Effects of Dietary Protein Levels, Net Energy Levels, and Essential Amino Acid-to-True Protein Ratios on Broiler Performance
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatment Diets
Nutrient, % | Starter | Grower | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 |
---|---|---|---|---|---|---|---|---|---|---|
AMEn, MJ/kg | 12.45 | 12.66 | 12.46 | 12.43 | 13.02 | 12.99 | 12.45 | 12.39 | 13.01 | 12.99 |
NE, MJ/kg | 9.9 | 10.0 | 9.9 | 9.9 | 10.4 | 10.4 | 9.9 | 9.9 | 10.4 | 10.4 |
CP (N × 6.25) | 23 | 21 | 16 | 16 | 16 | 16 | 18 | 18 | 18 | 18 |
TP (N × KA) | 19.00 | 18.27 | 13.77 | 13.21 | 13.78 | 13.15 | 15.05 | 14.10 | 15.09 | 14.07 |
EAA | 10.49 | 9.71 | 7.72 | 7.94 | 7.72 | 7.94 | 8.42 | 8.44 | 8.45 | 8.44 |
Crude fat | 6.49 | 5.23 | 3.37 | 4.16 | 4.92 | 5.59 | 4.63 | 6.34 | 6.38 | 6.84 |
Crude Fiber | 4.85 | 4.74 | 4.80 | 4.94 | 4.27 | 4.30 | 4.44 | 5.86 | 4.30 | 4.48 |
d Gly equiv 1 | 1.383 | 1.307 | 1.050 | 1.050 | 1.050 | 1.050 | 1.028 | 1.019 | 1.041 | 1.029 |
d Arg | 1.280 | 1.180 | 1.075 | 1.075 | 1.075 | 1.075 | 1.075 | 1.075 | 1.075 | 1.075 |
d Lys | 1.220 | 1.120 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 |
d Met 2 | 0.569 | 0.509 | 0.418 | 0.619 | 0.418 | 0.418 | 0.418 | 0.418 | 0.418 | 0.418 |
d M+C | 0.311 | 0.297 | 0.328 | 0.709 | 0.328 | 0.328 | 0.328 | 0.328 | 0.328 | 0.328 |
d Trp | 0.880 | 0.806 | 0.746 | 0.746 | 0.746 | 0.746 | 0.746 | 0.746 | 0.746 | 0.746 |
d Leu | 0.278 | 0.259 | 0.169 | 0.176 | 0.169 | 0.176 | 0.217 | 0.220 | 0.218 | 0.221 |
d Ile | 0.895 | 0.847 | 0.597 | 0.597 | 0.597 | 0.597 | 0.677 | 0.673 | 0.686 | 0.685 |
d Tyr | 1.372 | 1.290 | 1.085 | 1.085 | 1.085 | 1.085 | 1.085 | 1.085 | 1.085 | 1.085 |
d Asn | 0.820 | 0.766 | 0.678 | 0.678 | 0.678 | 0.678 | 0.678 | 0.678 | 0.678 | 0.678 |
d Thr 2 | 0.648 | 0.621 | 0.314 | 0.439 | 0.313 | 0.379 | 0.479 | 0.464 | 0.490 | 0.486 |
d Val | 0.767 | 0.708 | 0.285 | 0.382 | 0.285 | 0.381 | 0.527 | 0.519 | 0.541 | 0.538 |
d Gly | 0.817 | 0.750 | 0.697 | 0.697 | 0.697 | 0.697 | 0.697 | 0.710 | 0.697 | 0.697 |
d Ser | 0.939 | 0.860 | 0.796 | 0.796 | 0.796 | 0.796 | 0.796 | 0.796 | 0.796 | 0.796 |
d Pro | 0.758 | 0.705 | 0.751 | 0.689 | 0.753 | 0.690 | 0.567 | 0.577 | 0.570 | 0.565 |
d Ala | 0.876 | 0.843 | 0.418 | 0.505 | 0.416 | 0.504 | 0.645 | 0.619 | 0.659 | 0.650 |
d Asp | 1.214 | 1.203 | 1.033 | 0.902 | 1.027 | 0.907 | 1.037 | 1.008 | 1.040 | 1.028 |
d Glu | 0.820 | 0.761 | 0.628 | 0.529 | 0.628 | 0.517 | 0.643 | 0.596 | 0.643 | 0.632 |
d Phe + Tyr | 1.126 | 1.080 | 0.631 | 0.563 | 0.628 | 0.566 | 0.762 | 0.742 | 0.796 | 0.797 |
d Gln | 2.370 | 2.517 | 1.820 | 1.568 | 1.796 | 1.610 | 1.878 | 1.881 | 1.921 | 1.936 |
Starch | 1.537 | 1.461 | 0.709 | 0.874 | 0.706 | 0.872 | 1.127 | 1.090 | 1.150 | 1.142 |
Calcium | 0.880 | 0.800 | 0.760 | 0.760 | 0.760 | 0.760 | 0.760 | 0.760 | 0.760 | 0.760 |
P available | 0.440 | 0.400 | 0.380 | 0.380 | 0.380 | 0.380 | 0.380 | 0.380 | 0.380 | 0.380 |
Sodium | 0.160 | 0.160 | 0.220 | 0.220 | 0.220 | 0.220 | 0.220 | 0.220 | 0.220 | 0.220 |
