Age Structure, Body Size, and Sexual Dimorphism in a High-Altitude Population of Pelophylax ridibundus (Pallas, 1771)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Laboratory Process
2.2. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liedtke, H.C.; Wiens, J.J.; Gomez-Mestre, I. The evolution of reproductive modes and life cycles in amphibians. Nat. Commun. 2022, 13, 7039. [Google Scholar] [CrossRef] [PubMed]
- Middleton, J.; Green, D.M. Adult age-structure variability in an amphibian in relation to population decline. Herpetologica 2015, 71, 190–195. [Google Scholar] [CrossRef]
- Funk, W.C.; Zamudio, K.R.; Crawford, A.J. Advancing Understanding of Amphibian Evolution, Ecology, Behavior, and Conservation with Massively Parallel Sequencing. In Population Genomics: Wildlife, 1st ed.; Hohenlohe, P.A., Rajora, O.P., Eds.; Springer: Cham, Switzerland, 2018; pp. 211–254. [Google Scholar]
- Albayrak, M.; Bülbül, U.; Zaman, E.; Koç-Gür, H. Life History Traits in a Turkish Population of the Agile Frog Rana dalmatina Fitzinger in Bonaparte, 1839 (Anura: Ranidae). Acta Zool. Bulg. 2023, 75, 497–503. [Google Scholar]
- Dursun, C.; Özdemir, N. Morphological variability and age structure in a population of Bufo verrucosissimus (Anura: Bufonidae) from Artvin, Turkey. Phyllomedusa 2022, 21, 31–49. [Google Scholar] [CrossRef]
- Zhang, M.; Li, C.; Yan, P.; Dong, B.; Jiang, J. Age Structure and Body Size of the Plateau Brown Frog (Rana kukunoris) in the Jiuzhaigou National Nature Reserve and Potential Climatic Impacts on Its Life History Variations. Animals 2023, 13, 3654. [Google Scholar] [CrossRef]
- Laugen, A.T.; Laurila, A.; Räsänen, K.; Merilä, J. Latitudinal countergradient variation in the common frog (Rana temporaria) development rates—Evidence for local adaptation. J. Evol. Biol. 2003, 16, 996–1005. [Google Scholar] [CrossRef]
- Reading, C.J. Linking global warming to amphibian declines through its efects on female body condition and survivorship. Oecologia 2007, 151, 125–131. [Google Scholar] [CrossRef]
- Titon, B.; Navas, C.A.; Jim, J.; Gomes, F.R. Water balance and locomotor performance in three species of neotropical toads that differ in geographical distribution. Comp. Biochem. Phys. 2010, 156, 129–135. [Google Scholar] [CrossRef]
- Dursun, C.; Gül, S.; Özdemir, N. Age estimation and body size of the Parsley Frog, Pelodytes caucasicus Boulenger, 1896 from Lake Borçka Karagöl, Turkey. Acta Herpetol. 2023, 18, 11–22. [Google Scholar] [CrossRef]
- Comas, M.; Reguera, S.; Zamora-Camacho, F.J.; Salvado, H.H.; Moreno-Rueda, G. Effectiveness of phalanx skeletochronology to estimate age in living reptiles. PeerJ 2016. preprints. [Google Scholar]
- Comas, M.; Reguera, S.; Zamora-Camacho, F.J.; Salvadó i Cabré, H.; Moreno-Rueda, G. Comparison of the effectiveness of phalanges vs. humeri and femurs to estimate lizard age with skeletochronology. Anim. Biodivers. Conserv. 2016, 39, 237–240. [Google Scholar] [CrossRef]
- Dufresnes, C.; Monod-Broca, B.; Bellati, A.; Canestrelli, D.; Ambu, J.; Wielstra, B.; Dubey, S.; Crochet, P.A.; Denoël, M.; Jablonski, D. Piecing the barcoding puzzle of Palearctic water frogs (Pelophylax) sheds light on amphibian biogeography and global invasions. Glob. Chang. Biol. 2024, 30, e17180. [Google Scholar] [CrossRef] [PubMed]
- Tarkhnishvili, D.; Todua, M.; Iankoshvili, G. Which species of water frogs inhabit ponds of the Caucasus? Taxonomic mess with Pelophylax ridibundus species complex. Caucasiana 2024, 3, 31–39. [Google Scholar] [CrossRef]
