 b | 25.05 ± 2.31 ab | 24.27 ± 4.96 ab | 29.71 ± 7.44 a | 0.012 |
Rikenellaceae | 18.23 ± 5.32 a | 11.16 ± 3.15 b | 9.61 ± 1.82 b | 8.43 ± 2.21 b | 0.016 |
Lachnospiraceae | 13.76 ± 3.63 | 10.09 ± 1.59 | 11.81 ± 3.37 | 11.45 ± 1.07 | 0.487 |
Prevotellaceae | 3.30 ± 0.32 | 7.65 ± 0.15 | 6.59 ± 1.73 | 5.84 ± 0.14 | 0.174 |
Ruminococcaceae | 5.25 ± 0.50 | 4.48 ± 0.27 | 6.00 ± 0.65 | 5.09 ± 1.19 | 0.863 |
Acidaminococcaceae | 6.10 ± 0.99 | 4.22 ± 0.96 | 4.47 ± 0.62 | 5.13 ± 0.33 | 0.753 |
Oscillospiraceae | 4.91 ± 0.71 | 5.05 ± 0.27 | 4.85 ± 0.01 | 5.06 ± 0.63 | 0.994 |
Desulfovibrionaceae | 2.52 ± 0.69 | 1.75 ± 0.20 | 2.05 ± 0.27 | 2.30 ± 0.66 | 0.595 |
Tannerellaceae | 1.28 ± 0.76 | 1.80 ± 0.10 | 1.59 ± 0.06 | 2.07 ± 0.89 | 0.454 |
Synergistaceae | 1.50 ± 0.12 | 0.75 ± 0.09 | 1.03 ± 0.19 | 0.98 ± 0.09 | 0.587 |
Spirochaetaceae | 0.70 ± 0.09 | 1.20 ± 0.06 | 1.32 ± 0.38 | 0.87 ± 0.04 | 0.555 |
Butyricicoccaceae | 1.15 ± 0.03 | 0.87 ± 0.05 | 0.85 ± 0.10 | 1.00 ± 0.04 | 0.750 |
Christensenellaceae | 1.53 ± 0.03 | 0.81 ± 0.03 | 0.80 ± 0.04 | 0.56 ± 0.03 | 0.430 |
Lactobacillaceae | 1.12 ± 0.22 | 1.19 ± 0.22 | 0.55 ± 0.09 | 0.84 ± 0.04 | 0.759 |
Atopobiaceae | 1.24 ± 0.16 | 0.44 ± 0.06 | 0.82 ± 0.01 | 0.63 ± 0.05 | 0.490 |
Peptostreptococcaceae | 0.35 ± 0.06 | 0.51 ± 0.01 | 0.96 ± 0.09 | 0.30 ± 0.02 | 0.740 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, W.; Tan, Q.; Li, H.; Ye, T.; Xiao, T.; Tian, X.; Wang, W. Effects of Different Levels of Green Tea Powder on Performance, Antioxidant Activity, Egg Mass, Quality, and Cecal Microflora of Chickens. Animals 2024, 14, 3020. https://doi.org/10.3390/ani14203020
Luo W, Tan Q, Li H, Ye T, Xiao T, Tian X, Wang W. Effects of Different Levels of Green Tea Powder on Performance, Antioxidant Activity, Egg Mass, Quality, and Cecal Microflora of Chickens. Animals. 2024; 14(20):3020. https://doi.org/10.3390/ani14203020
Chicago/Turabian StyleLuo, Wei, Qisong Tan, Hui Li, Tao Ye, Tao Xiao, Xingzhou Tian, and Weiwei Wang. 2024. "Effects of Different Levels of Green Tea Powder on Performance, Antioxidant Activity, Egg Mass, Quality, and Cecal Microflora of Chickens" Animals 14, no. 20: 3020. https://doi.org/10.3390/ani14203020
APA StyleLuo, W., Tan, Q., Li, H., Ye, T., Xiao, T., Tian, X., & Wang, W. (2024). Effects of Different Levels of Green Tea Powder on Performance, Antioxidant Activity, Egg Mass, Quality, and Cecal Microflora of Chickens. Animals, 14(20), 3020. https://doi.org/10.3390/ani14203020