Potassium | 0.950 | 0.878 | 0.950 | 0.950 | 0.950 | 0.950 | 0.950 | 0.950 | 0.950 | 0.950 |
Chloride | 0.300 | 0.203 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 |
Choline, mg/kg | 1700 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 |
Linoleic 18:2 | 2.075 | 1.790 | 1.271 | 1.478 | 1.654 | 1.831 | 1.597 | 1.929 | 2.037 | 2.100 |
DEB (Na+K-Cl) 3 | 228 | 237 | 254 | 254 | 254 | 254 | 254 | 254 | 254 | 254 |
E:T | 0.55 | 0.53 | 0.56 | 0.60 | 0.56 | 0.60 | 0.56 | 0.60 | 0.56 | 0.60 |
Measured Nutrients, % | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 |
---|---|---|---|---|---|---|---|---|
Lysine | 0.999 | 1.041 | 1.028 | 0.947 | 1.041 | 1.078 | 1.138 | 1.152 |
Methionine | 0.395 | 0.619 | 0.355 | 0.371 | 0.414 | 0.354 | 0.395 | 0.356 |
Threonine | 0.680 | 0.439 | 0.683 | 0.690 | 0.749 | 0.763 | 0.776 | 0.755 |
Arginine | 1.006 | 1.057 | 1.022 | 1.057 | 1.047 | 1.004 | 1.085 | 1.044 |
Phenylalanine | 0.634 | 0.658 | 0.651 | 0.641 | 0.722 | 0.704 | 0.768 | 0.808 |
Valine | 0.830 | 0.886 | 0.831 | 0.860 | 0.880 | 0.884 | 0.909 | 0.925 |
Isoleucine | 0.694 | 0.763 | 0.689 | 0.692 | 0.688 | 0.698 | 0.715 | 0.757 |
Leucine | 1.173 | 1.215 | 1.159 | 1.168 | 1.175 | 1.182 | 1.229 | 1.267 |
Histidine | 0.263 | 0.326 | 0.272 | 0.321 | 0.401 | 0.403 | 0.419 | 0.420 |
Serine | 0.473 | 0.589 | 0.469 | 0.571 | 0.719 | 0.728 | 0.748 | 0.766 |
Glycine | 0.813 | 0.780 | 0.794 | 0.740 | 0.669 | 0.688 | 0.678 | 0.681 |
Aspartic acid | 0.882 | 0.991 | 0.900 | 0.940 | 1.254 | 1.203 | 1.335 | 1.354 |
Glutamic acid | 3.055 | 2.732 | 3.017 | 2.660 | 3.190 | 3.196 | 3.361 | 3.605 |
Alanine | 0.673 | 0.605 | 0.668 | 0.554 | 0.679 | 0.640 | 0.699 | 0.705 |
Proline | 1.045 | 0.940 | 1.037 | 0.929 | 1.102 | 1.068 | 1.132 | 1.231 |
Tyrosine | 0.242 | 0.248 | 0.195 | 0.293 | 0.384 | 0.320 | 0.403 | 0.338 |
CP | 15.58 | 15.41 | 15.58 | 15.07 | 17.45 | 16.66 | 17.07 | 17.74 |
AME 1, MJ/kg | 13.89 | 13.98 | 14.40 | 14.43 | 13.88 | 13.61 | 14.33 | 14.20 |
AMEn 1, MJ/kg | 13.27 | 13.42 | 13.78 | 13.78 | 13.08 | 12.91 | 13.60 | 13.45 |
NE 1, MJ/kg | 10.23 | 10.55 | 10.70 | 11.12 | 10.41 | 10.29 | 10.67 | 10.63 |
2.2. Birds and Housing Management
2.3. Laboratory Analysis and Calculations
2.4. Statistical Analysis
3. Results
3.1. Growth Performance and Energy Utilization from d19 to 28
3.2. Growth Performance and Energy Utilization from d19 to 35
3.3. Correlations Between the Experimental and Measured Variables (d19 to 35)
4. Discussion
4.1. Influence of E:T Ratios in NP Diets on the Measured Variables
4.2. Effect of E:T Levels in RP Diets on the Measured Responses
4.3. Effect of NE Levels in NP and RP Diets on the Measured Responses
5. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karomy, A.S.; Habib, H.N.; Kasim, S.A. Influence of Different Levels of Crude Protein and Metabolizable Energy on Production Performance of Ross Broiler. J. Biol. Agric. Healthc. 2019, 9, 20–24. [Google Scholar]
- Hidalgo, M.; Dozier, W., III; Davis, A.; Gordon, R. Live performance and meat yield responses of broilers to progressive concentrations of dietary energy maintained at a constant metabolizable energy-to-crude protein ratio. J. Appl. Poult. Res. 2004, 13, 319–327. [Google Scholar] [CrossRef]
