Lysophospholipid Supplementation in Broiler Breeders’ Diet Benefits Offspring’s Productive Performance, Blood Parameters, and Hepatic β-Oxidation Genes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bird Husbandry and Dietary Treatments
2.2. Sample Collection
2.3. Plasma Parameters and Liver Tissue Analysis
2.4. Total RNA Extraction
2.5. Primer Design
2.6. Complementary DNA (cDNA) Synthesis
2.7. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Broiler Performance
3.2. Blood Profile
3.3. Hepatic Antioxidative Capability
3.4. Expression of Candidate Genes in the Liver
3.5. Expression of Candidate Genes in the Jejunum
3.6. Expression of FABP4 Gene in the Pancreas
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lv, Z.; Fan, H.; Song, B.; Li, G.; Liu, D.; Guo, Y. Supplementing Genistein for Breeder Hens Alters the Fatty Acid Metabolism and Growth Performance of Offsprings by Epigenetic Modification. Oxid. Med. Cell Longev. 2019, 2019, 9214209. [Google Scholar] [CrossRef]
- Mennitti, L.V.; Oliveira, J.L.; Morais, C.A.; Estadella, D.; Oyama, L.M.; Oller do Nascimento, C.M.; Pisani, L.P. Type of Fatty Acids in Maternal Diets during Pregnancy and/or Lactation and Metabolic Consequences of the Offspring. J. Nutr. Biochem. 2015, 26, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Akbari Moghaddam Kakhki, R.; Ma, D.W.L.; Price, K.R.; Moats, J.; Karrow, N.A.; Kiarie, E.G. Impact of Feeding N-3 Fatty Acids to Layer Breeders and Their Offspring on Concentration of Antibody Titres against Infectious Bronchitis, and Newcastle Diseases and Plasma Fatty Acids in the Offspring. Br. Poult. Sci. 2021, 62, 270–277. [Google Scholar] [CrossRef]
- Koppenol, A.; Buyse, J.; Everaert, N.; Willems, E.; Wang, Y.; Franssens, L.; Delezie, E. Transition of Maternal Dietary N-3 Fatty Acids from the Yolk to the Liver of Broiler Breeder Progeny via the Residual Yolk Sac. Poult. Sci. 2015, 94, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Koppenol, A.; Delezie, E.; Aerts, J.; Willems, E.; Wang, Y.; Franssens, L.; Everaert, N.; Buyse, J. Effect of the Ratio of Dietary N-3 Fatty Acids Eicosapentaenoic Acid and Docosahexaenoic Acid on Broiler Breeder Performance, Egg Quality, and Yolk Fatty Acid Composition at Different Breeder Ages. Poult. Sci. 2014, 93, 564–573. [Google Scholar] [CrossRef]
- Cherian, G. Metabolic and Cardiovascular Diseases in Poultry: Role of Dietary Lipids. Poult. Sci. 2007, 86, 1012–1016. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Valderrama, J.; Wilde, P.; MacIerzanka, A.; MacKie, A. The Role of Bile Salts in Digestion. Adv. Colloid Interface Sci. 2011, 165, 36–46. [Google Scholar] [CrossRef]
- Krezhova, D. Recent Trends for Enhancing the Diversity and Quality of Soybean Products; Krezhova, D., Ed.; InTech: Rijeka, Croatia, 2012; ISBN 978-953-307-533-4. [Google Scholar]
- Jansen, M.; Nuyens, F.; Buyse, J.; Leleu, S.; Van Campenhout, L. Interaction between Fat Type and Lysolecithin Supplementation in Broiler Feeds. Poult. Sci. 2015, 94, 2506–2515. [Google Scholar] [CrossRef]
- Siyal, F.A.; Babazadeh, D.; Wang, C.; Arain, M.A.; Saeed, M.; Ayasan, T.; Zhang, L.; Wang, T. Emulsifiers in the Poultry Industry. Worlds. Poult. Sci. J. 2017, 73, 611–620. [Google Scholar] [CrossRef]
- Maingret, F.; Patel, A.J.; Lesage, F.; Lazdunski, M.; Honoré, E. Lysophospholipids Open the Two-Pore Domain Mechano-Gated K+ Channels TREK-1 and TRAAK. J. Biol. Chem. 2000, 275, 10128–10133. [Google Scholar] [CrossRef] [PubMed]
- Kelkar, D.A.; Chattopadhyay, A. The Gramicidin Ion Channel: A Model Membrane Protein. Biochim. Biophys. Acta Biomembr. 2007, 1768, 2011–2025. [Google Scholar] [CrossRef]
- Lundbæk, J.A.; Collingwood, S.A.; Ingólfsson, H.I.; Kapoor, R.; Andersen, O.S. Lipid Bilayer Regulation of Membrane Protein Function: Gramicidin Channels as Molecular Force Probes. J. R. Soc. Interface 2010, 7, 373–395. [Google Scholar] [CrossRef] [PubMed]
- Arouri, A.; Mouritsen, O.G. Membrane-Perturbing Effect of Fatty Acids and Lysolipids. Prog. Lipid Res. 2013, 52, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Jung, B.; Kim, W.K. Effects of Lysophospholipid on Growth Performance, Carcass Yield, Intestinal Development, and Bone Quality in Broilers. Poult. Sci. 2019, 98, 3902–3913. [Google Scholar] [CrossRef]
- Boontiam, W.; Hyun, Y.K.; Jung, B.; Kim, Y.Y. Effects of Lysophospholipid Supplementation to Reduced Energy, Crude Protein, and Amino Acid Diets on Growth Performance, Nutrient Digestibility, and Blood Profiles in Broiler Chickens. Poult. Sci. 2019, 98, 6693–6701. [Google Scholar] [CrossRef]
- Labonté, E.D.; Pfluger, P.T.; Cash, J.G.; Kuhel, D.G.; Roja, J.C.; Magness, D.P.; Jandacek, R.J.; Tschöp, M.H.; Hui, D.Y. Postprandial Lysophospholipid Suppresses Hepatic Fatty Acid Oxidation: The Molecular Link between Group 1B Phospholipase A 2 and Diet-induced Obesity. FASEB J. 2010, 24, 2516–2524. [Google Scholar] [CrossRef]