- Amin, H.; Borzée, A. Understanding the Distribution, Behavioural Ecology, and Conservation Status of Asian Pelophylax. Diversity 2024, 16, 259. [Google Scholar] [CrossRef]
- Gokhelashvili, R.K.; Tarkhnishvili, D.N. Age structure of six Georgian anuran populations and its dynamics during two consecutive years. Herpetozoa 1994, 7, 11–18. [Google Scholar]
- Yılmaz, N.; Kutrup, B.; Çobanoğlu, Ü.; Özoran, Y. Age determination and some growth parameters of a Rana ridibunda population in Turkey. Acta Zool. Acad. Sci. Hung. 2005, 51, 67–74. [Google Scholar]
- Kyriakopoulou-Sklavounou, P.; Stylianou, P.; Tsiora, A. A skeletochronological study of age, growth and longevity in a population of the frog Rana ridibunda from southern Europe. Zoology 2008, 111, 30–36. [Google Scholar] [CrossRef]
- Erişmiş, U.C. Abundance, demography and population structure of Pelophylax ridibundus (Anura: Ranidae) in 26-August National Park (Turkey). North-West. J. Zool. 2011, 7, 5–16. [Google Scholar]
- Gül, S.; Olgun, K.; Kutrup, B. Body size and age structure of Pelophylax ridibundus populations from two different altitudes in Turkey. Amphibia-Reptilia 2011, 32, 287–292. [Google Scholar]
- Romanova, E.B.; Ryabinina, E.S.; Lyapkov, S.M. Body Size, Age, Phenetic, Morphophysiological, and Cytogenetic Characteristics of Pelophylax ridibundus (Amphibia, Ranidae) Populations Inhabiting Polluted Thermal Reservoirs of Kamchatka. Biol. Bull. Russ. Acad. Sci. 2021, 48, 1004–1016. [Google Scholar] [CrossRef]
- Peskov, V.N.; Petrenko, N.A.; Reminnyi, V.Y. Size-At-Age Variability and Sexual Dimorphism of Morphometric Characteristics in the Late Ontogenesis of the Marsh Frog, Pelophylax ridibundus (Anura, Ranidae), from Terrytory of Crimea. Zoodiversity 2019, 53, 325–334. [Google Scholar] [CrossRef]
- Castanet, J.; Smirina, E. Introduction to the skeletochronological method in amphibians and reptiles. Ann. Sci. Nat. Zool. 1990, 11, 191–196. [Google Scholar]
- Smirina, E.M. Age determination and longevity in amphibians. Gerontology 1994, 40, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Rozenblut, B.; Ogielska, M. Development and growth of long bones in European water frogs (Amphibia: Anura: Ranidae), with remarks on age determination. J. Morphol. 2005, 265, 304–317. [Google Scholar] [CrossRef]
- Guarino, F.M.; Crottini, A.; Mezzasalma, M.; Randrianirina, E.J.; Andreone, F. Skeletochronological estimate of age and growth in a large riparian frog from Madagascar (Anura: Mantellidae: Mantidactylus). Herpetozoa 2019, 332, 39–44. [Google Scholar] [CrossRef]
- Beverton, R.J.H.; Holt, S.J. On the Dynamics of Exploited Fish Populations, 1st ed.; Chapman and Hall: London, UK, 1957. [Google Scholar]
- Socha, M.; Ogielska, M. Age structure, size and growth rate of water frogs from central European natural Pelophylax ridibundus-Pelophylax esculentus mixed populations estimated by skeletochronology. Amphibia-Reptilia 2010, 31, 239–250. [Google Scholar] [CrossRef]
- Ogle, D.H.; Wheeler, P.; Dinno, A. R Package FSA: Fisheries Stock Analysis. 2021. Available online: https://github.com/droglenc/FSA (accessed on 25 October 2024).
- Ogle, D.H. FSAdata: R Package Fisheries Stock Analysis, Datasets. 2019. Available online: https://github.com/cran/FSAdata (accessed on 25 October 2024).
- Ogle, D. FSAsim: Simulate Data for Fisheries Stock Assessment Methods. 2020. Available online: https://github.com/droglenc/FSAsim (accessed on 25 October 2024).