- Kong, C.; Adeola, O. Evaluation of amino acid and energy utilization in feedstuff for swine and poultry diets. Asian-Australas. J. Anim. Sci. 2014, 27, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Noblet, J. Net energy evaluation of feeds and determination of net energy requirements for pigs. Rev. Cent. Am. Odontol. 2007, 36, 277–284. [Google Scholar] [CrossRef]
- Krul, E.S. Calculation of nitrogen-to-protein conversion factors: A review with a focus on soy protein. J. Am. Oil Chem. Soc. 2019, 96, 339–364. [Google Scholar] [CrossRef]
- Heger, J. Essential to non-essential amino acid ratios. In Amino Acids in Animal Nutrition, 2nd ed.; D’Mello, J.P.F., Ed.; CABI Publishing: Edinburgh, UK, 2003; pp. 103–124. ISBN 0 85199 654 X. [Google Scholar]
- Alhotan, R. Commercial poultry feed formulation: Current status, challenges, and future expectations. World’s Poult. Sci. J. 2021, 77, 279–299. [Google Scholar] [CrossRef]
- Alhotan, R.; Pesti, G. Quantitative estimates of the optimal balance between digestible lysine and the true protein contents of broiler feeds. Br. Poult. Sci. 2016, 57, 538–550. [Google Scholar] [CrossRef]
- Pesti, G.M. Impact of dietary amino acid and crude protein levels in broiler feeds on biological performance. J. Appl. Poult. Res. 2009, 18, 477–486. [Google Scholar] [CrossRef]
- Bedford, M.R.; Summers, J.D. The effect of the essential to nonessential amino acid ratio on performance and carcass composition. Can. J. Anim. Sci. 1988, 68, 899–906. [Google Scholar] [CrossRef]
- Peres, H.; Oliva-Teles, A. Effect of the dietary essential to non-essential amino acid ratio on growth, feed utilization and nitrogen metabolism of European sea bass (Dicentrarchus labrax). Aquaculture 2006, 256, 395–402. [Google Scholar] [CrossRef]
- Bedford, M.; Summers, J. Influence of the ratio of essential to non essential amino acids on performance and carcase composition of the broiler chick. Br. Poult. Sci. 1985, 26, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Lemme, A.; Frackenpohl, U.; Petri, A.; Meyer, H. Effects of reduced dietary protein concentrations with amino acid supplementation on performance and carcass quality in turkey toms 14 to 140 days of age. Int. J. Poult. Sci 2004, 3, 391–399. [Google Scholar]
- Maia, R.C.; Albino, L.F.T.; Rostagno, H.S.; Xavier Junior, M.L.; Kreuz, B.S.; Silva, R.L.; Faria, B.D.; Calderano, A.A. Low crude protein diets for broiler chickens aged 8 to 21 days should have a 50% essential-to-total nitrogen ratio. Anim. Feed Sci. Technol. 2021, 271, 114709. [Google Scholar] [CrossRef]
- Aftab, U.; Ashraf, M.; Jiang, Z. Low protein diets for broilers. World’s Poult. Sci. J. 2006, 62, 688–701. [Google Scholar] [CrossRef]
- Cobb 500, 2018. Broiler Performance & Nutrition Supplement. Available online: https://eliasnutri.wordpress.com/wp-content/uploads/2018/09/requerimentos-pollos-cobb500-2018.pdf (accessed on 15 October 2018).
