Genetics of Wool and Cashmere Fibre: Progress, Challenges, and Future Research
Simple Summary
Abstract
1. Introduction
2. The Heritability of Key Wool and Cashmere Fibre Traits
3. Potential for the Further Improvement of Wool and Cashmere Fibres
3.1. Market Trends and Growth Prospects
3.2. Breeding for Better Wool and Cashmere
4. The Genetics of Wool and Cashmere Fibre Traits
4.1. Genes Associated with Wool and Cashmere Traits Identified by Candidate Gene Approaches
4.2. Genes Associated with Wool and Cashmere Traits by Omics Analyses
4.2.1. Genes Identified by GWAS
4.2.2. Challenges with Using SNP Chip Typing Approaches
4.2.3. Genes Identified by Transcriptome Analyses
4.2.4. Challenges Posed by Incomplete Gene Reference Databases in RNA-Seq Approaches
5. Current Issues in Genetic Improvement
5.1. Limited Knowledge of KAP and Keratin Genes
5.2. Inadequate Understanding of Wool Protein Gene Expression Patterns
5.3. Reduced Focus on Individual Wool Protein Genes in Favour of Omics Studies
6. Future Research Directions and Challenges
6.1. The Ongoing Identification of Wool Protein Genes from Sheep and Goats
6.2. Advancing Our Knowledge of Genetic Variation in Wool Protein Genes
6.3. Assessing the Effect of Wool Protein Genes and Validating Findings Across Breeds and Production Systems
6.4. Expanding Our Understanding of Wool Protein Gene Expression Patterns
7. Note on Terminology
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, P.J.; Atkins, K.D. Genetically improving fleece weight and fibre diameter of the Australian Merino—The Trangie QPLU$ Project. Wool Technol. Sheep Breed. 1997, 45, 92–107. [Google Scholar]
- Dressler, E.A.; Bormann, J.M.; Weaber, R.L.; Merkel, R.C.; Rolf, M.M. A review of cashmere fiber phenotypes: Production, heritabilities, and genetic correlations. Small Rumin. Res. 2024, 240, 107369. [Google Scholar] [CrossRef]
- Wuliji, T.; Dodds, K.; Andrews, R.; Turner, P. Selection response to fleece weight, wool characteristics, and heritability estimates in yearling Romney sheep. Livest. Sci. 2011, 135, 26–31. [Google Scholar] [CrossRef]
- Benavides, M.V.; Maher, A.P. Quantitative genetic studies on wool yellowing in Corriedale sheep. II. Clean wool colour and wool production traits: Genetic parameter estimates and economic returns. Crop Past. Sci. 2000, 51, 191–196. [Google Scholar] [CrossRef]
- Wuliji, T.; Dodds, K.G.; Land, J.T.J.; Andrews, R.N.; Turner, P.R. Selection for ultrafine Merino sheep in New Zealand: Heritability, phenotypic and genetic correlations of live weight, fleece weight and wool characteristics in yearlings. Anim. Sci. 2001, 72, 241–250. [Google Scholar] [CrossRef]
- Mortimer, S.I.; Atkins, K.D. Genetic evaluation of production traits between and within flocks of Merino sheep. I Hogget fleece weights, body weight and wool quality. Aust. J. Agric. Res. 1989, 40, 433–443. [Google Scholar] [CrossRef]
- Huisman, A.E.; Brown, D.J.; Ball, A.J.; Graser, H.-U. Genetic parameters for weight, wool, and disease resistance and reproduction traits in Merino sheep. 1. Description of traits, model comparison, variances and their ratios. Aust. J. Exp. Agric. 2008, 48, 1177–1185. [Google Scholar] [CrossRef]
- Mortimer, S.; Atkins, K.D. Direct additive and maternal genetic effects on wool production of Merino sheep. In Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, Guelph, ON, Canada, 7–12 August 1994; Volume 18, pp. 103–106. [Google Scholar]
- Pickering, N.; Blair, H.; Hickson, R.; Dodds, K.; Johnson, P.; McEwan, J. Genetic relationships between dagginess, breech bareness, and wool traits in New Zealand dual-purpose sheep. J. Anim. Sci. 2013, 91, 4578–4588. [Google Scholar] [CrossRef]
- Safari, E.; Fogarty, N.M.; Gilmour, A.R.; Atkins, K.D.; Mortimer, S.I.; Swan, A.A.; Brien, F.D.; Greeff, J.C.; van der Werf, J.H. Genetic correlations among and between wool, growth and reproduction traits in Merino sheep. J. Anim. Breed. Genet. 2007, 124, 65–72. [Google Scholar] [CrossRef]
- Gifford, D.R.; Ponzoni, R.W.; Ancell, P.M.C.; Hynd, P.I.; Walkley, J.R.W.; Grimson, R.J. Genetic studies on wool quality and skin characters of the Merino. Int. J. Sheep Wool Sci. 1995, 43, 24–29. [Google Scholar]
- Hawker, H.; Dodds, K.G.; Andrews, R.N.; McEwan, J.C. Production and characteristics of wool from the hogget progeny of sheep intensively screened for fleece weight. Proc. N. Z. Soc. Anim. Prod. 1988, 48, 207–212. [Google Scholar]
- Swan, A.A.; Purvis, I.W.; Piper, L.R. Genetic parameters for yearling wool production, wool quality and bodyweight traits in fine wool Merino sheep. Aust. J. Exp. Agric. 2008, 48, 1168–1176. [Google Scholar] [CrossRef]
- Zhou, H.M.; Allain, D.; Li, J.Q.; Zhang, W.G.; Yu, X.C. Genetic parameters of production traits of Inner Mongolia cashmere goats in China. J. Anim. Breed. Genet. 2002, 119, 385–390. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, Q.; Li, J.; Dao, E.; Jia, X. Estimates of Genetic Parameters and Genetic Trends for Production Traits of Inner Mongolian White Cashmere Goat. Anim. Biosci. 2006, 19, 13–18. [Google Scholar] [CrossRef]
- Toigonbaev, S.; Kerven, C.; Mueller, J.P.; Khaliapov, T.; Abdikarimov, A.; McGregor, B.M. Characterization of the growth, productivity and physical fiber properties of indigenous cashmere goats in southern Kyrgyzstan. Small Rumin. Res. 2023, 226, 107057. [Google Scholar] [CrossRef]
- Bigham, M.L.; Morris, C.A.; Southey, B.R.; Baker, R.L. Heritabilities and genetic correlations for live weight and fibre traits in New Zealand Cashmere goats. Livest. Prod. Sci. 1993, 33, 91–104. [Google Scholar] [CrossRef]