- Cheng, C.F.; Ku, H.C.; Lin, H. Pgc-1α as a Pivotal Factor in Lipid and Metabolic Regulation. Int. J. Mol. Sci. 2018, 19, 3447. [Google Scholar] [CrossRef] [PubMed]
- Fielding, P.E.; Fielding, C.J. Dynamics of Lipoprotein Transport in the Human Circulatory System. In New Comprehensive Biochemistry; Elsevier: Amsterdam, The Netherlands, 2002; Volume 36, pp. 527–552. ISBN 0444511385. [Google Scholar]
- Cifarelli, V.; Abumrad, N.A. Enterocyte Fatty Acid Handling Proteins and Chylomicron Formation. In Physiology of the Gastrointestinal Tract, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 2, pp. 1087–1107. ISBN 9780128099544. [Google Scholar]
- Wang, M.; Wang, K.; Liao, X.; Hu, H.; Chen, L.; Meng, L.; Gao, W.; Li, Q. Carnitine Palmitoyltransferase System: A New Target for Anti-Inflammatory and Anticancer Therapy? Front. Pharmacol. 2021, 12, 760581. [Google Scholar] [CrossRef]
- Kamisoyama, H.; Honda, K.; Kubo, S.; Hasegawa, S. Effects of Dietary Protein Levels on Amino Acid Digestibility at Different Sites of Male Adult Chicken Intestines. J. Poult. Sci. 2010, 47, 220–226. [Google Scholar] [CrossRef]
- Raju, D.V.L.N.; Rao, S.V.R.; Chakrabarti, P.P.; Rao, B.V.S.K.; Panda, A.K.; Devi, B.L.A.P.; Sujatha, V.; Reddy, J.R.C.; Sunder, G.S.; Prasad, R.B.N. Rice Bran Lysolecithin as a Source of Energy in Broiler Chicken Diet. Br. Poult. Sci. 2011, 52, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Haitao, L.; Zhao, D.; Guo, Y.; Barri, A. Effect of Fat Type and Lysophosphatidylcholine Addition to Broiler Diets on Performance, Apparent Digestibility of Fatty Acids, and Apparent Metabolizable Energy Content. Anim. Feed Sci. Technol. 2011, 163, 177–184. [Google Scholar] [CrossRef]
- Zhao, P.Y.; Kim, I.H. Effect of Diets with Different Energy and Lysophospholipids Levels on Performance, Nutrient Metabolism, and Body Composition in Broilers. Poult. Sci. 2017, 96, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- Malapure, C.D.; Kawitkar, S.B.; Deshmukh, G.B.; Bendale, L.N.; Patankar, R.B. Influence of Dietary Supplementation of Phospholipids and Lysophospholipids on Performance of Broilers. Indian J. Anim. Nutr. 2011, 28, 316–319. [Google Scholar]
- Khonyoung, D.; Yamauchi, K.; Suzuki, K. Influence of Dietary Fat Sources and Lysolecithin on Growth Performance, Visceral Organ Size, and Histological Intestinal Alteration in Broiler Chickens. Livest. Sci. 2015, 176, 111–120. [Google Scholar] [CrossRef]
- Zampiga, M.; Meluzzi, A.; Sirri, F. Effect of Dietary Supplementation of Lysophospholipids on Productive Performance, Nutrient Digestibility and Carcass Quality Traits of Broiler Chickens. Ital. J. Anim. Sci. 2016, 15, 521–528. [Google Scholar] [CrossRef]
- Polycarpo, G.V.; Burbarelli, M.F.C.; CarÃo, A.C.P.; Merseguel, C.E.B.; Dadalt, J.C.; Maganha, S.R.L.; Sousa, R.L.M.; Cruz-Polycarpo, V.C.; Albuquerque, R. Effects of Lipid Sources, Lysophospholipids and Organic Acids in Maize-Based Broiler Diets on Nutrient Balance, Liver Concentration of Fat-Soluble Vitamins, Jejunal Microbiota and Performance. Br. Poult. Sci. 2016, 57, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, G.A.; Poutahidis, T.; Chalvatzi, S.; Di Benedetto, M.; Hardas, A.; Tsiouris, V.; Georgopoulou, I.; Arsenos, G.; Fortomaris, P.D. Effects of Lysolecithin Supplementation in Low-Energy Diets on Growth Performance, Nutrient Digestibility, Viscosity and Intestinal Morphology of Broilers. Br. Poult. Sci. 2018, 59, 232–239. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Huo, H.Y.; Ao, S.; Liu, T.; Yang, L.; Fei, Z.Y.; Zhang, Z.Q.; Ding, L.; Cui, Q.H.; Lin, J.; et al. TGF-Β1-Induced Epithelial-Mesenchymal Transition Increases Fatty Acid Oxidation and OXPHOS Activity via the p-AMPK Pathway in Breast Cancer Cells. Oncol. Rep. 2020, 44, 1206–1215. [Google Scholar] [CrossRef] [PubMed]
- Burnham, M.R.; Peebles, E.D.; Gardner, C.W.; Brake, J.; Bruzual, J.J.; Gerard, P.D. Effects of Incubator Humidity and Hen Age on Yolk Composition in Broiler Hatching Eggs from Young Breeders. Poult. Sci. 2001, 80, 1444–1450. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Shan, M.X.; Gao, X.; Yang, Y.; Yang, X.; Zhang, Y.Y.; Hu, J.W.; Shan, A.S.; Cheng, B.J. Effects of Nutrition Restriction of Fat- and Lean-Line Broiler Breeder Hens during the Laying Period on Offspring Performance, Blood Biochemical Parameters, and Hormone Levels. Domest. Anim. Endocrinol. 2019, 68, 73–82. [Google Scholar] [CrossRef]
- Blanch, A.; Barroeta, A.C.; Baucells, M.D.; Serrano, X.; Puchal, F. Utilization of Different Fats and Oils by Adult Chickens as a Source of Energy, Lipid and Fatty Acids. Anim. Feed Sci. Technol. 1996, 61, 335–342. [Google Scholar] [CrossRef]
- Wiseman, J.; Lewis, C.E. Influence of Dietary Energy and Nutrient Concentration on the Growth of Body Weight and of Carcass Components of Broiler Chickens. J. Agric. Sci. 1998, 131, 361–371. [Google Scholar] [CrossRef]