- Baty, F.; Ritz, C.; Charles, S.; Brutsche, M.; Flandrois, J.P.; Delignette-Muller, M.L. A Toolbox for Nonlinear Regression in R: The Package nlstools. J. Stat. Softw. 2015, 66, 1–21. [Google Scholar] [CrossRef]
- Ogle, D. FishR Vignette. Von Bertalanffy Growth Models; Northland College: Ashland, WI, USA, 2013; Volume 54. [Google Scholar]
- Dursun, C.; Gül, S.; Özdemir, N. Sexual size and shape dimorphism in Turkish common toads (Bufo bufo Linnaeus 1758). Anat. Rec. 2022, 305, 1548–1558. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. In R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer: New York, NY, USA, 2016. [Google Scholar]
- Shine, R. Sexual selection and sexual dimorphism in the Amphibia. Copeia 1979, 1979, 297–306. [Google Scholar] [CrossRef]
- Liao, W.B.; Zeng, Y.; Zhou, C.Q.; Jehle, R. Sexual size dimorphism in anurans fails to obey Rensch’s rule. Front. Zool. 2013, 10, 10. [Google Scholar] [CrossRef]
- Disi, A.; Amr, Z. Morphometrics, distribution and ecology of the amphibians in Jordan. Vertebr. Zool. 2010, 60, 147–162. [Google Scholar] [CrossRef]
- Fathinia, B.; Rastegar-Pouyani, N.; Darvishnia, H.; Mohamadi, H.; Faizi, H. Sexual size dimorphism in Rana (Pelophylax) ridibunda ridibunda Pallas, 1771 from a population in Darre-Shahr Township, Ilam Province, western Iran. Amphib. Reptile Conserv. 2012, 5, 92–97. [Google Scholar]
- Bamezar, F.; Fathi Nia, B.; Shafaeipour, A. Sexual dimorphism in Levant Green Frog, Pelophylax bedriagae (Camerano, 1882), in Kohgilouyeh and BoyerAhmad Province. Iran. J. Appl. Anim. Sci. 2020, 33, 114–122. [Google Scholar]
- Amor, N.; Farjallah, S.; Merella, P.; Said, K. Karyological and morphometric variation of the North African green frog Pelophylax saharicus (Anura) in northeastern Africa. Curr. Zool. 2010, 56, 678–686. [Google Scholar]
- Pesarakloo, A.; Najibzadeh, M.; Rastegar-Pouyani, N.; Rastegar-Pouyani, E. Taxonomic survey of water frog populations of Pelophylax bedriagae (Anura: Ranidae) in western Iran: A morphometric and bioacoustic approach. Biologia 2018, 73, 673–681. [Google Scholar] [CrossRef]
- Svinin, A.; Dedukh, D.V.; Borkin, L.J.; Ermakov, O.A.; Ivanov, A.Y.; Litvinchuk, J.S.; Zamaletdinov, R.I.; Mikhaylova, R.I.; Trubyanov, A.B.; Skorinov, D.V.; et al. Genetic structure, morphological variation, and gametogenic peculiarities in water frogs (Pelophylax) from northeastern European Russia. J. Zoolog. Syst. Evol. Res. 2021, 59, 646–662. [Google Scholar] [CrossRef]
- Johnson, J.V.; Finn, C.; Guirguis, J.; Goodyear, L.E.B.; Harvey, L.P.; Magee, R.; Ron, S.; Pincheira-Donoso, D. What drives the evolution of body size in ectotherms? A global analysis across the amphibian tree of life. Glob. Ecol. Biogeogr. 2023, 32, 1311–1322. [Google Scholar] [CrossRef]
- Olalla-Tárraga, M.Á.; Rodríguez, M.Á. Energy and interspecific body size patterns of amphibian faunas in Europe and North America: Anurans follow Bergmann’s rule, urodeles its converse. Glob. Ecol. Biogeogr 2007, 16, 606–617. [Google Scholar] [CrossRef]
- Yu, T.L.; Wang, D.L.; Busam, M.; Deng, Y.H. Altitudinal variation in body size in Bufo minshanicus supports Bergmann’s rule. Evol. Ecol. 2019, 33, 449–460. [Google Scholar] [CrossRef]
- Adams, D.C.; Church, J.O. Amphibians do not follow Bergmann’s rule. Evolution 2008, 62, 413–420. [Google Scholar] [CrossRef]