- Pattie, W.A.; Restall, B.J. Breeding Cashmere in Australian feral goats. In Proceedings of the 2nd International Cashmere Conference, Lincoln, New Zealand, 18–21 May 1987; pp. 51–67. [Google Scholar]
- Rose, M.; Young, R.A.; Eady, S.J. Phenotypic and genetic parameters for production characters of cashmere goats in southwest Queensland. Proc. Aust. Soc. Anim. Prod. 1992, 19, 266–268. [Google Scholar]
- Baker, R.L.; Southey, B.R.; Bigham, M.L.; Newman, S.A.N. Genetic parameters for New Zealand cashmere goats. Proc. N. Z. Soc. Anim. Prod. 1991, 51, 423–427. [Google Scholar]
- Jinquan, L.; Feng, W.; Jun, Y.; Shaoqing, L.; Yongbin, Z.; Congfa, Z. Study on genetic parameters for several quantitative traits of Inner Mongolia cashmere goats. Hereditas 2001, 23, 211–216. [Google Scholar]
- Doyle, E.K.; Preston, J.W.; McGregor, B.A.; Hynd, P.I. The science behind the wool industry. The importance and value of wool production from sheep. Anim. Front. 2021, 11, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Cottle, D.J. World sheep and wool production. In International Sheep and Wool Handbook; Cottle, D.J., Ed.; Nottingham University Press: Nottingham, UK, 2010; pp. 1–48. [Google Scholar]
- Rowe, J.B. The Australian sheep industry—Undergoing transformation. Anim. Prod. Sci. 2010, 50, 991–997. [Google Scholar] [CrossRef]
- Russell, I. Wool as a natural renewable fibre. In Advances in Wool Technology; Johnson, N.A.G., Russell, I.M., Eds.; Woodhead Publishing: Cambridge, UK, 2009; pp. 61–85. [Google Scholar]
- Allafi, F.; Hossain, M.S.; Lalung, J.; Shaah, M.; Salehabadi, A.; Ahmad, M.I.; Shadi, A. Advancements in applications of natural wool fiber. J. Nat. Fibers 2022, 19, 497–512. [Google Scholar] [CrossRef]
- Freddi, G.; Arai, T.; Colonna, G.; Boschi, A.; Tsukada, M. Binding of metal cations to chemically modified wool and antimicrobial properties of the wool-metal complexes. J. Appl. Polym. Sci. 2001, 82, 3513–3519. [Google Scholar] [CrossRef]
- Radetic, M.; Ilic, V.; Radojevic, D.; Miladinovic, R.; Jocic, D.; Jovancic, P. Efficiency of recycled wool-based nonwoven material for the removal of oils from water. Chemosphere 2008, 70, 525–530. [Google Scholar] [CrossRef]
- Saleem, M.; Pirzada, T.; Qadeer, R. Sorption of some azo-dyes on wool fiber from aqueous solutions. Colloids Surf. A Physicochem. Eng. Asp. 2005, 260, 183–188. [Google Scholar] [CrossRef]
- Sulyman, M.; Namiesnik, J.; Gierak, A. Greener cleaner: Sheep wool fiber as renewable sources for oil spill cleanup. Int. J. Adv. Sci. Eng. Technol. (IJASEAT) 2017, 5, 77–86. [Google Scholar]
- Cardamone, J.M. 9—Flame resistant wool and wool blends. In Handbook of Fire Resistant Textiles; Kilinc, F.S., Ed.; Woodhead Publishing: Cambridge, UK, 2013; pp. 245–271. [Google Scholar]
- Datta, M.; Basu, G.; Das, S. Wool, a natural biopolymer: Extraction and structure-property relationships. In Handbook of Natural Polymers; Sreekala, M.S., Ravindran, L., Goda, K., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1, pp. 441–469. [Google Scholar]
- Rippon, J.A. The structure of wool. In The Coloration of Wool and Other Keratin Fibres; Lewis, D.M., Rippon, J.A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 1–42. [Google Scholar]
- Powell, B.C.; Rogers, G.E. The role of keratin proteins and their genes in the growth, structure and properties of hair. EXS 1997, 78, 59–148. [Google Scholar]
- Ullah, F.; Jamal, S.M.; Ekegbu, U.J.; Haruna, I.L.; Zhou, H.; Hickford, J.G. Polymorphism in the ovine keratin-associated protein gene KRTAP7-1 and its association with wool characteristics. J. Anim. Sci. 2020, 98, skz381. [Google Scholar] [CrossRef]
- Mahajan, V.; Das, A.; Taggar, R.; Kumar, D.; Sharma, R. Polymorphism of keratin-associated protein (KAP) 7 gene and its association with wool traits in Rambouillet sheep. Indian J. Anim. Sci. 2017, 88, 206–209. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Li, W.; Wang, J.; Li, S.; Luo, Y.; Hickford, J.G. Variation in ovine KRTAP8-1 is associated with variation in wool fibre staple strength and curvature. J. Agric. Sci. 2019, 157, 550–554. [Google Scholar] [CrossRef]
- Ullah, F.; Jamal, S.M.; Zhou, H.; Hickford, J.G. Variation in ovine KRTAP8-1 affects mean staple length and opacity of wool fiber. Anim. Biotechnol. 2021, 34, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Zhou, H.; Gong, H.; Tao, J.; Ma, Q.; Ding, W.; Hickford, J.G. Variation in the ovine KAP8-1 gene affects wool fibre uniformity in Chinese Tan sheep. Small Rumin. Res. 2019, 178, 18–21. [Google Scholar] [CrossRef]
- Chen, H.Y.; Zeng, X.C.; Hui, W.Q.; Zhao, Z.S.; Jia, B. Developmental expression patterns and association analysis of sheep KAP8.1 and KAP1.3 genes in Chinese Merino sheep. Indian J. Anim. Sci. 2011, 81, 391–396. [Google Scholar]
- Mahajan, V.; Das, A.; Taggar, R.; Kumar, D.; Khan, N. Keratin-associated protein (KAP) 8 gene polymorphism and its association with wool traits in Rambouillet sheep. Int. J. Life Sci. Appl. Sci. 2019, 1, 50–57. [Google Scholar]
- Parsons, Y.M.; Cooper, D.W.; Piper, L.R. Evidence of linkage between high-glycine-tyrosine keratin gene loci and wool fiber diameter in a merino half-sib family. Anim. Genet. 1994, 25, 105–108. [Google Scholar] [CrossRef]
- Tao, J.; Zhou, H.; Yang, Z.; Gong, H.; Ma, Q.; Ding, W.; Li, Y.; Hickford, J.G.H. Variation in the KAP8-2 gene affects wool crimp and growth in Chinese Tan sheep. Small Rumin. Res. 2017, 149, 77–80. [Google Scholar] [CrossRef]