- Ahmadi-Noorbakhsh, S.; Mirabzadeh Ardakani, E.; Sadighi, J.; Aldavood, S.J.; Farajli Abbasi, M.; Farzad-Mohajeri, S.; Ghasemi, A.; Sharif-Paghaleh, E.; Hatami, Z.; Nikravanfard, N.; et al. Guideline for the Care and Use of Laboratory Animals in Iran. Lab Anim. 2021, 50, 303–305. [Google Scholar] [CrossRef] [PubMed]
- Aviagen. Ross 308. In Parent Stock Handbook; Aviagen: Huntsville, AL, USA, 2020. [Google Scholar]
- Aviagen. Ross 308. In Broiler Management Guide; Aviagen: Huntsville, AL, USA, 2020. [Google Scholar]
- Aviagen. Ross 308. In Nutrition Specifications; Aviagen: Huntsville, AL, USA, 2020. [Google Scholar]
- Parasuraman, S.; Raveendran, R.; Kesavan, R. Blood Sample Collection in Small Laboratory Animals. J. Pharmacol. Pharmacother. 2010, 1, 87–93. [Google Scholar] [CrossRef]
- Al-Daraji, H.J.; Amen, M.H.M. Effect of Dietary Zinc on Certain Blood Traits of Broiler Breeder Chickens. Int. J. Poult. Sci. 2011, 10, 807–813. [Google Scholar] [CrossRef]
- Lu, L.; Dong, X.; Ma, X.; Zhang, L.; Li, S.; Luo, X.; Liao, X. Metabolic Utilization of Intravenously Injected Iron from Different Iron Sources in Target Tissues of Broiler Chickens. Anim. Nutr. 2022, 9, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Snyder, A.M.; Riley, S.P.; Robison, C.I.; Karcher, D.M.; Wickware, C.L.; Johnson, T.A.; Weimer, S.L. Behavior and Immune Response of Conventional and Slow-Growing Broilers to Salmonella Typhimurium. Front. Physiol. 2022, 13, 890848. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, I.; Mahdavi, A.H.; Rabiee, F.; Nasr Esfahani, M.H.; Ghaedi, K. Positive Effects of Conjugated Linoleic Acid (CLA) on the PGC1-α Expression under the Inflammatory Conditions Induced by TNF-α in the C2C12 Cell Line. Gene 2020, 735, 144394. [Google Scholar] [CrossRef]
- Sarrami, Z.; Sedghi, M.; Mohammadi, I.; Kim, W.K.; Mahdavi, A.H. Effects of Bacteriophage Supplement on the Growth Performance, Microbial Population, and PGC-1α and TLR4 Gene Expressions of Broiler Chickens. Sci. Rep. 2022, 12, 14391. [Google Scholar] [CrossRef]
- Sedghi, M.; Mohammadi, I.; Sarrami, Z.; Ghasemi, R.; Azarfar, A. Effects of a Yeast Cell Wall Product on the Performance of Broiler Chickens and PGC-1α, TLR4, IL-10 and PPARγ Genes Expression. Ital. J. Anim. Sci. 2022, 21, 263–278. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Al-Marzooqi, W.; Leeson, S. Evaluation of Dietary Supplements of Lipase, Detergent, and Crude Porcine Pancreas on Fat Utilization by Young Broiler Chicks. Poult. Sci. 1999, 78, 1561–1566. [Google Scholar] [CrossRef] [PubMed]
- Attia, Y.A.; El-Hamid, A.E.A.; Abdallah, A.A.; Berikaa, M.A.; El-Gandy, M.F.; Sahin, K.; Abou-Shehema, B.M.; von Einfluss, B. Vitamin C und Vitamin E Auf Die Eiqualität, Den Bruterfolg und Ausgewählte Indikatoren Der Lebe—Und Nierenfunktion Bei Unter Hitzestress Gehaltenen Legehennen Des Zweinutzungstyps; Verlag Eugen Ulmer: Stuttgart, Germany, 2018; Volume 82. [Google Scholar]
- Majdolhosseini, L.; Ghasemi, H.A.; Hajkhodadadi, I.; Moradi, M.H. Nutritional and Physiological Responses of Broiler Chickens to Dietary Supplementation with De-Oiled Soyabean Lecithin at Different Metabolisable Energy Levels and Various Fat Sources. Br. J. Nutr. 2019, 122, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Boontiam, W.; Jung, B.; Kim, Y.Y. Effects of Lysophospholipid Supplementation to Lower Nutrient Diets on Growth Performance, Intestinal Morphology, and Blood Metabolites in Broiler Chickens. Poult. Sci. 2017, 96, 593–601. [Google Scholar] [CrossRef]
- Attia, Y.A.; Hussein, A.S.; Tag El-Din, A.E.; Qota, E.M.; Abed El-Ghany, A.I.; El-Sudany, A.M. Improving Productive and Reproductive Performance of Dual-Purpose Crossbred Hens in the Tropics by Lecithin Supplementation. Trop. Anim. Health Prod. 2009, 41, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.M.; Nourmohammadi, R.; Nazarizadeh, H.; Latshaw, J.D. Effects of Lysolecithin and Xylanase Supplementation on the Growth Performance, Nutrient Digestibility and Lipogenic Gene Expression in Broilers Fed Low-Energy Wheat-Based Diets. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1564–1573. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.B.; Hancock, J.D.; Harmon, D.L.; Walker, C.E. Effects of Exogenous Emulsifiers and Fat Sources on Nutrient Digestibility, Serum Lipids, and Growth Performance in Weanling Pigs. J. Anim. Sci. 1992, 70, 3473–3482. [Google Scholar] [CrossRef] [PubMed]
- Tompkins, R.K.; Parkin, L.G. Effects of Long-Term Ingestion of Soya Phospholipids on Serum Lipids in Humans. Am. J. Surg. 1980, 140, 360–364. [Google Scholar] [CrossRef]
- Roy, A.; Haldar, S.; Mondal, S.; Ghosh, T.K. Effects of Supplemental Exogenous Emulsifier on Performance, Nutrient Metabolism, and Serum Lipid Profile in Broiler Chickens. Vet. Med. Int. 2010, 2010, 262604. [Google Scholar] [CrossRef] [PubMed]