- Wu, G. Dietary requirements of synthesizable amino acids by animals: A paradigm shift in protein nutrition. J. Anim. Sci. Biotechnol. 2014, 5, 34. [Google Scholar] [CrossRef]
- Mosse, J. Nitrogen-to-protein conversion factor for ten cereals and six legumes or oilseeds. A reappraisal of its definition and determination. Variation according to species and to seed protein content. J. Agric. Food Chem. 1990, 38, 18–24. [Google Scholar] [CrossRef]
- Tillman, P.B. Determination of Nutrient Values for Commercial Amino Acids. J. Appl. Poult. Res. 2019, 28, 526–530. [Google Scholar] [CrossRef]
- Dean, D.; Bidner, T.; Southern, L. Glycine supplementation to low protein, amino acid-supplemented diets supports optimal performance of broiler chicks. Poult. Sci. 2006, 85, 288–296. [Google Scholar] [CrossRef]
- Cobb 500, 2021. Cobb Broiler Management Guide. Available online: https://www.cobbgenetics.com/assets/Cobb-Files/Broiler-Guide_English-2021-min.pdf (accessed on 15 October 2023).
- England, A.D.; Kheravii, S.K.; Musigwa, S.; Kumar, A.; Daneshmand, A.; Sharma, N.K.; Gharib-Naseri, K.; Wu, S.B. Sexing chickens (Gallus gallus domesticus) with high-resolution melting analysis using feather crude DNA. Poult. Sci. 2021, 100, 100924. [Google Scholar] [CrossRef]
- Wu, S.-B.; Swick, R.A.; Noblet, J.; Rodgers, N.; Cadogan, D.; Choct, M. Net energy prediction and energy efficiency of feed for broiler chickens. Poult. Sci. 2019, 98, 1222–1234. [Google Scholar] [CrossRef]
- Wheat, T.E.; Grumbach, E.S.; Mazzeo, J.R. UPLC amino acid analysis solution. Appl. Note 2008. [Google Scholar]
- Bosch, L.; Alegría, A.; Farré, R. Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods. J. Chromatogr. B Biomed. Appl. 2006, 831, 176–183. [Google Scholar]
- Short, F.J.; Gorton, P.; Wiseman, J.; Boorman, K.N. Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Anim. Feed Sci. Technol. 1996, 59, 215–221. [Google Scholar]
- Annison, E.F.; White, R. Glucose utilization in sheep. Biochem. J. 1961, 80, 162–169. [Google Scholar]
- Brouwer, E. Report of sub-committee on constants and factors. In Energy Metabolism; Academic Press: London, UK, 1965; pp. 441–443. [Google Scholar]
- Noblet, J.; Fortune, H.; Shi, X.; Dubois, S. Prediction of net energy value of feeds for growing pigs. J. Anim. Sci. 1994, 72, 344–354. [Google Scholar]
- Green, J.A.; Hardy, R.W.; Brannon, E.L. The optimum dietary essential: Nonessential amino acid ratio for rainbow trout (Oncorhynchus mykiss), which maximizes nitrogen retention and minimizes nitrogen excretion. Fish Physiol. Biochem. 2002, 27, 109–115. [Google Scholar] [CrossRef]
- Infante-Rodríguez, F.; Salinas-Chavira, J.; Montaño-Gómez, M.F.; Manríquez-Nuñez, O.M.; González-Vizcarra, V.M.; Guevara-Florentino, O.F.; Ramírez De León, J.A. Effect of diets with different energy concentrations on growth performance, carcass characteristics and meat chemical composition of broiler chickens in dry tropics. SpringerPlus 2016, 5, 1937. [Google Scholar] [CrossRef]
- Waldroup, P.W.; Mitchell, R.J.; Payne, J.R.; Hazen, K.R. Performance of Chicks Fed Diets Formulated to Minimize Excess Levels of Essential Amino Acids. Poult. Sci. 1976, 55, 243–253. [Google Scholar] [CrossRef]
- Leeson, S.; Summers, J.; Caston, L. Net energy to improve pullet growth with low protein amino acid-fortified diets. J. Appl. Poult. Res. 2000, 9, 384–392. [Google Scholar]