- Li, S.; Zhou, H.; Gong, H.; Zhao, F.; Wang, J.; Liu, X.; Hu, J.; Luo, Y.; Hickford, J.G. Identification of the ovine keratin-associated protein 21-1 gene and its association with variation in wool traits. Animals 2019, 9, 450. [Google Scholar] [CrossRef]
- Li, S.; Zhou, H.; Gong, H.; Zhao, F.; Wang, J.; Liu, X.; Hu, J.; Luo, Y.; Hickford, J.G. The mean staple length of wool fibre is associated with variation in the ovine keratin-associated protein 21-2 gene. Genes 2020, 11, 148. [Google Scholar] [CrossRef]
- Bai, L.; Gong, H.; Zhou, H.; Tao, J.; Hickford, J.G. A nucleotide substitution in the ovine KAP20-2 gene leads to a premature stop codon that affects wool fibre curvature. Anim. Genet. 2018, 49, 357–358. [Google Scholar] [CrossRef]
- Zhou, H.; Gong, H.; Li, S.; Luo, Y.; Hickford, J.G. A 57-bp deletion in the ovine KAP6-1 gene affects wool fibre diameter. J. Anim. Breed. Genet. 2015, 132, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Gong, H.; Zhou, H.; Wang, J.; Li, S.; Liu, X.; Luo, Y.; Hickford, J.G. Variation in KRTAP6-1 affects wool fibre diameter in New Zealand Romney ewes. Arch. Anim. Breed. 2019, 62, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Zhou, H.; Gong, H.; Yang, Z.; Ma, Q.; Cheng, L.; Ding, W.; Li, Y.; Hickford, J.G. Variation in the KAP6-1 gene in Chinese Tan sheep and associations with variation in wool traits. Small Rumin. Res. 2017, 154, 129–132. [Google Scholar] [CrossRef]
- Bharathesree, R.; Murali, N.; Saravanan, R.; Anilkumar, R. Polymorphism of keratin-associated protein (KAP) 6.1 gene and its association with wool traits of Sandyno and Nilagiri breeds of sheep. Indian J. Anim. Res. 2019, 53, 1566–1571. [Google Scholar] [CrossRef]
- Li, S.; Zhou, H.; Gong, H.; Zhao, F.; Wang, J.; Liu, X.; Luo, Y.; Hickford, J.G. Identification of the ovine keratin-associated protein 22-1 (KAP22-1) gene and its effect on wool traits. Genes 2017, 8, 27. [Google Scholar] [CrossRef]
- Sallam, A.M.; Gad-Allah, A.A.; Albetar, E.M. Genetic variation in the ovine KAP22-1 gene and its effect on wool traits in Egyptian sheep. Arch. Anim. Breed. 2022, 65, 293–300. [Google Scholar] [CrossRef]
- Li, S.; Zhou, H.; Gong, H.; Zhao, F.; Wang, J.; Luo, Y.; Hickford, J.G. Variation in the ovine KAP6-3 gene (KRTAP6-3) is associated with variation in mean fibre diameter-associated wool traits. Genes 2017, 8, 204. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Bai, L.; Li, W.; Li, S.; Wang, J.; Luo, Y.; Hickford, J.G. Associations between variation in the ovine high glycine-tyrosine keratin-associated protein gene KRTAP20-1 and wool traits. J. Anim. Sci. 2019, 97, 587–595. [Google Scholar] [CrossRef]
- Bai, L.; Zhou, H.; Tao, J.; Hickford, J.G. Effects of KRTAP20-1 gene variation on wool traits in Chinese Tan sheep. Genes 2024, 15, 1060. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Wang, J.; Li, S.; Luo, Y.; Hickford, J.G. Characterisation of an ovine keratin associated protein (KAP) gene, which would produce a protein rich in glycine and tyrosine, but lacking in cysteine. Genes 2019, 10, 848. [Google Scholar] [CrossRef]
- Zhou, H.; Li, W.; Bai, L.; Wang, J.; Luo, Y.; Li, S.; Hickford, J.G. Ovine KRTAP36-2: A new keratin-associated protein gene related to variation in wool yield. Genes 2023, 14, 2045. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Li, W.; Tao, J.; Hickford, J.G. Exploring variation in ovine KRTAP19-5 and its effect on fine wool fibre curvature in Chinese Tan sheep. Animals 2024, 14, 2155. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Gong, H.; Zhou, H.; Wang, J.; Liu, X.; Li, S.; Luo, Y.; Hickford, J.G. Variation in the ovine keratin-associated protein 15-1 gene affects wool yield. J. Agric. Sci. 2018, 156, 922–928. [Google Scholar] [CrossRef]
- Li, S.; Zhou, H.; Gong, H.; Zhao, F.; Hu, J.; Luo, Y.; Hickford, J.G. Identification of the ovine keratin-associated protein 26-1 gene and its association with variation in wool traits. Genes 2017, 8, 225. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Wang, J.; Zhou, H.; Gong, H.; Tao, J.; Hickford, J.G. Identification of ovine KRTAP28-1 and its association with wool fibre diameter. Animals 2019, 9, 142. [Google Scholar] [CrossRef]
- Yu, X.; Li, S.; Zhou, H.; Zhao, F.; Hu, J.; Wang, J.; Liu, X.; Li, M.; Zhao, Z.; Hao, Z. Spatiotemporal expression and haplotypes identification of KRT84 gene and their association with wool traits in Gansu Alpine fine-wool sheep. Genes 2024, 15, 248. [Google Scholar] [CrossRef]
- Chai, W.; Zhou, H.; Gong, H.; Wang, C.; Hickford, J.G. Variation in the exon 3-4 region of ovine KRT85 and its effect on wool trait. Animals 2024, 14, 2272. [Google Scholar] [CrossRef]
- Chai, W.; Zhou, H.; Forrest, R.H.; Gong, H.; Hodge, S.; Hickford, J.G. Polymorphism of KRT83 and its association with selected wool traits in Merino-cross lambs. Small Rumin. Res. 2017, 155, 6–11. [Google Scholar] [CrossRef]
- Sulayman, A.; Tursun, M.; Sulaiman, Y.; Huang, X.; Tian, K.; Tian, Y.; Xu, X.; Fu, X.; Mamat, A.; Tulafu, H. Association analysis of polymorphisms in six keratin genes with wool traits in sheep. Asian-Australas. J. Anim. Sci. 2018, 31, 775–783. [Google Scholar] [CrossRef]
- Li, W.; Bai, L.; Zhou, H.; Zhang, Z.; Ma, Z.; Wu, G.; Luo, Y.; Tanner, J.; Hickford, J.G. Ovine KRT81 variants and their influence on selected wool traits of commercial value. Genes 2024, 15, 681. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, F.; He, Z.; Sun, H.; Xi, Q.; Yu, X.; Ding, Y.; An, Z.; Wang, J.; Liu, X.; et al. Expression localication of the KRT32 gene and its association of genetic variation with wool traits. Curr. Issues Mol. Biol. 2024, 46, 2961–2974. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, V.; Das, A.; Taggar, R.; Kumar, D.; Kumar, N. Polymorphism of keratin-associated protein (KAP) 3.2 gene and its association with wool traits in Rambouillet sheep. Indian J. Anim. Sci. 2015, 85, 262–265. [Google Scholar] [CrossRef]