- Cvetković, D.; Tomašević, N.; Ficetola, G.F.; Crnobrnja-Isailović, J.; Miaud, C. Bergmann’s rule in amphibians: Combining demographic and ecological parameters to explain body size variation among populations in the common toad Bufo bufo. J. Zool. Syst. Evol. Res. 2009, 47, 171–180. [Google Scholar] [CrossRef]
- Liu, Q.; Feng, H.; Jin, L.; Mi, Z.P.; Zhou, Z.M.; Liao, W.B. Latitudinal variation in body size in Fejervarya limnocharis supports the inverse of Bergmann’s rule. Anim. Biol. 2018, 68, 113–128. [Google Scholar] [CrossRef]
- Seglie, D.; Roy, D.; Giacoma, C. Sexual dimorphism and age structure in a population of Tylototriton verrucosus (Amphibia: Salamandridae) from the Himalayan Region. Copeia 2010, 2010, 600–608. [Google Scholar] [CrossRef]
- Yu, B.G.; Zheng, R.Q.; Zhang, Y.; Liu, C.T. Geographic variation in body size and sexual size dimorphism in the giant spiny frog Paa spinosa (David, 1875) (Anura: Ranoidae). J. Nat. Hist. 2010, 44, 1729–1741. [Google Scholar] [CrossRef]
- Otero, M.A.; Baraquet, M.; Pollo, F.E.; Grenat, P.R.; Sala, N.; Martino, A. Sexual size dimorphism in relation to age and growth in Hypsiboas cordobae (Anura: Hylidae) from Córdoba, Argentina. Herpetol. Conserv. Biol. 2017, 12, 141–148. [Google Scholar]
- Zhang, L.; Sheng, Y.; Yuan, X.; Yu, F.; Zhong, X.; Chen, X. Sexual dimorphism in Scutiger boulengeri, an endemic toad from the Tibetan Plateau. Anim. Biol. 2020, 70, 445–457. [Google Scholar] [CrossRef]
- Mozaffari, O.; Moghari, E.S. Sexual dimorphism in Bufo eichwaldi’s snout shape with description of its usage in male-male competition. Russ. J. Herpetol. 2012, 19, 349–351. [Google Scholar]
- Jiménez-Arcos, V.H.; Calzada-Arciniega, R.A.; Alfaro-Juantorena, L.A.; Vazquez-Reyes, L.D.; Blair, C.; Parra-Olea, G. A new species of Charadrahyla (Anura: Hylidae) from the cloud forest of western Oaxaca, Mexico. Zootaxa 2019, 4554, 371–385. [Google Scholar] [CrossRef]
- Oka, Y.; Ohtani, R.; Satou, M.; Ueda, K. Sexually dimorphic muscles in the forelimb of the Japanese toad, Bufo japonicus. J. Morphol. 1984, 308, 297–308. [Google Scholar] [CrossRef]
- Emerson, S.B. A biomechanical perspective on the use of forelimb length as a measure of sexual selection in frogs. J. Evol. Biol. 1991, 4, 671–678. [Google Scholar] [CrossRef]
- Mi, Z.P. Sexual dimorphism in the forelimb muscles of the Asiatic toad Bufo gargarizans. J. Herpetol. 2012, 22, 219–224. [Google Scholar]
- Camurugi, F.; Magalhaes, F.M.; Campos de Queiroz, M.H.; Sena de Oliveira Pereira, T.C.; Tavares-Bastos, L.; Lopes-Marinho, E.S.; Neves, J.M.M.; Garda, A.A. Reproduction, sexual dimorphism, and diet of Leptodactylus chaquensis (Anura, Leptodactylidae) in Northeastern Brazil. Herpetol. Conserv. Biol. 2017, 12, 498–508. [Google Scholar]
- Clarke, G.S.; Shine, R.; Phillips, B.L. May the (selective) force be with you: Spatial sorting and natural selection exert opposing forces on limb length in an invasive amphibian. J. Evol. Biol. 2019, 32, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Mao, M.; Mi, Z.P.; Yang, Z.S.; Zhou, C.Q. Sexual dimorphism in the limb muscles of the dark-spotted frog, Pelophylax nigromaculata. Herpetol. J. 2014, 24, 147–153. [Google Scholar]
- Petrović, T.G.; Vukov, T.D.; Kolarov, N.T. Sexual dimorphism in size and shape of traits related to locomotion in nine anuran species from Serbia and Montenegro. Folia Zool. 2017, 66, 11–21. [Google Scholar] [CrossRef]
- Başkale, E.; Ulubeli, S.A.; Kaska, Y. Age structures and growth parameters of the Levantine frog, Pelophylax bedriagae, at different localities in Denizli, Turkey. Acta Herpetol. 2018, 13, 147–154. [Google Scholar]