- Silvia Sookoian, C.J.P. Liver Enzymes, Metabolomics and Genome-Wide Association Studies: From Systems Biology to the Personalized Medicine. World J. Gastroenterol. 2015, 21, 711–725. [Google Scholar] [CrossRef] [PubMed]
- Sizova, E.; Miroshnikov, S.; Lebedev, S.; Usha, B.; Shabunin, S. Use of Nanoscale Metals in Poultry Diet as a Mineral Feed Additive. Anim. Nutr. 2020, 6, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Harris, H. The Human Alkaline Phosphatases: What We Know and What We Don’t Know. Clin. Chim. Acta 1990, 186, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Seibel, M.J. Biochemical Markers of Bone Turnover: Part I: Biochemistry and Variability. Clin. Biochem. Rev. 2005, 26, 97–122. [Google Scholar]
- Lai, W.; Cao, A.; Li, J.; Zhang, W.; Zhang, L. Effect of High Dose of Bile Acids Supplementation in Broiler Feed on Growth Performance, Clinical Blood Metabolites, and Organ Development. J. Appl. Poult. Res. 2018, 27, 532–539. [Google Scholar] [CrossRef]
- Pereira, A.C.D.S.; Dionísio, A.P.; Wurlitzer, N.J.; Alves, R.E.; De Brito, E.S.; Silva, A.M.D.O.E.; Brasil, I.M.; Mancini Filho, J. Effect of Antioxidant Potential of Tropical Fruit Juices on Antioxidant Enzyme Profiles and Lipid Peroxidation in Rats. Food Chem. 2014, 157, 179–185. [Google Scholar] [CrossRef]
- Pryor, W.A.; Houk, K.N.; Foote, C.S.; Fukuto, J.M.; Ignarro, L.J.; Squadrito, G.L.; Davies, K.J.A. Free Radical Biology and Medicine: It’s a Gas, Man! Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 291, R491–R511. [Google Scholar] [CrossRef] [PubMed]
- Kokoszka, J.E.; Coskun, P.; Esposito, L.A.; Wallace, D.C. Increased Mitochondrial Oxidative Stress in the Sod2 (+/-) Mouse Results in the Age-Related Decline of Mitochondrial Function Culminating in Increased Apoptosis. Proc. Natl. Acad. Sci. USA 2001, 98, 2278–2283. [Google Scholar] [CrossRef]
- Siyal, F.A.; El-Hack, M.E.A.; Alagawany, M.; Wang, C.; Wan, X.; He, J.; Wang, M.; Zhang, L.; Zhong, X.; Wang, T.; et al. Effect of Soy Lecithin on Growth Performance, Nutrient Digestibility and Hepatic Antioxidant Parameters of Broiler Chickens. Int. J. Pharmacol. 2017, 13, 396–402. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I. Glutathione Peroxidases in Poultry Biology: Part 1. Classification and Mechanisms of Action. Worlds. Poult. Sci. J. 2018, 74, 185–197. [Google Scholar] [CrossRef]
- El-katcha, M.I.; Soltan, M.A.; Shewita, R.; Abdo, S.E.; Sanad, A.S.; Tufarelli, V.; Alagawany, M.; El-naggar, K. Dietary Fiber and Lysolecithin Supplementation in Growing Ducks: Effect on Performance, Immune Response, Intestinal Morphology and Lipid Metabolism-regulating Genes. Animals 2021, 11, 2873. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.P.; Maiorino, M.; Ursini, F.; Girotti, A.W. Protective Action of Phospholipid Hydroperoxide Glutathione Peroxidase against Membrane-Damaging Lipid Peroxidation. In Situ Reduction of Phospholipid and Cholesterol Hydroperoxides. J. Biol. Chem. 1990, 265, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, K.Z.; Hijazi, A.A. Effect of Vitamin A and/or e on Plasma Enzymatic Antioxidant Systems and Total Antioxidant Capacity of Broiler Chickens Challenged with Carbon Tetrachloride. J. Anim. Physiol. Anim. Nutr. 2007, 91, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Tang, S.; Sun, J.; Zhang, X.; Xu, J.; Di, L.; Li, Z.; Hu, Y.; Bao, E. Vitamin C and Sodium Bicarbonate Enhance the Antioxidant Ability of H9C2 Cells and Induce HSPs to Relieve Heat Stress. Cell Stress Chaperones 2018, 23, 735–748. [Google Scholar] [CrossRef]
- Raharjo, S.; Sofos, J.N. Methodology for Measuring Malonaldehyde as a Product of Lipid Peroxidation in Muscle Tissues: A Review. Meat Sci. 1993, 35, 145–169. [Google Scholar] [CrossRef]
- Miles, R.D.; Butcher, G.D.; Henry, P.R.; Littell, R.C. Effect of Antibiotic Growth Promoters on Broiler Performance, Intestinal Growth Parameters, and Quantitative Morphology. Poult. Sci. 2006, 85, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Hashemi Jabali, N.S.; Mahdavi, A.H.; Ansari Mahyari, S.; Sedghi, M.; Akbari Moghaddam Kakhki, R. Effects of Milk Thistle Meal on Performance, Ileal Bacterial Enumeration, Jejunal Morphology and Blood Lipid Peroxidation in Laying Hens Fed Diets with Different Levels of Metabolizable Energy. J. Anim. Physiol. Anim. Nutr. 2018, 102, 410–420. [Google Scholar] [CrossRef]
- Wu, H.; Wang, S.; Tian, Y.; Zhou, N.; Wu, C.; Li, R.; Xu, W.; Xu, T.; Gu, L.; Ji, F.; et al. Effects of Hydroxylated Lecithin on Growth Performance, Serum Enzyme Activity, Hormone Levels Related to Lipid Metabolism and Meat Quality in Jiangnan White Goslings. Front. Vet. Sci. 2022, 9, 829338. [Google Scholar] [CrossRef]