- Itenge, T.; Hickford, J.; Forrest, R.; McKenzie, G.; Frampton, C. Association of variation in the ovine KAP1.1, KAP1.3 and K33 genes with wool traits. Int. J. Sheep Wool Sci. 2010, 58, 1–19. [Google Scholar]
- Gong, H.; Zhou, H.; Hodge, S.; Dyer, J.M.; Hickford, J.G. Association of wool traits with variation in the ovine KAP1-2 gene in Merino cross lambs. Small Rumin. Res. 2015, 124, 24–29. [Google Scholar] [CrossRef]
- Sumner, R.; Forrest, R.; Zhou, H.; Henderson, H.; Hickford, J.G. Association of the KRT33A (formerly KRT1.2) gene with live-weight and wool characteristics in yearling Perendale sheep. Proc. N. Z. Soc. Anim. Prod. 2013, 73, 158–164. [Google Scholar]
- Farag, I.; Darwish, H.; Darwish, A.; Eshak, M.; Ahmed, R. Genetic polymorphism of KRT1.2 gene and its association with improving of some wool characteristics in Egyptian sheep. Asian J. Sci. Res. 2018, 11, 295–300. [Google Scholar]
- Chai, W.; Zhou, H.; Gong, H.; Hickford, J.G. Variation in the ovine KRT34 promoter region affects wool traits. Small Rumin. Res. 2022, 206, 106586. [Google Scholar] [CrossRef]
- Chai, W.; Zhou, H.; Gong, H.; Wang, J.; Luo, Y.; Hickford, J.G. Nucleotide variation in the ovine KRT31 promoter region and its association with variation in wool traits in Merino-cross lambs. J. Agric. Sci. 2019, 157, 182–188. [Google Scholar] [CrossRef]
- Liu, H.; Yue, C.; Zhang, W.; Zhu, X.; Yang, G.; Jia, Z. Association of the KAP 8.1 gene polymorphisms with fibre traits in Inner Mongolian cashmere goats. Asian-Australas. J. Anim. Sci. 2011, 24, 1341–1347. [Google Scholar] [CrossRef]
- Wang, J.; Che, L.; Hickford, J.G.; Zhou, H.; Hao, Z.; Luo, Y.; Hu, J.; Liu, X.; Li, S. Identification of the caprine keratin-associated protein 20-2 (KAP20-2) gene and its effect on cashmere traits. Genes 2017, 8, 328. [Google Scholar] [CrossRef]
- Chen, Z.; Cao, J.; Zhao, F.; He, Z.; Sun, H.; Wang, J.; Liu, X.; Li, S. Identification of the Keratin-associated protein 22-2 gene in the Capra hircus and association of its variation with cashmere traits. Animals 2023, 13, 2806. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xi, Q.; Zhao, F.; Wang, J.; He, Z.; Hu, J.; Liu, X.; Luo, Y. A highly polymorphic caprine keratin-associated protein gene identified and its effect on cashmere traits. J. Anim. Sci. 2021, 99, skab233. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Wang, J.; Zhou, H.; Hu, J.; Liu, X.; Li, S.; Luo, Y.; Hickford, J.G. Sequence variation in caprine KRTAP6-2 affects cashmere fiber diameter. Animals 2022, 12, 2040. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hao, Z.; Zhou, H.; Luo, Y.; Hu, J.; Liu, X.; Li, S.; Hickford, J. A keratin-associated protein (KAP) gene that is associated with variation in cashmere goat fleece weight. Small Rumin. Res. 2018, 167, 104–109. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, H.; Hickford, J.G.; Gong, H.; Wang, J.; Hu, J.; Liu, X.; Li, S.; Hao, Z.; Luo, Y. Variation in the caprine keratin-associated protein 15-1 (KAP15-1) gene affects cashmere fibre diameter. Arch. Anim. Breed. 2019, 62, 125–133. [Google Scholar] [CrossRef]
- Wua, C.; Qin, C.; Fu, X.; Zhao, B.; Wu, Y.; He, J.; Mao, J.; Liu, J.; Huang, X.; Tian, K. Correlation analysis of four KRTAP gene polymorphisms and cashmere fiber diameters in two cashmere goat breeds. Can. J. Anim. Sci. 2022, 102, 561–570. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, H.; Luo, Y.; Wang, J.; Hu, J.; Liu, X.; Li, S.; Hao, Z.; Jin, X.; Song, Y. Variation in the caprine keratin-associated protein 27-1 gene is associated with cashmere fiber diameter. Genes 2020, 11, 934. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, H.; Hickford, J.G.; Zhao, M.; Gong, H.; Hao, Z.; Shen, J.; Hu, J.; Liu, X.; Li, S. Identification of caprine KRTAP28-1 and its effect on cashmere fiber diameter. Genes 2020, 11, 121. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, H.; Luo, Y.; Zhao, M.; Gong, H.; Hao, Z.; Hu, J.; Hickford, J.G. Variation in the caprine KAP24-1 gene affects cashmere fibre diameter. Animals 2019, 9, 15. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, H.; Luo, Y.; Wang, J.; Hu, J.; Liu, X.; Li, S.; Zhang, K.; Zhen, H.; Hickford, J.G. Variation in a newly identified caprine KRTAP gene is associated with raw cashmere fiber weight in Longdong cashmere goats. Genes 2021, 12, 625. [Google Scholar] [CrossRef]
- Song, Y.; Luo, Y.; Zhou, H.; Liu, X.; Li, S.; Hao, Z.; Shen, J.; Zhen, H.; Li, L.; Wang, J. Variation in caprine KRTAP1-3 and its association with cashmere fibre diameter. Gene 2022, 823, 146341. [Google Scholar] [CrossRef] [PubMed]
- Rogers, G.E.; Fietz, M.J.; Fratini, A. Trichohyalin and Matrix Proteins. Ann. N. Y. Acad. Sci. 1991, 642, 64–80. [Google Scholar] [CrossRef] [PubMed]
- Steinert, P.M.; Parry, D.A.; Marekov, L.N. Trichohyalin mechanically strengthens the hair follicle: Multiple cross-bridging roles in the inner root sheath. J. Biol. Chem. 2003, 278, 41409–41419. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Zhou, H.; Tao, J.; Li, S.; Dyer, J.M.; Luo, Y.; Hickford, J.G. Variation in the ovine trichohyalin gene and its association with wool curvature. Small Rumin. Res. 2018, 159, 1–4. [Google Scholar] [CrossRef]