- Çiçek, K.; Kumaş, M.; Ayaz, D.; Mermer, A.; Engin, Ş.D. Age structure of levant water frog, Pelophylax bedriagae, in lake Sülüklü (Western Anatolia, Turkey). Basic Appl. Herpetol. 2011, 25, 73–80. [Google Scholar] [CrossRef]
- Çiçek, K.; İsmail, İ.B. Population size, age structure and life cycle of Levant water frog, Pelophylax bedriagae (Camerano, 1882) (Amphibia: Anura: Ranidae) in Lake Sülüklü (Manisa). Su Ürünleri Derg. 2017, 34, 169–177. [Google Scholar]
- Khaloei, M.; Fathinia, B.; Shafaeipour, A. Skeletochronology of the Levant green frog, Pelophylax bedriagae (Camerano, 1882), in southern Iran. Curr. Herpetol. 2023, 42, 55–63. [Google Scholar] [CrossRef]
- Jazayeri, A.; Saberi, F.; Mohammadi, T. First study of age structure, growth pattern and reproductive age in populations of marsh frog (Pelophylax ridibundus) species in the northern and southern habitats of Khuzestan province. Exp. Anim. Biol. 2019, 8, 93–105. [Google Scholar]
- Zhelev, Z.; Arnaudov, A.T.; Boyadzhiev, P. Colour polymorphism, sex ratio and age structure in the populations of Pelophylax ridibundus and Pseudepidalea viridis (Amphibia: Anura) from anthropogenically polluted biotopes in southern Bulgaria and their usage as bioindicators. Trakia J. Sci. 2014, 12, 1–12. [Google Scholar]
- Čavlović, K.; Buj, I.; Karaica, D.; Jelić, D.; Choleva, L. Composition and age structure of the Pelophylax esculentus complex (Anura; Ranidae) population in inland Croatia. Salamandra 2018, 54, 11–20. [Google Scholar]
- Altun, C.; Altunışık, A. Comparison of the Marsh Frog (Pelophylax ridibundus) populations living in different altitudes in terms of age, size, and some growth parameters. Biol. Bull. 2023, 50 (Suppl. 3), S387–S394. [Google Scholar] [CrossRef]
- Ashkavandi, S.; Gharzi, A.; Abbassi, M. Age determination by skeletochronology in Rana ridibunda (Anuran: Amphibia). Asian J. Exp. Biol. Sci. 2012, 3, 156–162. [Google Scholar]
- Ivanova, N.L.; Zhigalski, O.A. Demographic features of populations of the marsh frog (Rana ridibunda Pall.) introduced into water bodies of the Middle Urals. Russ. J. Ecol. 2011, 42, 400–406. [Google Scholar] [CrossRef]
- Arısoy, A.G.; Başkale, E. Body size, age structure and survival rates in two populations of the Beyşehir frog Pelophylax caralitanus. Herpetozoa 2019, 32, 195–201. [Google Scholar] [CrossRef]
- Erişmiş, U.C.; Chinsamy, A. Ontogenetic changes in the epiphyseal cartilage of Rana (Pelophylax) caralitana (Anura: Ranidae). Anat. Rec. 2010, 293, 1825–1837. [Google Scholar] [CrossRef]
- Erişmiş, U.C. Age, size, and growth of the Turkish endemic frog Pelophylax caralitanus (Anura: Ranidae). Anat. Rec. 2018, 301, 1224–1234. [Google Scholar] [CrossRef]
- Khonsue, W.; Matsui, M.; Misawa, Y. Age determination of Daruma pond frog, Rana porosa brevipoda from Japan towards its conservation (Amphibia: Anura). Amphibia-Reptilia 2002, 23, 259–268. [Google Scholar]
- Togane, D.; Fukuyama, K.; Takai, K.; Kuramoto, N. Body size and age structure in two populations of Tokyo Daruma Pond Frog, Pelophylax porosus porosus. Curr. Herpetol. 2018, 37, 58–68. [Google Scholar] [CrossRef]