- Almquist, H.J. Utilization of amino acids by chicks. Arch. Biochem. 1954, 52, 197–202. [Google Scholar]
- Chrystal, P.V.; Greenhalgh, S.; McInerney, B.V.; McQuade, L.R.; Akter, Y.; de Paula Dorigam, J.C.; Selle, P.H.; Liu, S.Y. Maize-based diets are more conducive to crude protein reductions than wheat-based diets for broiler chickens. Anim. Feed Sci. Technol. 2021, 275, 114867. [Google Scholar] [CrossRef]
- Musigwa, S.; Morgan, N.; Swick, R.A.; Cozannet, P.; Kheravii, S.K.; Wu, S.-B. Multi-carbohydrase enzymes improve feed energy in broiler diets containing standard or low crude protein. Anim. Nutr. 2021, 7, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, P.; Siegert, W.; Naranjo, V.D.; Rodehutscord, M. Effects of supplemented nonessential amino acids and nonprotein nitrogen on growth and nitrogen excretion characteristics of broiler chickens fed diets with very low crude protein concentrations. Poult. Sci. 2020, 99, 6848–6858. [Google Scholar] [CrossRef] [PubMed]
- Camiré, C.M.; Wellington, M.O.; Panisson, J.C.; Rodrigues, L.A.; Shoveller, A.K.; Columbus, D.A. Effect of the essential amino acid-nitrogen to total nitrogen ratio on lysine requirement for nitrogen retention in growing pigs. J. Anim. Sci. 2023, 101, skad298. [Google Scholar] [CrossRef] [PubMed]
- Bregendahl, K. Effects of Low Crude-Protein Diets Fortified with Crystalline Amino Acids on Growth Performance and Nitrogen Retention of Broiler Chicks. Ph.D. Dissertation, Iowa State University, Ames, IA, USA, 2001. [Google Scholar]
- Corzo, A.; Fritts, C.; Kidd, M.; Kerr, B. Response of broiler chicks to essential and non-essential amino acid supplementation of low crude protein diets. Anim. Feed Sci. Technol. 2004, 118, 319–327. [Google Scholar] [CrossRef]
- Roosendaal, B.; Wahlstrom, A. Limiting factors for nutritional efficiency. In Sustainable Poultry Production in Europe; CABI: Wallingford, UK, 2016; pp. 112–130. [Google Scholar]
- Heger, J.; Mengesha, S.; Vodehnal, D. Effect of essential: Total nitrogen ratio on protein utilization in the growing pig. Br. J. Nutr. 1998, 80, 537–544. [Google Scholar] [CrossRef]
- Classen, H.L. Diet energy and feed intake in chickens. Anim. Feed Sci. Technol. 2017, 233, 13–21. [Google Scholar] [CrossRef]
- Nieto, R.; Prieto, C.; Fernandez-Figares, I.; Aguilera, J. Effect of dietary protein quality on energy metabolism in growing chickens. Br. J. Nutr. 1995, 74, 163–172. [Google Scholar] [CrossRef]
- Close, W.; Berschauer, F.; Heavens, R. The influence of protein: Energy value of the ration and level of feed intake on the energy and nitrogen metabolism of the growing pig. Br. J. Nutr. 1983, 49, 255–269. [Google Scholar] [CrossRef]
- Waldroup, P.; Tidwell, N.; Izat, A. The effects of energy and amino acid levels on performance and carcass quality of male and female broilers grown separately. Poult. Sci. 1990, 69, 1513–1521. [Google Scholar] [CrossRef]
- Musigwa, S.; Morgan, N.; Swick, R.A.; Cozannet, P.; Wu, S.-B. Energy dynamics, nitrogen balance, and performance in broilers fed high- and reduced-CP diets. J. Appl. Poult. Res. 2020, 29, 830–841. [Google Scholar] [CrossRef]