- Medland, S.E.; Nyholt, D.R.; Painter, J.N.; McEvoy, B.P.; McRae, A.F.; Zhu, G.; Gordon, S.D.; Ferreira, M.A.; Wright, M.J.; Henders, A.K. Common variants in the trichohyalin gene are associated with straight hair in Europeans. Am. J. Hum. Genet. 2009, 85, 750–755. [Google Scholar] [CrossRef]
- Liu, F.; Chen, Y.; Zhu, G.; Hysi, P.G.; Wu, S.; Adhikari, K.; Breslin, K.; Pospiech, E.; Hamer, M.A.; Peng, F.; et al. Meta-analysis of genome-wide association studies identifies 8 novel loci involved in shape variation of human head hair. Hum. Mol. Genet. 2018, 27, 559–575. [Google Scholar] [CrossRef]
- van Steensel, M.A.; Steijlen, P.M.; Bladergroen, R.S.; Vermeer, M.; van Geel, M. A missense mutation in the type II hair keratin hHb3 is associated with monilethrix. J. Med. Genet. 2005, 42, e19. [Google Scholar] [CrossRef]
- Winter, H.; Rogers, M.A.; Langbein, L.; Stevens, H.P.; Leigh, I.M.; Labrèze, C.; Roul, S.; Taieb, A.; Krieg, T.; Schweizer, J. Mutations in the hair cortex keratin hHb6 cause the inherited hair disease monilethrix. Nat. Genet. 1997, 16, 372–374. [Google Scholar] [CrossRef]
- Winter, H.; Rogers, M.A.; Gebhardt, M.; Wollina, U.; Moxall, L.; Chitayat, D.; Babul-Hirji, R.; Stevens, H.P.; Zlotogorski, A.; Schweizer, J. A new mutation in the type II hair cortex keratin hHb1 involved in the inherited hair disorder Monilethrix. Hum. Genet. 1997, 101, 165–169. [Google Scholar] [CrossRef]
- Plowman, J.E.; Deb-Choudhury, S.; Clerens, S.; Thomas, A.; Cornellison, C.D.; Dyer, J.M. Unravelling the proteome of wool: Towards markers of wool quality traits. J. Proteom. 2012, 75, 4315–4324. [Google Scholar] [CrossRef]
- Plowman, J.E.; Harland, D.P.; Campos, A.M.O.; Rocha e Silva, S.; Thomas, A.; Vernon, J.A.; van Koten, C.; Hefer, C.; Clerens, S.; Almeida, A.M. The wool proteome and fibre characteristics of three distinct genetic ovine breeds from Portugal. J. Proteom. 2020, 225, 103853. [Google Scholar] [CrossRef] [PubMed]
- Arzik, Y.; Kizilaslan, M.; Behrem, S.; White, S.N.; Piel, L.M.; Cinar, M.U. Genome-wide scan of wool production traits in Akkaraman sheep. Genes 2023, 14, 713. [Google Scholar] [CrossRef] [PubMed]
- Becker, G.M.; Woods, J.L.; Schauer, C.S.; Stewart, W.C.; Murdoch, B.M. Genetic association of wool quality characteristics in United States Rambouillet sheep. Front. Genet. 2023, 13, 1081175. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, H.; Yang, H.; Wang, S.; Rong, E.; Pei, W.; Li, H.; Wang, N. Genome-wide association study for wool production traits in a Chinese Merino sheep population. PLoS ONE 2014, 9, e107101. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, T.; Lu, Z.; Liu, J.; Zhu, S.; Qiao, G.; Han, M.; Yuan, C.; Wang, T.; Li, F. Genome-wide association studies detects candidate genes for wool traits by re-sequencing in Chinese fine-wool sheep. BMC Genom. 2021, 22, 127. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, S.; Guo, T.; Han, M.; Chen, B.; Qiao, G.; Wu, Y.; Yuan, C.; Liu, J.; Lu, Z. Whole-genome re-sequencing association 968 study on yearling wool traits in Chinese fine-wool sheep. J. Anim. Sci. 2021, 99, skab210. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, L.; Gong, G.; Yan, X.; Zhang, L.; Zhang, F.; Liu, H.; Lv, Q.; Wang, Z.; Wang, R. Genome-wide association study of fleece traits in Inner Mongolia cashmere goats. Anim. Genet. 2021, 52, 375–379. [Google Scholar] [CrossRef]
- Bolormaa, S.; Swan, A.A.; Brown, D.J.; Hatcher, S.; Moghaddar, N.; van der Werf, J.H.; Goddard, M.E.; Daetwyler, H.D. Multiple-trait QTL mapping and genomic prediction for wool traits in sheep. Genet. Sel. Evol. 2017, 49, 62. [Google Scholar] [CrossRef]
- Safari, E.; Fogarty, N.; Gilmour, A.R. A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep. Livest. Prod. Sci. 2005, 92, 271–289. [Google Scholar] [CrossRef]
- Rogers, G.R.; Hickford, J.G.H.; Bickerstaffe, R. Polymorphism in two genes for B2 high sulfur proteins of wool. Anim. Genet. 1994, 25, 407–425. [Google Scholar] [CrossRef]
- Zhou, H.; Gong, H.; Wang, J.; Luo, Y.; Li, S.; Tao, J.; Hickford, J.G. The complexity of the ovine and caprine keratin associated protein genes. Int. J. Mol. Sci. 2021, 22, 12838. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Zhou, H.; Dyer, J.M.; Plowman, J.E.; Hickford, J.G.H. Identification of the keratin-associated protein 13-3 (KAP13-3) gene in sheep. Open J. Genet. 2011, 1, 60–64. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Plowman, J.E.; Dyer, J.M.; Hickford, J.G. Analysis of variation in the ovine ultra-high sulphur keratin-associated protein KAP5-4 gene using PCR-SSCP technique. Electrophoresis 2010, 31, 3545–3547. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Gong, H.; Wang, J.; Dyer, J.M.; Luo, Y.; Hickford, J.G. Identification of four new gene members of the KAP6 gene family in sheep. Sci. Rep. 2016, 6, 24074. [Google Scholar] [CrossRef]
- Shah, R.; Ganai, T.; Shanaz, S.; Ayaz, A.; Khan, N. Allelic polymorphism of KAP 1.3 gene in goats. Indian J. Small Rumin. 2017, 23, 257–260. [Google Scholar] [CrossRef]
- Shah, R.; Ganai, T.; Sheikh, F.; Shanaz, S.; Shabir, M.; Khan, H. Characterization and polymorphism of keratin associated protein 1.4 gene in goats. Gene 2013, 518, 431–442. [Google Scholar] [CrossRef]
- Becker, D.; Tetens, J.; Brunner, A.; Bürstel, D.; Ganter, M.; Kijas, J.; Consortium, I.S.G.; Drögemüller, C. Microphthalmia in Texel sheep is associated with a missense mutation in the paired-like homeodomain 3 (PITX3) gene. PLoS ONE 2010, 5, e8689. [Google Scholar] [CrossRef]