- Lou, S.L.; Jin, L.; Liu, Y.H.; Mi, Z.P.; Tao, G.; Tang, Y.M.; Liao, W.B. Altitudinal variation in age and body size in Yunnan Pond Frog (Pelophylax pleuraden). Zool. Sci. 2012, 29, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Kidov, A.A.; Ivolga, R.A.; Kondratova, T.E.; Ivanov, A.A. Age, Growth, and fertility in Terentiev’s Frog (Pelophylax terentievi, Amphibia, Ranidae). Biol. Bull. 2023, 50, 1854–1863. [Google Scholar] [CrossRef]
- Liao, W.B.; Zhou, C.Q.; Yang, Z.S.; Hu, J.C.; Lu, X. Age, size and growth in two populations of the dark-spotted frog Rana nigromaculata at different altitudes in southwestern China. Herpetol. J. 2010, 20, 77–82. [Google Scholar]
- Cheong, S.; Yoo, J.H.; Park, S.R.; Sung, H.C. Age estimation by skeletochronology and advertisement call variation in the black-spotted pond frog (Rana nigromaculata). Anim. Cells Syst. 2013, 17, 141–146. [Google Scholar] [CrossRef]
- Khonsue, W.; Matsui, M.; Hirai, T.; Misawa, Y. A comparison of age structures in two populations of a pond frog Rana nigromaculata (Amphibia: Anura). Zool. Sci. 2001, 18, 597–603. [Google Scholar] [CrossRef]
- Esteban, M.; García-París, M.; Castanet, J. Use of bone histology in estimating the age of frogs (Rana perezi) from a warm temperate climate area. Can. J. Zool. 1996, 74, 1914–1921. [Google Scholar] [CrossRef]
- Patón, D.; Juarranz, A.; Sequeros, E.; Perez-Campo, R.; Lopez-Torres, M.; De Quiroga, G.B. Seasonal age and sex structure of Rana perezi assessed by skeletochronology. J. Herpetol. 1991, 25, 389–394. [Google Scholar] [CrossRef]
- Tsiora, A.; Kyriakopoulou-Sklavounou, P. A skeletochronological study of age and growth in relation to adult size in the water frog Rana epeirotica. Zoology 2002, 105, 55–60. [Google Scholar] [CrossRef]
- Oromi, N.; Brunet, P.; Taibi, K.; Aït Hammou, M.; Sanuy, D. Life-history traits in Pelophylax saharicus from Tiaret semiarid lands (northwestern Algeria). Herpetol. J. 2011, 21, 267–269. [Google Scholar]
- Esteban, M.; García-París, M.; Buckley, D.; Castanet, J. Bone growth and age in Rana saharica, a water frog living in a desert environment. Ann. Zool. Fenn. 1999, 36, 53–62. [Google Scholar]
- Embrechts, E.; Reyer, H.U. Age and size of hybrid water frogs: The role of genotype and ecology. Herpetologica 2012, 68, 468–481. [Google Scholar] [CrossRef]
- Cogalniceanu, D.; Miaud, C. Population age structure and growth in four syntopic amphibian species inhabiting a large river floodplain. Can. J. Zool. 2003, 81, 1096–1106. [Google Scholar] [CrossRef]
- Baraquet, M.; Otero, M.A.; Valetti, J.A.; Grenat, P.R.; Martino, A.L. Age, body size, and growth of Boana cordobae (Anura: Hylidae) along an elevational gradient in Argentina. Herpetol. Conserv. Biol. 2018, 13, 391–398. [Google Scholar]
- Zhang, L.; Ma, X.; Jiang, J.; Lu, X. Stronger condition dependence in female size explains altitudinal variation in sexual size dimorphism of a Tibetan frog. Biol. J. Linn. Soc. 2012, 107, 558–565. [Google Scholar] [CrossRef]
- Morrison, C.; Hero, J.M. Geographic variation in life-history characteristics of amphibians: A review. J. Anim. Ecol. 2003, 72, 270–279. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, X.I.N. Amphibians live longer at higher altitudes but not at higher latitudes. Biol. J. Linn. Soc. 2012, 106, 623–632. [Google Scholar] [CrossRef]
- Amat, F.; Meiri, S. Geographical, climatic and biological constraints on age at sexual maturity in amphibians. Biol. J. Linn. Soc. 2018, 123, 34–42. [Google Scholar] [CrossRef]
Males | Females | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | n | Mean | SE | Min. | Max. | n | Mean | SE | Min. | Max. |