- Chen, X.; Wu, B.; Shen, X.R.; Wang, X.; Ping, P.; Miao, M.; Liang, N.; Yin, H.; Shi, H.; Qian, J.; et al. Relevance of PUFA-Derived Metabolites in Seminal Plasma to Male Infertility. Front. Endocrinol. 2023, 14, 1138984. [Google Scholar] [CrossRef] [PubMed]
- Dominy, J.E.; Lee, Y.; Gerhart-Hines, Z.; Puigserver, P. Nutrient-Dependent Regulation of PGC-1α’s Acetylation State and Metabolic Function through the Enzymatic Activities of Sirt1/GCN5. Biochim. Biophys. Acta Proteins Proteom. 2010, 1804, 1676–1683. [Google Scholar] [CrossRef]
- Guan, M.; Qu, L.; Tan, W.; Chen, L.; Wong, C.W. Hepatocyte Nuclear Factor-4 Alpha Regulates Liver Triglyceride Metabolism in Part through Secreted Phospholipase A2 GXIIB. Hepatology 2011, 53, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Rhee, J. Partnership of HNF4α with the Transcriptional Coactivator PGC-1α in the Regulation of Hepatic Glucose and Lipid Homeostasis. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 2005. [Google Scholar]
- Haemmerle, G.; Moustafa, T.; Woelkart, G.; Büttner, S.; Schmidt, A.; Van De Weijer, T.; Hesselink, M.; Jaeger, D.; Kienesberger, P.C.; Zierler, K.; et al. ATGL-Mediated Fat Catabolism Regulates Cardiac Mitochondrial Function via PPAR-Î ± and PGC-1. Nat. Med. 2011, 17, 1076–1085. [Google Scholar] [CrossRef]
- Mead, J.R.; Irvine, S.A.; Ramji, D.P. Lipoprotein Lipase: Structure, Function, Regulation, and Role in Disease. J. Mol. Med. 2002, 80, 753–769. [Google Scholar] [CrossRef] [PubMed]
- Boonsinchai, N. Effect of Feeding Regimen and Age on Lipid Metabolism in Broiler Breeder Hens and Progeny. Ph.D. Thesis, University of Arkansas, Fayetteville, AR, USA, 2015. [Google Scholar]
- Shang, R.; Rodrigues, B. Lipoprotein Lipase and Its Delivery of Fatty Acids to the Heart. Biomolecules 2021, 11, 1016. [Google Scholar] [CrossRef]
- Kumari, A.; Kristensen, K.K.; Ploug, M.; Lund Winther, A.M. The Importance of Lipoprotein Lipase Regulation in Atherosclerosis. Biomedicines 2021, 9, 782. [Google Scholar] [CrossRef] [PubMed]
- Havel, R.J.; Fielding, C.J.; Olivecrona, T.; Shore, V.G.; Fielding, P.E.; Egelrud, T. Cofactor Activity of Protein Components of Human Very Low Density Lipoproteins in the Hydrolysis of Triglycerides by Lipoprotein Lipase from Different Sources. Biochemistry 1973, 12, 1828–1833. [Google Scholar] [CrossRef] [PubMed]
- Shao, G.; Qian, Y.; Lu, L.; Liu, Y.; Wu, T.; Ji, G.; Xu, H. Research Progress in the Role and Mechanism of LPCAT3 in Metabolic Related Diseases and Cancer. J. Cancer 2022, 19, 2430–2439. [Google Scholar] [CrossRef]
- Jian, S.; Zhang, X.; Khandelwal, P.J.; Saunders, A.J.; Cumminmgs, B.S.; Oelkers, P. Characterization of Human Lysophospholipid Acyltransferase 3. J. Lipid Res. 2009, 50, 1563–1570. [Google Scholar] [CrossRef]
- Matsuda, S.; Inoue, T.; Lee, H.C.; Kono, N.; Tanaka, F.; Gengyo-Ando, K.; Mitani, S.; Arai, H. Member of the Membrane-Bound O-Acyltransferase (MBOAT) Family Encodes a Lysophospholipid Acyltransferase with Broad Substrate Specificity. Genes Cells 2008, 13, 879–888. [Google Scholar] [CrossRef]
- Gijón, M.A.; Riekhof, W.R.; Zarini, S.; Murphy, R.C.; Voelker, D.R. Lysophospholipid Acyltransferases and Arachidonate Recycling in Human Neutrophils. J. Biol. Chem. 2008, 283, 30235–30245. [Google Scholar] [CrossRef] [PubMed]
- Rong, X.; Wang, B.; Dunham, M.M.; Hedde, P.N.; Wong, J.S.; Gratton, E.; Young, S.G.; Ford, D.A.; Tontonoz, P. Lpcat3-Dependent Production of Arachidonoyl Phospholipids Is a Key Determinant of Triglyceride Secretion. eLife 2015, 4, e06557. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ding, T.; Pan, X.; Li, Y.; Li, R.; Sanders, P.E.; Kuo, M.S.; Hussain, M.M.; Cao, G.; Jiang, X.C. Lysophosphatidylcholine Acyltransferase 3 Knockdown-Mediated Liver Lysophosphatidylcholine Accumulation Promotes Very Low Density Lipoprotein Production by Enhancing Microsomal Triglyceride Transfer Protein Expression. J. Biol. Chem. 2012, 287, 20122–20131. [Google Scholar] [CrossRef] [PubMed]
- Myoung, S.H.; Sun, Y.P.; Shinzawa, K.; Kim, S.; Kun, W.C.; Lee, J.H.; Choon, H.K.; Lee, K.W.; Lee, J.H.; Cheol, K.P.; et al. Lysophosphatidylcholine as a Death Effector in the Lipoapoptosis of Hepatocytes. J. Lipid Res. 2008, 49, 84–97. [Google Scholar] [CrossRef]
- Feingold, K.R.; Anawalt, B.; Blackman, M.R.; Boyce, A.; Chrousos, G.; Corpas, E.; de Herder, W.W.; Dhatariya, K.; Dungan, K.; Hofland, J.; et al. Introduction to Lipids and Lipoproteins. In Endotext; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Edwards, M.; Mohiuddin, S.S. Biochemistry, Lipolysis. In StatPearls; StatPearls Publishing: Treasure Islan, FL, USA, 2022. [Google Scholar]
- Choi, Y.; Fuchs, E. TGF-β and Retinoic Acid: Regulators of Growth and Modifiers of Differentiation in Human Epidermal Cells. Mol. Biol. Cell 1990, 1, 791–809. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Kopp, J.B. Retinoid and TGF-β Families: Crosstalk in Development, Neoplasia, Immunity, and Tissue Repair. Semin. Nephrol. 2012, 32, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Schlaepfer, I.R.; Joshi, M. CPT1A-Mediated Fat Oxidation, Mechanisms, and Therapeutic Potential. Endocrinol. 2020, 161, bqz046. [Google Scholar] [CrossRef]