- Littlejohn, M.D.; Henty, K.M.; Tiplady, K.; Johnson, T.; Harland, C.; Lopdell, T.; Sherlock, R.G.; Li, W.; Lukefahr, S.D.; Shanks, B.C. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle. Nat. Commun. 2014, 5, 5861. [Google Scholar] [CrossRef]
- Medugorac, I.; Seichter, D.; Graf, A.; Russ, I.; Blum, H.; Göpel, K.H.; Rothammer, S.; Förster, M.; Krebs, S. Bovine polledness-an autosomal dominant trait with allelic heterogeneity. PLoS ONE 2012, 7, e39477. [Google Scholar] [CrossRef]
- Våge, D.I.; Husdal, M.; Kent, M.P.; Klemetsdal, G.; Boman, I.A. A missense mutation in growth differentiation factor 9 (GDF9) is strongly associated with litter size in sheep. BMC Genet. 2013, 14, 1. [Google Scholar] [CrossRef]
- Ma, S.; Long, L.; Huang, X.; Tian, K.; Tian, Y.; Wu, C.; Zhao, Z. Transcriptome analysis reveals genes associated with wool fineness in merinos. PeerJ 2023, 11, e15327. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sun, F.; Jin, H.; Dalrymple, B.P.; Cao, Y.; Wei, T.; Vuocolo, T.; Zhang, M.; Piao, Q.; Ingham, A.B. A comparison of transcriptomic patterns measured in the skin of Chinese fine and coarse wool sheep breeds. Sci. Rep. 2017, 7, 14301. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hua, G.; Cai, G.; Ma, Y.; Yang, X.; Zhang, L.; Li, R.; Liu, J.; Ma, Q.; Wu, K. Genome-wide DNA methylation and transcriptome analyses reveal the key gene for wool type variation in sheep. J. Anim. Sci. Biotechnol. 2023, 14, 88. [Google Scholar] [CrossRef]
- Qin, Y.; Xu, Y.; Zhang, Y.; Gu, M.; Cai, W.; Bai, Z.; Zhang, X.; Chen, R.; Sun, Y.; Wu, Y. Transcriptomics analysis of cashmere fineness functional genes. Anim. Biotechnol. 2023, 34, 1583–1593. [Google Scholar] [CrossRef]
- Jin, M.; Fan, W.; Lv, S.; Xue, T.; Cong, L.; Liu, X.; Cui, L. LncRNA018392 promotes the proliferation of Liaoning cashmere goat skin fibroblasts by upregulating CSF1R through binding to SPI1. Mol. Biol. Rep. 2024, 51, 920. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Hui, T.; Chen, R.; Xu, Y.; Zhang, Y.; Tian, H.; Wang, W.; Cong, Y.; Guo, S.; et al. Single-cell sequencing reveals differential cell types in skin tissues of Liaoning cashmere goats and key genes related potentially to the fineness of cashmere fiber. Front. Genet. 2021, 12, 726670. [Google Scholar] [CrossRef]
- Schweizer, J.; Bowden, P.E.; Coulombe, P.A.; Langbein, L.; Lane, E.B.; Magin, T.M.; Maltais, L.; Omary, M.B.; Parry, D.A.; Rogers, M.A. New consensus nomenclature for mammalian keratins. J. Cell Biol. 2006, 174, 169–174. [Google Scholar] [CrossRef]
- Rogers, M.A.; Schweizer, J. Human KAP genes, only the half of it? Extensive size polymorphisms in hair keratin-associated protein genes. J. Investig. Dermatol. 2005, 124, vii–ix. [Google Scholar] [CrossRef]
- Rogers, M.A.; Winter, H.; Langbein, L.; Wollschläger, A.; Praetzel-Wunder, S.; Jave-Suarez, L.F.; Schweizer, J. Characterization of human KAP24.1, a cuticular hair keratin-associated protein with unusual amino-acid composition and repeat structure. J. Investig. Dermatol. 2007, 127, 1197–1204. [Google Scholar] [CrossRef]
- Rogers, M.A.; Langbein, L.; Praetzel Wunder, S.; Giehl, K. Characterization and expression analysis of the hair keratin associated protein KAP26.1. Br. J. Dermatol. 2008, 159, 725–729. [Google Scholar] [CrossRef]
- Powell, B.; Crocker, L.; Rogers, G. Hair follicle differentiation: Expression, structure and evolutionary conservation of the hair type II keratin intermediate filament gene family. Development 1992, 114, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Powell, B.C.; Crocker, L.A.; Rogers, G.E. Complete sequence of a hair-like intermediate filament type II keratin gene. DNA Seq. 1993, 3, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.W.; Edwards, K.J.; Sleigh, M.J.; Byrne, C.R.; Ward, K.A. Complete sequence of a type-I microfibrillar wool keratin gene. Gene 1988, 73, 21–31. [Google Scholar] [CrossRef]
- Yu, Z.; Wildermoth, J.E.; Wallace, O.A.; Gordon, S.W.; Maqbool, N.J.; Maclean, P.H.; Nixon, A.J.; Pearson, A.J. Annotation of sheep keratin intermediate filament genes and their patterns of expression. Exp. Dermatol. 2011, 20, 582–588. [Google Scholar] [CrossRef]
- Langbein, L.; Rogers, M.A.; Winter, H.; Praetzel, S.; Beckhaus, U.; Rackwitz, H.R.; Schweizer, J. The catalog of human hair keratins I. Expression of the nine type I members in the hair follicle. J. Biol. Chem. 1999, 274, 19874–19884. [Google Scholar] [CrossRef]
- Langbein, L.; Rogers, M.A.; Winter, H.; Praetzel, S.; Schweizer, J. The catalog of human hair keratins II. Expression of the six type II members in the hair follicle and the combined catalog of human type I and II keratins. J. Biol. Chem. 2001, 276, 35123–35132. [Google Scholar] [CrossRef]
- Fratini, A.; Powell, B.C.; Hynd, P.I.; Keough, R.A.; Rogers, G.E. Dietary cysteine regulates the levels of messenger-RNAs encoding a family of cysteine-rich proteins of wool. J. Investig. Dermatol. 1994, 102, 178–185. [Google Scholar] [CrossRef]
- Jenkins, B.J.; Powell, B.C. Differential expression of genes encoding a cysteine-rich keratin family in the hair cuticle. J. Investig. Dermatol. 1994, 103, 310–317. [Google Scholar] [CrossRef]
- MacKinnon, P.; Powell, B.; Rogers, G. Structure and expression of genes for a class of cysteine-rich proteins of the cuticle layers of differentiating wool and hair follicles. J. Cell Biol. 1990, 111, 2587–2600. [Google Scholar] [CrossRef]
- Ning, M.; Lo, E.H. Opportunities and challenges in omics. Transl. Stroke Res. 2010, 1, 233–237. [Google Scholar] [CrossRef]