- Kamran, Z.; Ahmad Nadeem, M.; Sarwar, M.; Shakil Amjid, S.; Hussain Pasha, R.; Shahid Nazir, M. Effect of low crude protein diets with constant metabolizable energy on performance of broiler chickens from one to thirty-five days of age. Indian J. Anim. Sci. 2011, 81, 1165. [Google Scholar]
- Leeson, S.; Caston, L.; Summers, J. Broiler response to energy or energy and protein dilution in the finisher diet. Poult. Sci. 1996, 75, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Peebles, E.D.; Mejia, L.; Zumwalt, C.D.; Corzo, A. Effects of dietary amino acid density and metabolizable energy level on the growth and meat yield of summer-reared broilers. J. Appl. Poult. Res. 2014, 23, 501–515. [Google Scholar] [CrossRef]
- Parr, J.; Summers, J. The effect of minimizing amino acid excesses in broiler diets. Poult. Sci. 1991, 70, 1540–1549. [Google Scholar] [CrossRef]
- Waldroup, P.; Kersey, J.; Fritts, C. Influence of branched-chain amino acid balance in broiler diets. Int. J. Poult. Sci 2002, 1, 136–144. [Google Scholar]
- Priyankarage, N.; Rose, S.P.; Silva, S.S.P.; Pirgozliev, V.R. The efficiency of energy retention of broiler chickens and turkeys fed on diets with different lysine concentrations. Br. Poult. Sci. 2008, 49, 721–730. [Google Scholar] [CrossRef]
Treatment | Treatment Code | Dietary Treatment Description |
---|---|---|
1 | RP-LNE-LE:T | Reduced CP (16%) with low NE (9.9 MJ/kg) and low E:T (0.56) |
2 | RP-LNE-HE:T | Reduced CP with low NE, high E:T ratio (0.60) and imbalanced Met and Thr ratio |
3 | RP-HNE-LE:T | Reduced CP with high NE (10.4 MJ/kg) and low E:T ratio |
4 | RP-HNE-HE:T | Reduced CP with high NE and high E:T ratio |
5 | NP-LNE-LE:T | Normal CP (18%) with low NE and low E:T ratio |
6 | NP-LNE-HE:T | Normal CP with low NE and high E:T ratio |
7 | NP-HNE-LE:T | Normal CP with high NE and low E:T ratio |
8 | NP-HNE-HE:T | Normal CP with high NE and high E:T ratio |
Ingredients, % | Starter | Grower | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 |
---|---|---|---|---|---|---|---|---|---|---|
Wheat | 17.3 | 27.9 | 28.6 | 20.0 | 27.8 | 22.3 | 20.0 | 22.8 | 20.0 | 20.0 |
Barley | 20.0 | 20.0 | 25.0 | 25.0 | 25.0 | 25.0 | 25.0 | 25.0 | 25.0 | 25.0 |
Soybean meal | 27.2 | 26.2 | 3.0 | 7.9 | 2.8 | 7.8 | 13.7 | 12.2 | 15.7 | 15.8 |
Wheat Pollard | 9.9 | 5.0 | 8.1 | 11.0 | 8.0 | 11.4 | 9.4 | 16.5 | 9.1 | 17.0 |
Sorghum | 1.0 | 1.0 | 10.0 | 13.0 | 10.0 | 10.0 | 8.3 | 2.0 | 6.6 | 8.3 |
Corn | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 2.0 | 10.0 | 2.0 |
Canola ml solvent | 4.0 | 0.5 | 0.5 | 1.0 | 0.5 | 4.2 | 6.0 | 2.3 | 0.5 | |
Canola oil | 4.80 | 3.56 | 1.54 | 2.25 | 3.09 | 3.74 | 2.73 | 4.81 | 4.57 | 5.25 |
Rice hulls | 0.93 | 1.74 | 2.50 | 2.18 | 1.50 | 1.00 | 0.50 | 2.50 | 0.50 | 0.50 |
Bentonite | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.00 |
Carbohydrases 1 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 |
Phytases 2 | 0.010 | 0.010 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
K Carbonate | 0.846 | 0.656 | 0.849 | 0.654 | 0.408 | 0.369 | 0.388 | 0.325 | ||
Limestone | 1.357 | 1.290 | 1.274 | 1.261 | 1.266 | 1.264 | 1.200 | 1.193 | 1.219 | 1.259 |
Monocalcium P | 0.667 | 0.509 | 0.616 | 0.576 | 0.619 | 0.563 | 0.484 | 0.416 | 0.490 | 0.435 |
Salt | 0.244 | 0.106 | 0.058 | 0.105 | 0.059 | 0.106 | 0.197 | 0.190 | 0.206 | 0.189 |
Na bicarbonate | 0.018 | 0.223 | 0.513 | 0.447 | 0.510 | 0.444 | 0.302 | 0.306 | 0.295 | 0.322 |