- Du, Q.; Tan, Z.; Shi, F.; Tang, M.; Xie, L.; Zhao, L.; Li, Y.; Hu, J.; Zhou, M.; Bode, A.; et al. PGC1α/CEBPB/CPT1A Axis Promotes Radiation Resistance of Nasopharyngeal Carcinoma through Activating Fatty Acid Oxidation. Cancer Sci. 2019, 110, 2050–2062. [Google Scholar] [CrossRef]
- Moody, L.; Xu, G.B.; Chen, H.; Pan, Y.X. Epigenetic Regulation of Carnitine Palmitoyltransferase 1 (Cpt1a) by High Fat Diet. Biochim. Biophys. Acta Gene Regul. Mech. 2019, 1862, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, M.; Dessein, A.F.; Douillard, C.; Dobbelaere, D.; Brivet, M.; Boutron, A.; Zater, M.; Mention-Mulliez, K.; Martin-Ponthieu, A.; Vianey-Saban, C.; et al. A Novel Mutation in CPT1A Resulting in Hepatic CPT Deficiency. JIMD Rep. Case Res. Rep. 2012, 6, 7–14. [Google Scholar] [CrossRef]
- Frazier-Wood, A.C.; Aslibekyan, S.; Absher, D.M.; Hopkins, P.N.; Sha, J.; Tsai, M.Y.; Tiwari, H.K.; Waite, L.L.; Zhi, D.; Arnett, D.K. Methylation at CPT1A Locus Is Associated with Lipoprotein Subfraction Profi Les. J. Lipid Res. 2014, 55, 1324–1330. [Google Scholar] [CrossRef]
- Chen, Y.; Agellon, L.B. Distinct Alteration of Gene Expression Programs in the Small Intestine of Male and Female Mice in Response to Ablation of Intestinal Fabp Genes. Genes 2020, 11, 943. [Google Scholar] [CrossRef] [PubMed]
- Storch, J.; Corsico, B. The Emerging Functions and Mechanisms of Mammalian Fatty Acid-Binding Proteins. Annu. Rev. Nutr. 2008, 28, 73–95. [Google Scholar] [CrossRef]
- Rodriguez Sawicki, L.; Bottasso Arias, N.M.; Scaglia, N.; Falomir Lockhart, L.J.; Franchini, G.R.; Storch, J.; Córsico, B. FABP1 Knockdown in Human Enterocytes Impairs Proliferation and Alters Lipid Metabolism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 1587–1594. [Google Scholar] [CrossRef] [PubMed]
- Nemecz, G.; Schroeder, F. Selective Binding of Cholesterol by Recombinant Fatty Acid Binding Proteins. J. Biol. Chem. 1991, 266, 17180–17186. [Google Scholar] [CrossRef] [PubMed]
- Gordon, D.M.; Neifer, K.L.; Hamoud, A.R.A.; Hawk, C.F.; Nestor-Kalinoski, A.L.; Miruzzi, S.A.; Morran, M.P.; Adeosun, S.O.; Sarver, J.G.; Erhardt, P.W.; et al. Bilirubin Remodels Murine White Adipose Tissue by Reshaping Mitochondrial Activity and the Coregulator Profile of Peroxisome Proliferator-Activated Receptor A. J. Biol. Chem. 2020, 295, 9804–9822. [Google Scholar] [CrossRef] [PubMed]
- Furuhashi, M.; Hotamisligil, G.S. Fatty Acid-Binding Proteins: Role in Metabolic Diseases and Potential as Drug Targets. Nat. Rev. Drug Discov. 2008, 7, 489–503. [Google Scholar] [CrossRef] [PubMed]
- Gajda, A.M.; Storch, J. Enterocyte Fatty Acid-Binding Proteins (FABPs): Different Functions of Liver and Intestinal FABPs in the Intestine. Prostaglandins Leukot. Essent. Fat. Acids 2015, 93, 9–16. [Google Scholar] [CrossRef]
- Patterson, E.; Wall, R.; Lisai, S.; Ross, R.P.; Dinan, T.G.; Cryan, J.F.; Fitzgerald, G.F.; Banni, S.; Quigley, E.M.; Shanahan, F.; et al. Bifidobacterium Breve with α-Linolenic Acid Alters the Composition, Distribution and Transcription Factor Activity Associated with Metabolism and Absorption of Fat. Sci. Rep. 2017, 7, 43300. [Google Scholar] [CrossRef] [PubMed]
- Porras, D.; Nistal, E.; Martínez-Flórez, S.; Pisonero-Vaquero, S.; Olcoz, J.L.; Jover, R.; González-Gallego, J.; García-Mediavilla, M.V.; Sánchez-Campos, S. Protective Effect of Quercetin on High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice Is Mediated by Modulating Intestinal Microbiota Imbalance and Related Gut-Liver Axis Activation. Free Radic. Biol. Med. 2017, 102, 188–202. [Google Scholar] [CrossRef] [PubMed]
- Listenberger, L.L.; Ory, D.S.; Schaffer, J.E. Palmitate-Induced Apoptosis Can Occur through a Ceramide-Independent Pathway. J. Biol. Chem. 2001, 276, 14890–14895. [Google Scholar] [CrossRef]
- Atshaves, B.P.; Martin, G.G.; Hostetler, H.A.; McIntosh, A.L.; Kier, A.B.; Schroeder, F. Liver Fatty Acid-Binding Protein and Obesity. J. Nutr. Biochem. 2010, 21, 1015–1032. [Google Scholar] [CrossRef]
- Kazantzis, M.; Stahl, A. Fatty Acid Transport Proteins, Implications in Physiology and Disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2012, 1821, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Oeckinghaus, A.; Ghosh, S. The NF-KappaB Family of Transcription Factors and Its Regulation. Cold Spring Harb. Perspect. Biol. 2009, 1, a000034. [Google Scholar] [CrossRef] [PubMed]
- Wullaert, A.; Bonnet, M.C.; Pasparakis, M. NF-ΚB in the Regulation of Epithelial Homeostasis and Inflammation. Cell Res. 2011, 21, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, C.; Bucci, I.; Napolitano, G. The Role of the Transcription Factor Nuclear Factor-Kappa B in Thyroid Autoimmunity and Cancer. Front. Endocrinol. 2018, 9, 471. [Google Scholar] [CrossRef]