- Ransohoff, D.F. Lessons from controversy: Ovarian cancer screening and serum proteomics. J. Natl. Cancer Inst. 2005, 97, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.P.; Benayoun, B.A. Considerations for reproducible omics in aging research. Nat. Aging 2023, 3, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Liu, Y. Transcriptome marker diagnostics using big data. IET Syst. Biol. 2016, 10, 41–48. [Google Scholar] [CrossRef]
- Brenner, S. Sequences and consequences. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 207–212. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Forrest, R.H.; Li, S.; Wang, J.; Dyer, J.M.; Luo, Y.; Hickford, J.G. Wool keratin-associated protein genes in sheep—A review. Genes 2016, 7, 24. [Google Scholar] [CrossRef]
- Deschamps-Francoeur, G.; Simoneau, J.; Scott, M.S. Handling multi-mapped reads in RNA-seq. Comput. Struct. Biotechnol. J. 2020, 18, 1569–1576. [Google Scholar] [CrossRef]
- Almeida da Paz, M.; Warger, S.; Taher, L. Disregarding multimappers leads to biases in the functional assessment of NGS data. BMC Genom. 2024, 25, 455. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Yu, Z.; Dyer, J.; Plowman, J.E.; Hickford, J.G. Identification of the ovine keratin-associated protein KAP1-2 gene (KRTAP1-2). Exp. Dermatol. 2011, 20, 815–819. [Google Scholar] [CrossRef]
- Garber, M.; Grabherr, M.G.; Guttman, M.; Trapnell, C. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat. Methods 2011, 8, 469–477. [Google Scholar] [CrossRef]
- Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14, R36. [Google Scholar] [CrossRef]
- Yin, J.; Li, J.; Zhang, Y.; Li, C. Sequence of a Cashmere goat type I hair keratin gene and its expression in skin. Front. Agric. China 2008, 2, 502–507. [Google Scholar] [CrossRef]
- Seki, Y.; Yokohama, M.; Wada, K.; Fujita, M.; Kotani, M.; Nagura, Y.; Kanno, M.; Nomura, K.; Amano, T.; Kikkawa, Y. Expression analysis of the type I keratin protein keratin 33A in goat coat hair. Anim. Sci. J. 2011, 82, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.D.; Irwin, D.; Zhang, Y.P. Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair. BMC Evol. Biol. 2008, 8, 241. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Visnovska, T.; Gong, H.; Schmeier, S.; Hickford, J.G.; Ganley, A.R. Contrasting patterns of coding and flanking region evolution in mammalian keratin associated protein-1 genes. Mol. Phylogenet. Evol. 2019, 133, 352–361. [Google Scholar] [CrossRef]
- Bolormaa, S.; Chamberlain, A.J.; Khansefid, M.; Stothard, P.; Swan, A.A.; Mason, B.; Prowse-Wilkins, C.P.; Duijvesteijin, N.; Moghaddar, N.; van der Weft, J.H.; et al. Accuracy of imputation to whole-genome sequence in sheep. Genet. Sel. Evol. 2019, 51, 1. [Google Scholar] [CrossRef]
- Kulski, J.K.; Suzuki, S.; Shiina, T. Human leukocyte antigen super-locus: Nexus of genomic supergenes, SNPs, indels, transcripts, and haplotypes. Hum. Genome Var. 2022, 9, 49. [Google Scholar] [CrossRef]
- Garg, S.; Fungtammasan, A.; Carroll, A.; Chou, M.; Schmitt, A.; Zhou, X.; Mac, S.; Peluso, P.; Hatas, E.; Ghurye, J.; et al. Chromosome-scale, haplotype-resolved assembly of human genomes. Nat. Biotechnol. 2021, 39, 309–312. [Google Scholar] [CrossRef]
- Garg, S. Computational methods for chromosome-scale haplotype reconstruction. Genome Biol. 2021, 22, 101. [Google Scholar] [CrossRef]
- Sheffield, V.C.; Beck, J.S.; Kwitek, A.E.; Sandstrom, D.W.; Stone, E.M. The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions. Genomics 1993, 16, 325–332. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Hickford, J.G. Polymorphism of the ovine keratin-associated protein 1-4 gene (KRTAP1-4). Mol. Biol. Rep. 2010, 37, 3377–3380. [Google Scholar] [CrossRef]
- Yan, W.; Zhou, H.; Luo, Y.; Hu, J.; Hickford, J.G.H. Allelic variation in ovine fatty acid-binding protein (FABP4) gene. Mol. Biol. Rep. 2012, 39, 10621–10625. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Hickford, J.G.H.; Fang, Q.; Lin, Y.S. Allelic variation of the ovine Toll-like receptor 4 gene. Dev. Comp. Immunol. 2007, 31, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Kunhareang, S.; Gong, H.; Fang, Q.; Hu, J.; Luo, Y.; Hickford, J.G. Detection of sequence variation and genotyping of polymorphic genes using polymerase chain reaction stem-loop conformational polymorphism analysis. Anal. Biochem. 2011, 408, 340–341. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Gong, H.; Yan, W.; Luo, Y.; Hickford, J.G.H. Identification and sequence analysis of the keratin-associated protein 24-1 (KAP24-1) gene homologue in sheep. Gene 2012, 511, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Byun, S.; Fang, Q.; Zhou, H.; Hickford, J.G. Rapid genotyping of the ovine ADRB3 gene by polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP). Mol. Cell. Probes 2008, 22, 69–70. [Google Scholar] [CrossRef]
- Byun, S.; Zhou, H.; Hickford, J.G. Development of a simple typing method for the ovine Toll-like receptor 4 gene. Vet. Immunol. Immunopathol. 2009, 130, 272–274. [Google Scholar] [CrossRef]
Trait 1 | Breed 2 | Heritability ± SE 3 | Reference |
---|---|---|---|
GFW | NZ Romney | 0.35 ± 0.04 | [3] |
Corriedale | 0.52 ± 0.15 | [4] | |
Merino | 0.24 ± 0.07 | [5] | |
Merino | 0.29 ± 0.06 | [6] | |
Merino | 0.46 ± 0.02 | [7] | |
CFW | NZ Romney | 0.36 ± 0.04 | [3] |
Corriedale | 0.37 ± 0.15 | [4] | |
Merino | 0.31 ± 0.04 | [8] | |
Merino | 0.28 ± 0.07 | [5] | |
Yield | NZ Romney | 0.40 ± 0.04 | [3] |
Corriedale | 0.75 ± 0.15 | [4] | |
Merino | 0.58 ± 0.06 | [5] | |
Merino | 0.35 ± 0.05 | [6] | |
MFD | NZ Romney | 0.57 ± 0.05 | [3] |