SVL | 33 | 78.05 | 1.46 | 57.20 | 95.80 | 21 | 93.95 | 3.43 | 67.70 | 123.90 |
Weight | 33 | 60.87 | 3.10 | 19.00 | 101.00 | 21 | 109.61 | 11.19 | 34.00 | 224.00 |
Age | 33 | 3.67 | 0.21 | 2.00 | 6.00 | 21 | 4.05 | 0.23 | 2.00 | 6.00 |
L. c. | 11 | 21.35 | 0.58 | 18.20 | 23.90 | 11 | 23.96 | 1.07 | 19.10 | 29.20 |
Sp. n. | 11 | 4.93 | 0.15 | 4.20 | 5.70 | 11 | 5.79 | 0.24 | 4.20 | 7.30 |
Sp. oc. | 11 | 7.22 | 0.34 | 5.30 | 8.60 | 11 | 9.26 | 0.32 | 7.70 | 11.40 |
L. o. | 11 | 8.82 | 0.32 | 7.30 | 10.80 | 11 | 10.72 | 0.27 | 9.70 | 12.50 |
L. tym. | 11 | 5.30 | 0.15 | 4.40 | 6.30 | 11 | 7.3 | 0.42 | 5.10 | 10.30 |
D. r. o. | 11 | 10.34 | 0.27 | 8.50 | 11.50 | 11 | 13.36 | 0.64 | 8.50 | 16.60 |
D. n. o. | 11 | 4.30 | 0.15 | 3.30 | 5.20 | 11 | 5.56 | 0.19 | 4.80 | 6.70 |
D. r. n. | 11 | 4.53 | 0.16 | 3.50 | 5.30 | 11 | 6.34 | 0.25 | 5.10 | 7.40 |
Lt. c. tym. | 11 | 24.09 | 0.57 | 20.87 | 27.70 | 11 | 30.35 | 0.78 | 27.10 | 34.40 |
Lt. m. | 11 | 6.88 | 0.27 | 5.30 | 8.300 | 11 | 8.55 | 0.56 | 6.10 | 11.50 |
M | 11 | 17.08 | 0.60 | 13.4 | 19.80 | 11 | 19.98 | 0.75 | 15.60 | 24.00 |
A | 11 | 14.09 | 0.61 | 10.6 | 17.70 | 11 | 19.08 | 0.94 | 14.40 | 23.90 |
H | 11 | 10.79 | 0.44 | 9.30 | 13.50 | 11 | 12.99 | 0.73 | 9.00 | 18.10 |
F | 11 | 37.94 | 1.21 | 30.5 | 43.40 | 11 | 48.21 | 1.24 | 42.40 | 54.60 |
T | 11 | 32.94 | 1.10 | 27.10 | 40.10 | 11 | 42.55 | 1.12 | 38.40 | 48.90 |
L. t | 11 | 19.73 | 0.87 | 15.20 | 22.92 | 11 | 25.26 | 0.78 | 20.50 | 29.90 |
At. c.int. | 11 | 3.60 | 0.25 | 2.20 | 4.90 | 11 | 4.15 | 0.19 | 3.20 | 5.20 |
C. int. | 11 | 8.47 | 0.28 | 7.10 | 9.80 | 11 | 12.14 | 0.61 | 9.20 | 15.50 |
D. p. p. | 11 | 12.20 | 0.45 | 8.50 | 14.60 | 11 | 16.84 | 0.63 | 13.40 | 20.70 |
L. p. | 11 | 37.22 | 1.25 | 29.90 | 42.60 | 11 | 46.75 | 1.99 | 30.90 | 54.10 |
Lt. p. | 11 | 8.14 | 0.43 | 6.30 | 11.30 | 11 | 11.07 | 0.34 | 9.60 | 12.90 |
D. p. m. | 11 | 11.08 | 0.61 | 8.50 | 14.60 | 11 | 14.41 | 0.59 | 11.10 | 17.70 |
Estimated Parameters | |||||
---|---|---|---|---|---|
Age–SVL | |||||
Sex | L∞ | CI | K | CI | t0 |
Male | 83.22 | 78.64–87.81 | 0.90 | 0.61–1.25 | 0.15 |
Female | 112.21 | 97.96–157.78 | 0.47 | 0.20–0.85 | 0.09 |
Age–Weight | |||||
Sex | W∞ | CI | K | CI | t0 |
Male | 75.45 | 63.55–108.61 | 0.55 | 0.22–1.05 | 0.29 |
Female | 260.08 | 127.02–825.69 | 0.16 | 0.04–0.71 | 0.33 |
Variables | PC1 | PC2 | PC3 |
---|---|---|---|
L. c. | 0.69 | −0.23 | −0.39 |
S. p. n. | 0.77 | 0.18 | 0.16 |
Sp. o. c. | 0.74 | 0.50 | −0.23 |
L. o. | 0.89 | 0.16 | 0.08 |
L. tym. | 0.83 | −0.05 | −0.33 |
D. r. o. | 0.75 | −0.11 | −0.40 |
D. n. o. | 0.81 | −0.18 | −0.02 |
D. r. n. | 0.84 | −0.03 | −0.17 |
Lt. c. tym | 0.92 | −0.07 | −0.01 |
Lt. m. | 0.70 | 0.07 | −0.42 |
M | 0.84 | −0.16 | 0.04 |
A | 0.90 | −0.13 | 0.06 |
H | 0.72 | −0.37 | 0.25 |
F | 0.97 | 0.05 | 0.08 |
T | 0.96 | 0.04 | 0.11 |
L. t. | 0.93 | −0.13 | 0.22 |
At. c. int. | 0.56 | 0.69 | 0.10 |
C. int. | 0.89 | −0.10 | −0.06 |
D. p. p. | 0.89 | 0.13 | −0.02 |
L. p. | 0.71 | 0.13 | 0.31 |
Lt. p. | 0.90 | −0.10 | 0.20 |
D. p. m. | 0.79 | −0.07 | 0.30 |
Eigenvalue | 1.51 | 1.19 | 1.11 |
Variance (%) | 68.81 | 5.45 | 5.06 |
Total variance (%) | 68.81 | 74.26 | 79.32 |
Species | Country | Sex | Mean Age | Max. Age | Study |
---|---|---|---|---|---|
P. bedriagae | Türkiye | Female | 5.79 | 12 | [64] |
Male | 5.65 | 12 | |||
P. bedriagae | Türkiye | Female | 2.95 | 5 | [65] |
Male | 2.50 | 4 | |||
P. bedriagae | Türkiye | Female | 4.33 | 9 | [66] |