- Priya, S.S.; Jha, A.; Satish Kumar, R.C.; Sabarathinam, S. The Role of Guggulsterone on the NF-ΚB Pathway in Inflammatory Bowel Disease: Preclinical Evidence. Futur. Sci. OA 2022, 8, FSO803. [Google Scholar] [CrossRef] [PubMed]
- Yadav, H.; Rane, S.G. TGF-β/Smad3 Signaling Regulates Brown Adipocyte Induction in White Adipose Tissue. Front. Endocrinol. 2012, 3, 19250. [Google Scholar] [CrossRef] [PubMed]
- Nakanaga, K.; Hama, K.; Aoki, J. Autotaxin-An LPA Producing Enzyme with Diverse Functions. J. Biochem. 2010, 148, 13–24. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, K.; Paramel, G.V.; Kienesberger, P.C. Lysophosphatidic Acid Signaling in Obesity and Insulin Resistance. Nutrients 2018, 10, 399. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-ΚB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Thumser, A.E.A.; Voysey, J.E.; Wilton, D.C. The Binding of Lysophospholipids to Rat Liver Fatty Acid-Binding Protein and Albumin. Biochem. J. 1994, 301, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Alves-Bezerra, M.; Cohen, D.E. Triglyceride Metabolism in the Liver. Compr. Physiol. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Rodríguez-Calvo, R.; Moreno-Vedia, J.; Girona, J.; Ibarretxe, D.; Martínez-Micaelo, N.; Merino, J.; Plana, N.; Masana, L. Relationship Between Fatty Acid Binding Protein 4 and Liver Fat in Individuals at Increased Cardiometabolic Risk. Front. Physiol. 2021, 12, 781789. [Google Scholar] [CrossRef]
- Furuhashi, M.; Saitoh, S.; Shimamoto, K.; Miura, T. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases. Clin. Med. Insights Cardiol. 2014, 8 (Suppl. S3), 23–33. [Google Scholar] [CrossRef] [PubMed]
- Lamas Bervejillo, M.; Bonanata, J.; Franchini, G.R.; Richeri, A.; Marqués, J.M.; Freeman, B.A.; Schopfer, F.J.; Coitiño, E.L.; Córsico, B.; Rubbo, H.; et al. A FABP4-PPARγ Signaling Axis Regulates Human Monocyte Responses to Electrophilic Fatty Acid Nitroalkenes. Redox Biol. 2020, 29, 101376. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Chung, Y.W.; Tang, Y.; Hockman, S.C.; Liu, S.; Khan, Y.; Huo, K.; Billings, E.; Amar, M.J.; Remaley, A.T.; et al. Phosphodiesterase 3B (PDE3B) Regulates NLRP3 Inflammasome in Adipose Tissue. Sci. Rep. 2016, 6, 28056. [Google Scholar] [CrossRef] [PubMed]
- Korbecki, J.; Bajdak-Rusinek, K. The Effect of Palmitic Acid on Inflammatory Response in Macrophages: An Overview of Molecular Mechanisms. Inflamm. Res. 2019, 68, 915–932. [Google Scholar] [CrossRef] [PubMed]
Breeder Diets | Offspring Diet | ||
---|---|---|---|
Ingredients (g/kg) | Normal Diet | Low Energy Diet | Broiler Starter (1 to 7 d) |
Corn | 664.00 | 673.00 | 553.90 |
Soybean meal | 177.00 | 176.00 | 384.00 |
Corn gluten meal | 0.00 | 0.00 | 10.00 |
Wheat bran | 38.00 | 38.00 | 0.00 |
Soybean oil | 13.00 | 5.00 | 10.10 |
Limestone | 82.00 | 82.00 | 11.30 |
Dicalcium phosphate | 13.00 | 13.00 | 13.40 |
Sodium bicarbonate | 2.50 | 2.50 | 2.20 |
NaCl | 2.20 | 2.20 | 2.50 |
L-Lysine hydrochloride | - | - | 2.20 |
DL-Methionine | 1.60 | 1.60 | 3.40 |
L-Threonine | 0.70 | 0.70 | 1.10 |
Choline chloride, 60% | 1.00 | 1.00 | 0.80 |
Phytase 1 | 0.00 | 0.00 | 0.05 |
Multienzyme 2 | 0.00 | 0.00 | 0.10 |
Broiler vitamin-mineral premix 3 | 0.00 | 0.00 | 5.00 |
Breeder vitamin-mineral premix 4 | 5.00 | 5.00 | 0.00 |
Lysophospholipid | 0.00 | 0.00 | 0.00 |
Total | 1000 | 1000 | 1000 |
Calculated nutrients (%) | |||
Metabolizable Energy (kcal/kg) | 2800 | 2760 | 3030 |
Crude protein | 13.00 | 13.00 | 24.13 |
Digestible lysine | 0.56 | 0.56 | 1.28 |
Digestible methionine + cysteine | 0.54 | 0.54 | 0.95 |
Digestible threonine | 0.47 | 0.47 | 0.86 |
Digestible isoleucine | 0.43 | 0.43 | 0.87 |
Digestible valine | 0.47 | 0.47 | 0.96 |
Ca | 3.4 | 3.4 | 0.96 |
Available P | 0.35 | 0.35 | 0.48 |
Na | 0.18 | 0.18 | 0.16 |
Choline (mg/kg) | 1200 | 1200 | 1455 |
Gene Name | Forward Primers (5′–3′) | Reverse Primers (5′–3′) | GenBank Accession No. | Product Length | Melting Temperature (Tm) | Reference |
---|---|---|---|---|---|---|
PPARγ | CATCAGGTTTGGGCGAATGC | TAACTGGTCGATGTCGCTGG | NM_001001460.2 | 76 | 60 | [29] |
PGC-1α | CATGTGCAACCAGGACTCTG | TGTCTGCATCCAGGTCGTTC | NM_001006457.2 | 131 | 59 | [29] |
RBP | TGGGAACGGGATGAAAGTGG | AGAGGAGGTGCTTGATTGCC | NM_205463.2 | 184 | 60 | Present study |
CPT1A | TGAGCACTCTTGGGCAGATG | TCTCCTTTGCAGTGTCCGTC | NM_001012898.1 | 108 | 60 | Present study |
LPCAT3 | CCTCATCGTGTCCATCCTG | TGTACGACCCATAAGCCTCAG | XM_040661607.1 | 202 | 59 | Present study |
TGF-β | CTCGACACCGACTACTGCTT | TTCCACTGCAGATCCTTGCG | NM_001318456.1 | 95 | 60 | Present study |
FABP1 | ACTGGCTCCAAAGAATGACCAATG | TGTCTCCGTTGAGTTCGGTCAC | NM_204192.4 | 162 | 61 | Not published |