Corriedale | 0.65 ± 0.15 | [4] | |
NZ-DP | 0.40 ± 0.10 | [9] | |
Merino | 0.59 ± 0.06 | [5] | |
Merino | 0.77 ± 0.02 | [7] | |
Merino | 0.68 ± 0.01 | [10] | |
FDSD | NZ-DP | 0.27 ± 0.11 | [9] |
Merino | 0.51 ± 0.10 | [11] | |
CVFD | NZ-DP | 0.23 ± 0.10 | [9] |
Merino | 0.60 ± 0.06 | [5] | |
Merino | 0.40 ± 0.02 | [7] | |
Merino | 0.57 ± 0.02 | [10] | |
MSS | NZ Romney | 0.34 ± 0.14 | [12] |
NZ Romney | 0.24 ± 0.05 | [3] | |
Merino | 0.39 ± 0.02 | [11] | |
Merino | 0.13 ± 0.09 | [5] | |
MSL | NZ Romney | 0.41 ± 0.06 | [3] |
Merino | 0.71 ± 0.11 | [5] | |
Merino | 0.48 ± 0.05 | [8] | |
Merino | 0.54 ± 0.03 | [13] | |
MFC | NZ-DP | 0.31 ± 0.10 | [9] |
Trait 1 | Heritability (±SE) 2 | Reference |
---|---|---|
GDW | 0.28 | [14] |
0.30 | [15] | |
0.12 ± 0.12 | [16] | |
CDW | 0.62 ± 0.15 | [17] |
0.61 ± 0.16 | [18] | |
0.61 ± 0.21 | [19] | |
0.57 ± 0.19 | [20] | |
Yield | 0.57 ± 0.15 | [17] |
0.90 ± 0.23 | [18] | |
0.57 ± 0.20 | [19] | |
0.64 ± 0.21 | [20] | |
MFD (whole fleece) | 0.99 ± 0.19 | [17] |
0.47 ± 0.15 | [18] | |
0.39 ± 0.16 | [19] | |
0.82 ± 0.23 | [20] | |
SL (whole fleece) | 0.29 | [15] |
0.32 | [21] |
Gene 1 | Sheep Type | Traits Associated 2 | Ref. |
---|---|---|---|
OAR1 | |||
KRTAP7-1 | Kutta, Kari, Balkhi, Balkhi-cross, and Ramghani-cross | Yield, MSL | [35] |
Rambouillet | GFW, MSL | [36] | |
KRTAP8-1 | Southdown × Merino | MFC, MSS | [37] |
Pakistani sheep | MSL, OpSD, CVOp | [38] | |
Chinese Tan | CVFD in fine wool | [39] | |
Chinese Merino | MFD | [40] | |
Rambouillet | GFW, MFD | [41] | |
Peppin Merino | MFD | [42] | |
KRTAP8-2 | Chinese Tan | Fibre length, wool crimping | [43] |
KRTAP21-1 | Southdown × Merino | Yield | [44] |
KRTAP21-2 | Southdown × Merino | MSL | [45] |
KRTAP20-2 | Southdown × Merino | MFC | [46] |
KRTAP6-1 | Southdown × Merino | MFD, FDSD, CVFD, MFC | [47] |
NZ Romney | MFD, CVFD | [48] | |
Chinese Tan | Fibre length, wool crimping | [49] | |
Sandyno and Nilagiri | GFW, Yield, MFD | [50] | |
Peppin Merino | MFD | [42] | |
KRTAP22-1 | Southdown × Merino | Yield, MFC | [51] |
Barki, Rahmani and Ossimi | CR, SL, KS, GCG | [52] | |
KRTAP6-3 | Southdown × Merino | MFD, FDSD, PF | [53] |
KRTAP20-1 | Southdown × Merino | GFW, Yield, MFD, FDSD, PF | [54] |
Chinese Tan | MFC in fine wool | [55] | |
KRTAP36-1 | Southdown × Merino | PF | [56] |
KRTAP36-2 | Southdown × Merino | Yield | [57] |
KRTAP19-5 | Chinese Tan | MFC in fine wool | [58] |
KRTAP15-1 | Southdown × Merino | Yield, FDSD | [59] |
KRTAP26-1 | Southdown × Merino | MFD, FDSD, PF, MSL | [60] |
KRTAP28-1 | Southdown × Merino | MFD | [61] |
OAR3 | |||
KRT84 | Gansu Alpine Fine-wool | MFD, CVFD, MFC, CF, MSL, MSS | [62] |
KRT85 | Southdown × Merino | GFW, CFW, PF | [63] |
KRT83 | Southdown × Merino | MFD, FDSD, CVFD, MFC, PF, Yield | [64] |
KRT86 | Chinese Merino (Xinjiang type) | MFD, crimp score | [65] |
KRT81 | Southdown × Merino | GFW, CFW | [66] |
OAR11 | |||
KRT32 | Gansu Alpine Fine-wool | MFD, CF, MFC | [67] |
KRTAP3-2 | Rambouillet | GFW | [68] |
KRTAP1-1 | Merino and Merino-cross | FDSD, Yield at 24 months of age | [69] |
KRTAP1-2 | Southdown × Merino | GFW, CFW, Yield, FDSD, CVFD, PF, MFC, MSL, MSS | [70] |
KRTAP1-3 | Chinese Merino | MFD | [40] |
KRT33A | Perendale | Fleece weight, Yield, MSL, MFC, crimp frequency, core bulk | [71] |
Merino and Merino-cross | FDSD, MSS | [69] | |
Barki, Rahmani, Osseimi, Awase, and two crossbreds | CFW, MFD, MSL, MSS | [72] | |
KRT34 | Southdown × Merino | MFD, FDSD, MSL | [73] |
KRT31 | Southdown × Merino | GFW, CFW, MSL | [74] |
Chinese Merino (Xinjiang type) | MFD | [65] | |
KRT38 | Chinese Merino (Xinjiang type) | Crimp count | [65] |
KRT36 | Chinese Merino (Xinjiang type) | MFD, wool fineness | [65] |
Gene 1 | Goat Type | Traits Associated 2 | Ref. |
---|---|---|---|
CHI1 | |||
KRTAP8-1 | Inner Mongolia cashmere | Cashmere weight, cashmere length, hair length | [75] |
KRTAP20-2 | Longdong cashmere | Cashmere weight, MFD, cashmere length | [76] |
KRTAP22-2 | Longdong cashmere | MFD | [77] |
KRTAP6-5 | Longdong cashmere | MFD | [78] |
KRTAP6-2 | Longdong cashmere | MFD | [79] |
KRTAP20-1 | Longdong cashmere | Cashmere weight | [80] |
KRTAP15-1 | Longdong cashmere | MFD | [81] |
Jiangnan cashmere | CVFD | [82] | |
KRTAP13-1 | Jiangnan cashmere | MFD | [82] |
KRTAP27-1 | Longdong cashmere | MFD | [83] |
Jiangnan cashmere | MFD, FDSD, CVFD | [82] | |
KRTAP28-1 | Longdong cashmere | MFD | [84] |
KRTAP24-1 | Longdong cashmere | MFD | [85] |
Jiangnan cashmere | MFD | [82] | |
CHI19 | |||
KRTAP1-2 | Longdong cashmere | Cashmere weight | [86] |
KRTAP1-3 | Longdong cashmere | MFD | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Bai, L.; Li, S.; Li, W.; Wang, J.; Tao, J.; Hickford, J.G.H. Genetics of Wool and Cashmere Fibre: Progress, Challenges, and Future Research. Animals 2024, 14, 3228. https://doi.org/10.3390/ani14223228
Zhou H, Bai L, Li S, Li W, Wang J, Tao J, Hickford JGH. Genetics of Wool and Cashmere Fibre: Progress, Challenges, and Future Research. Animals. 2024; 14(22):3228. https://doi.org/10.3390/ani14223228
Chicago/Turabian StyleZhou, Huitong, Lingrong Bai, Shaobin Li, Wenhao Li, Jiqing Wang, Jinzhong Tao, and Jon G. H. Hickford. 2024. "Genetics of Wool and Cashmere Fibre: Progress, Challenges, and Future Research" Animals 14, no. 22: 3228. https://doi.org/10.3390/ani14223228
APA StyleZhou, H., Bai, L., Li, S., Li, W., Wang, J., Tao, J., & Hickford, J. G. H. (2024). Genetics of Wool and Cashmere Fibre: Progress, Challenges, and Future Research. Animals, 14(22), 3228. https://doi.org/10.3390/ani14223228