TiO2 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | ||
Vitamins 3 | 0.070 | 0.070 | 0.070 | 0.070 | 0.070 | 0.070 | 0.070 | 0.070 | 0.070 | 0.070 |
Trace minerals 3 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 |
Choline Cl 70% | 0.111 | 0.062 | 0.142 | 0.134 | 0.143 | 0.133 | 0.107 | 0.122 | 0.104 | 0.114 |
L-lysine HCl 78.4 | 0.331 | 0.307 | 0.859 | 0.703 | 0.857 | 0.702 | 0.451 | 0.452 | 0.426 | 0.438 |
DL-methionine | 0.289 | 0.251 | 0.261 | 0.237 | 0.260 | 0.238 | 0.191 | 0.194 | 0.194 | 0.200 |
L-threonine | 0.133 | 0.120 | 0.398 | 0.323 | 0.397 | 0.323 | 0.198 | 0.216 | 0.192 | 0.202 |
L-Arginine FB | 0.594 | 0.441 | 0.593 | 0.436 | 0.188 | 0.168 | 0.167 | 0.159 | ||
L-Valine | 0.100 | 0.083 | 0.376 | 0.291 | 0.375 | 0.293 | 0.150 | 0.151 | 0.150 | 0.152 |
L-Isoleucine | 0.321 | 0.229 | 0.321 | 0.231 | 0.083 | 0.095 | 0.073 | 0.080 | ||
L-Leucine | 0.356 | 0.191 | 0.356 | 0.215 | 0.086 | 0.015 | ||||
L-Phenylalanine | 0.155 | 0.063 | 0.156 | 0.065 | 0.009 | |||||
L-tryptophan | 0.020 | 0.020 | ||||||||
L-Cystine | 0.135 | 0.114 | 0.134 | 0.114 | 0.068 | 0.071 | 0.072 | 0.079 | ||
L-Proline | 0.200 | 0.200 | ||||||||
L-Alanine | 0.200 | 0.200 | ||||||||
L-Glycine | 0.391 | 0.259 | 0.392 | 0.256 | ||||||
L-Aspartic Acid | 0.200 | 0.200 | ||||||||
L-Glutamic acid | 0.300 | 0.300 | ||||||||
L-Glutamine | 0.400 | 0.400 |
T | T Code | Live Performance and Energy Utilization from d19–28 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
WG, g/b/d | FI, g/b/d | FCR | AMEi, kJ/b/d | NEi, kJ/b/d | AMEi/WG, kJ/g | NEi/WG, kJ/g | WG/CP Intake, g/g/b/d | Fat Pad, % d28 | N dc d28 | ||
1 | RP-LNE-LE:T | 83.61 b | 154.97 ab | 1.852 ab | 1901 b | 1400 b | 22.72 b | 16.74 b | 3.466 e | 1.330 ab | 0.879 a |
2 | RP-LNE-HE:T | 63.09 b | 132.73 c | 2.173 a | 1664 c | 1255 c | 27.24 a | 20.55 a | 2.997 f | 1.315 ab | 0.860 ab |
3 | RP-HNE-LE:T | 83.08 b | 146.33 bc | 1.760 b | 1891 b | 1405 b | 22.74 b | 16.90 b | 3.655 cd | 1.223 ab | 0.878 a |
4 | RP-HNE-HE:T | 100.17 a | 161.45 a | 1.614 c | 2084 a | 1607 a | 20.84 c | 16.06 b | 4.115 a | 1.387 a | 0.841 cd |
5 | NP-LNE-LE:T | 102.02 a | 162.34 a | 1.591 cd | 1992 ab | 1494 b | 19.53 d | 14.64 c | 3.600 d | 1.084 ab | 0.835 cd |
6 | NP-LNE-HE:T | 100.12 a | 160.52 a | 1.600 c | 1940 b | 1467 b | 19.34 d | 14.62 c | 3.752 b | 1.074 b | 0.832 d |
7 | NP-HNE-LE:T | 101.19 a | 155.98 ab | 1.542 de | 1993 ab | 1484 b | 19.70 d | 14.67 c | 3.797 b | 1.140 ab | 0.823 d |
8 | NP-HNE-HE:T | 103.23 a | 157.87 a | 1.529 e | 2001 ab | 1499 b | 19.39 d | 14.52 c | 3.694 bc | 1.122 ab | 0.853 bc |
Pooled SEM | 1.79 | 1.43 | 0.027 | 18 | 14 | 0.34 | 0.25 | 0.040 | 0.027 | 0.003 | |
p-value | |||||||||||
Treatment | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Sex covariate | <0.001 | 0.0089 | ns | 0.0059 | 0.0039 | ns | ns | ns | ns | 0.035 |
Trt | Trt Code | Growth Performance and Energy Utilization from d19 to 35 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WG, g/b/d | FI, g /b/d | FCR | AMEi, kJ/b/d | NEi, kJ/b/d | AMEi/WG, kJ/g | NEi/WG, kJ/g | WG/CP Intake, g/g/b/d | Mortality, % | Breast Yield, % d35 | Fat Pad, % d35 | ||
1 | RP-LNE-LE:T | 93.13 b | 172.20 ab | 1.857 a | 2112 bc | 1556 cd | 22.77 bc | 16.77 b | 3.465 c | 0.78 | 6.327 d | 1.682 a |
2 | RP-LNE-HE:T | 69.26 b | 145.82 c | 2.130 a | 1827 c | 1379 d | 26.70 a | 20.15 a | 3.068 d | 0.83 | 6.239 d | 1.518 ab |