NF-κB | TACTGATTGCTGCTGGAGTTGATGTC | TTGTGCCATCGTATGTAGTGCTGTC | NM_205134.2 | 156 | 63 | [31] |
FABP4 | CTGGCCTGACAAAATGTGCG | CTTCCTGGTAGCAAACCCCA | NM_204290.2 | 109 | 60 | [30] |
ASCL | GCCAACAAGAAGATGAGCAAA | GGAGTTCATGTCGTGGGAGT | NM_204412.2 | 162 | 59 | Present study |
LPL | ACTTTTTCGCCGCTGCAC | CCCAGCTTTCATACATTCCTGTC | NM_205282.2 | 297 | 60 | Present study |
GAPDH | GAAGCTTACTGGAATGGCTTTCC | CGGCAGGTCAGGTCAACAA | NM_204305.2 | 66 | 60 | [29] |
57-Week-Old Breeders | 61-Week-Old Breeders | ||||||||
---|---|---|---|---|---|---|---|---|---|
Main Effects | ABW 1 (g) | ADG 2 (g) | ADFI 3 (g) | FCR 4 | ABW (g) | ADG (g) | ADFI (g) | FCR | |
Energy (kcal/kg) | |||||||||
2800 | 195.64 a | 21.90 | 21.72 | 0.98 | 205.77 | 23.24 | 22.44 | 0.95 | |
2760 | 190.73 b | 21.36 | 21.29 | 0.99 | 205.62 | 23.27 | 22.14 | 0.94 | |
LPL (g/kg) | |||||||||
0 | 186.16 b | 20.62 b | 21.35 | 1.02 b | 199.57 b | 22.57 b | 21.97 | 0.96 b | |
0.5 | 200.21 a | 22.65 a | 21.66 | 0.95 a | 211.81 a | 24.13 a | 22.61 | 0.93 a | |
Interactions | |||||||||
Energy (kcal/kg) | LPL 5 (g/kg) | ||||||||
2800 | 0 | 188.66 | 20.83 | 21.43 | 1.02 | 198.97 | 22.56 | 22.02 | 0.97 |
0.5 | 202.62 | 22.97 | 22.01 | 0.95 | 212.57 | 24.29 | 22.87 | 0.93 | |
2760 | 0 | 183.65 | 20.40 | 21.26 | 1.03 | 200.18 | 22.58 | 21.93 | 0.96 |
0.5 | 197.81 | 22.32 | 21.32 | 0.95 | 211.05 | 23.97 | 22.35 | 0.92 | |
SEM | 1.77 | 0.24 | 0.25 | 0.009 | 1.07 | 0.18 | 0.27 | 0.92 | |
p-Value | |||||||||
Energy | 0.02 | 0.07 | 0.16 | 0.60 | 0.90 | 0.50 | 0.36 | 0.29 | |
LPL | 0.0001 | 0.0001 | 0.30 | 0.0001 | 0.0001 | 0.0001 | 0.06 | 0.002 | |
Energy × LPL | 0.96 | 0.72 | 0.40 | 0.60 | 0.29 | 0.46 | 0.51 | 0.75 |
Main Effects | TG (mg/dL) 1 | Cholesterol (mg/dL) | ALT 2 (U/L) | AST 3 (U/L) | ALP 4 (U/L) | Albumin (g/dL) | |
---|---|---|---|---|---|---|---|
Energy (kcal/kg) | |||||||
2800 | 91.14 | 549.82 a | 34.35 | 216.50 b | 3142.85 | 0.88 | |
2760 | 96.28 | 504.62 b | 39.00 | 269.59 a | 3046.00 | 0.84 | |
LPL (g/kg) | |||||||
0 | 106.28 a | 527.13 | 38.21 | 251.19 a | 3055.00 | 0.86 | |
0.5 | 81.14 b | 527.36 | 35.14 | 235.00 b | 3133.85 | 0.86 | |
Interactions | |||||||
Energy (kcal/kg) | LPL 5 (g/kg) | ||||||
2800 | 0 | 106.57 | 553.70 | 37.85 | 221.44 | 2782.85 c | 0.91 |
0.5 | 75.71 | 546.04 | 30.85 | 211.70 | 3502.85 a | 0.85 | |
2760 | 0 | 106.00 | 500.50 | 38.57 | 280.84 | 3327.14 b | 0.81 |
0.5 | 86.57 | 508.72 | 39.42 | 258.23 | 2764.85 c | 0.87 | |
SEM | 4.54 | 15.65 | 2.97 | 4.57 | 247.76 | 0.04 | |
p-Value | |||||||
Energy | 0.34 | 0.02 | 0.19 | 0.0001 | 0.74 | 0.46 | |
LPL | 0.0001 | 0.99 | 0.38 | 0.006 | 0.78 | 1.00 | |
Energy × LPL | 0.29 | 0.67 | 0.27 | 0.24 | 0.03 | 0.32 |
Main Effects | SOD 1 (U/mg) | GPx 2 (U/mg) | TP 3 (U/mg) | TAC 4 (U/mg) | MDA 5 (mmol/mg) | |
---|---|---|---|---|---|---|
Energy (kcal/kg) | ||||||
2800 | 240.39 | 66.92 | 15.35 | 2.48 | 146.50 | |
2760 | 232.92 | 66.50 | 17.07 | 2.61 | 138.57 | |
LPL (g/kg) | ||||||
0 | 259.00 a | 64.57 b | 15.50 | 2.58 | 142.14 | |
0.5 | 214.32 b | 68.85 a | 16.92 | 2.51 | 142.92 | |
Interactions | ||||||
Energy (kcal/kg) | LPL 6 (g/kg) | |||||
2800 | 0 | 223.57 c | 63.42 | 14.57 | 2.43 | 134.28 c |
0.5 | 257.21 b | 70.42 | 16.14 | 2.54 | 158.71 a | |
2760 | 0 | 294.42 a | 65.71 | 16.42 | 2.73 | 150.00 b |
0.5 | 171.42 d | 67.28 | 17.71 | 2.49 | 127.14 d | |
SEM | 11.96 | 1.57 | 1.00 | 0.18 | 8.48 | |
p-Value | ||||||
Energy | 0.59 | 0.81 | 0.16 | 0.56 | 0.43 | |
LPL | 0.004 | 0.02 | 0.23 | 0.77 | 0.93 | |
Energy × LPL | 0.0001 | 0.15 | 0.90 | 0.42 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sedghi, M.; Javanmard, F.; Amoozmehr, A.; Zamany, S.; Mohammadi, I.; Kim, W.; Choppa, V.S.R. Lysophospholipid Supplementation in Broiler Breeders’ Diet Benefits Offspring’s Productive Performance, Blood Parameters, and Hepatic β-Oxidation Genes. Animals 2024, 14, 3066. https://doi.org/10.3390/ani14213066
Sedghi M, Javanmard F, Amoozmehr A, Zamany S, Mohammadi I, Kim W, Choppa VSR. Lysophospholipid Supplementation in Broiler Breeders’ Diet Benefits Offspring’s Productive Performance, Blood Parameters, and Hepatic β-Oxidation Genes. Animals. 2024; 14(21):3066. https://doi.org/10.3390/ani14213066
Chicago/Turabian StyleSedghi, Mohammad, Fatemeh Javanmard, Anvar Amoozmehr, Saeid Zamany, Ishmael Mohammadi, Woo Kim, and Venkata Sesha Reddy Choppa. 2024. "Lysophospholipid Supplementation in Broiler Breeders’ Diet Benefits Offspring’s Productive Performance, Blood Parameters, and Hepatic β-Oxidation Genes" Animals 14, no. 21: 3066. https://doi.org/10.3390/ani14213066
APA StyleSedghi, M., Javanmard, F., Amoozmehr, A., Zamany, S., Mohammadi, I., Kim, W., & Choppa, V. S. R. (2024). Lysophospholipid Supplementation in Broiler Breeders’ Diet Benefits Offspring’s Productive Performance, Blood Parameters, and Hepatic β-Oxidation Genes. Animals, 14(21), 3066. https://doi.org/10.3390/ani14213066