Male | 3.45 | 7 | |||
P. bedriagae | Iran | Female | 5.20 | 8 | [67] |
Male | 6.20 | 10 | |||
P. ridibundus | Türkiye | Female | 4.89 | 7 | [20] |
Male | 5.32 | 11 | |||
P. ridibundus | Poland | Female | 4.40 | 7 | [28] |
Male | 3.70 | 6 | |||
P. ridibundus | Greece | Female | 3.73 | 5 | [18] |
Male | 2.96 | 5 | |||
P. ridibundus | Türkiye | Female | 3.72 | 6 | [17] |
Male | 3.90 | 7 | |||
P. ridibundus | Iran | Female | 5.40 | 12 | [68] |
Male | 3.00 | 7 | |||
P. ridibundus | Bulgaria | Female | − | 5 | [69] |
Male | − | 5 | |||
P. ridibundus | Croatia | Female | 8.00 | 13 | [70] |
Male | |||||
P. ridibundus | Russia | Female | 3.30 | 6 | [21] |
Male | 3.49 | 9 | |||
P. ridibundus | Türkiye | Female | 5.42 | 11 | [71] |
Male | 6.19 | 13 | |||
P. ridibundus | Iran | Female | 4.50 | 11 | [72] |
Male | 6.43 | 7 | |||
P. ridibundus | Russia | Female | 4.90 | 9 | [73] |
Male | − | − | |||
P. ridibundus | Georgia | Female | 4.03 | 7 | [16] |
Male | 2.78 | ||||
P. caralitanus | Türkiye | Female | 5.23 | 10 | [74] |
Male | 4.59 | 9 | |||
P. caralitanus | Türkiye | Female | 6.01 | 10 | [75] |
Male | 5.01 | 9 | |||
P. caralitanus | Türkiye | Female | 5.66 | 10 | [76] |
Male | 4.90 | 9 | |||
P. lessonae | Croatia | Female | 4.80 | 8 | [70] |
Male | |||||
P. porosus | Japan | Female | 2.00 | 4 | [77] |
Male | 1.50 | 4 | |||
P. porosus | Japan | Female | 1.66 | 4 | [78] |
Male | 1.55 | 3 | |||
P. pleuraden | China | Female | 2.81 | 4.5 | [79] |
Male | 2.56 | 3.5 | |||
P. terentievi | Russia | Female | 3.50 | 5 | [80] |
Male | 4.10 | 6 | |||
P. nigromaculatus | China | Female | 2.81 | 5 | [81] |
Male | 2.37 | 4 | |||
P. nigromaculatus | South Korea | Female | − | − | [82] |
Male | 4.44 | 8 | |||
P. nigromaculatus | Japan | Female | 4.09 | 6 | [83] |
Male | 3.34 | 6 | |||
P. perezi | Spain | Female | − | 6 | [84] |
Male | − | 4 | |||
P. perezi | Spain | Female | 2.01 | 6 | [85] |
Male | 5 | ||||
P. epeiroticus | Greece | Female | 3.22 | 5 | [86] |
Male | 2.82 | 5 | |||
P. saharicus | Algeria | Female | − | 8 | [87] |
Male | − | 4 | |||
P. saharicus | Morocco | Female | 2.91 | 6 | [88] |
Male | 3.63 | 6 | |||
P. esculentus | Sweden | Female | − | 6 | [89] |
Male | − | 6 | |||
P. esculentus | Romania | Female | 6.70 | 10 | [90] |
Male | 5.00 | ||||
P. esculentus | Croatia | Female | 5.10 | 10 | [70] |
Male |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gül, S.; Dursun, C.; Tabak, C.; Büyüksofuoğlu, S.; Özdemir, N. Age Structure, Body Size, and Sexual Dimorphism in a High-Altitude Population of Pelophylax ridibundus (Pallas, 1771). Animals 2024, 14, 3230. https://doi.org/10.3390/ani14223230
Gül S, Dursun C, Tabak C, Büyüksofuoğlu S, Özdemir N. Age Structure, Body Size, and Sexual Dimorphism in a High-Altitude Population of Pelophylax ridibundus (Pallas, 1771). Animals. 2024; 14(22):3230. https://doi.org/10.3390/ani14223230
Chicago/Turabian StyleGül, Serkan, Cantekin Dursun, Ceren Tabak, Sümeyye Büyüksofuoğlu, and Nurhayat Özdemir. 2024. "Age Structure, Body Size, and Sexual Dimorphism in a High-Altitude Population of Pelophylax ridibundus (Pallas, 1771)" Animals 14, no. 22: 3230. https://doi.org/10.3390/ani14223230
APA StyleGül, S., Dursun, C., Tabak, C., Büyüksofuoğlu, S., & Özdemir, N. (2024). Age Structure, Body Size, and Sexual Dimorphism in a High-Altitude Population of Pelophylax ridibundus (Pallas, 1771). Animals, 14(22), 3230. https://doi.org/10.3390/ani14223230