3 | RP-HNE-LE:T | 90.04 b | 163.56 bc | 1.869 a | 2114 ab | 1570 bcd | 24.15 ab | 17.94 ab | 3.460 c | 1.56 | 6.516 cd | 1.679 a |
4 | RP-HNE-HE:T | 106.76 a | 176.67 ab | 1.662 b | 2281 a | 1758 a | 21.46 cd | 16.55 b | 4.006 a | 0.00 | 7.608 bc | 1.629 a |
5 | NP-LNE-LE:T | 112.08 a | 181.28 a | 1.621 b | 2225 ab | 1668 ab | 19.89 e | 14.92 c | 3.527 bc | 0.00 | 8.391 a | 1.380 bc |
6 | NP-LNE-HE:T | 111.04 a | 181.50 a | 1.637 b | 2194 ab | 1659 abc | 19.79 e | 14.96 c | 3.664 bc | 0.00 | 8.536 a | 1.383 bc |
7 | NP-HNE-LE:T | 110.39 a | 172.65 ab | 1.571 b | 2206 ab | 1643 bc | 20.07 de | 14.94 c | 3.721 bc | 1.61 | 8.355 ab | 1.357 bc |
8 | NP-HNE-HE:T | 113.06 a | 175.49 ab | 1.557 b | 2224 ab | 1666 ab | 19.74 e | 14.78 c | 3.649 bc | 0.78 | 8.562 a | 1.350 c |
Pooled SEM | 2.08 | 1.71 | 0.026 | 21 | 16 | 0.34 | 0.25 | 0.040 | 0.28 | 0.135 | 0.026 | |
p-value | ||||||||||||
Treatment | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ns | <0.001 | <0.001 | |
Sex covariate | 0.0151 | ns | 0.0178 | ns | ns | 0.0191 | 0.0199 | ns | ns | ns | ns |
Parameter 1 | WG | FI | FCR | AMEi | NEi | Breast | Fat Pad | CP | TP | EAA | AME |
---|---|---|---|---|---|---|---|---|---|---|---|
FI | 0.887 | ||||||||||
*** | |||||||||||
FCR | −0.949 | −0.730 | |||||||||
*** | *** | ||||||||||
AMEi | 0.876 | 0.952 | −0.748 | ||||||||
*** | *** | *** | |||||||||
NEi | 0.864 | 0.930 | −0.738 | 0.987 | |||||||
*** | *** | *** | *** | ||||||||
Breast | 0.616 | 0.478 | −0.626 | 0.437 | 0.457 | ||||||
*** | *** | *** | *** | *** | |||||||
Fat pad | −0.361 | −0.152 | 0.407 | −0.088 | −0.091 | −0.435 | |||||
** | *** | *** | |||||||||
CP | 0.591 | 0.405 | −0.608 | 0.327 | 0.270 | 0.739 | −0.588 | ||||
*** | *** | *** | ** | * | *** | *** | |||||
TP | 0.583 | 0.417 | −0.593 | 0.316 | 0.257 | 0.739 | −0.594 | 0.977 | |||
*** | *** | *** | * | * | *** | *** | *** | ||||
EAA | 0.444 | 0.175 | −0.492 | 0.163 | 0.144 | 0.689 | −0.626 | 0.866 | 0.824 | ||
*** | *** | *** | *** | *** | *** | ||||||
AME | −0.007 | −0.128 | −0.094 | 0.178 | 0.194 | −0.112 | 0.205 | −0.221 | −0.286 | −0.049 | |
* | |||||||||||
NE | 0.062 | −0.058 | −0.129 | 0.216 | 0.312 | 0.028 | 0.144 | −0.310 | −0.368 | −0.071 | 0.856 |
* | * | ** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musigwa, S.; Cozannet, P.; Asiamah, C.A.; Wu, S.-B. Effects of Dietary Protein Levels, Net Energy Levels, and Essential Amino Acid-to-True Protein Ratios on Broiler Performance. Animals 2024, 14, 3065. https://doi.org/10.3390/ani14213065
Musigwa S, Cozannet P, Asiamah CA, Wu S-B. Effects of Dietary Protein Levels, Net Energy Levels, and Essential Amino Acid-to-True Protein Ratios on Broiler Performance. Animals. 2024; 14(21):3065. https://doi.org/10.3390/ani14213065
Chicago/Turabian StyleMusigwa, Sosthene, Pierre Cozannet, Collins A. Asiamah, and Shu-Biao Wu. 2024. "Effects of Dietary Protein Levels, Net Energy Levels, and Essential Amino Acid-to-True Protein Ratios on Broiler Performance" Animals 14, no. 21: 3065. https://doi.org/10.3390/ani14213065
APA StyleMusigwa, S., Cozannet, P., Asiamah, C. A., & Wu, S. -B. (2024). Effects of Dietary Protein Levels, Net Energy Levels, and Essential Amino Acid-to-True Protein Ratios on Broiler Performance. Animals, 14(21), 3065. https://doi.org/10.3390/ani14213065