The Germline-Restricted Chromosome of Male Zebra Finches in Meiotic Prophase I: A Proteinaceous Scaffold and Chromatin Modifications
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. The Distribution of HORMA Domain-Containing Protein 1 (HORMAD1)
3.2. Distribution of a Single-Stranded DNA (ssDNA)-Binding Protein, RPA
3.3. Distribution of RNA Polymerase II (RNAP II)
3.4. Distributions of Histones H3K27me3 and H3S28ph
3.5. Distributions of Some Previously Studied Proteins of Repair and Meiotic Silencing
4. Discussion
4.1. The Scaffold of GRCs: Proteins Giving Rise to the AE
4.2. GRCs and Proteins Participating in Repair and Recombination
4.3. Meiotic Silencing of the GRC: Proteins Forming Inactive Chromatin
4.4. Sporadic Association of Prophase I Chromosomes via Centromeric Regions
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tobler, H. The Differentiation of Germ and Somatic Cell Lines in Nematodes. In Germ Line—Soma Differentiation. Results and Problems in Cell Differentiation; Hennig, W., Ed.; Springer: Berlin/Heidelberg, Germany, 1986; Volume 13, pp. 1–69. [Google Scholar] [CrossRef]
- Pimpinelli, S.; Goday, C. Unusual kinetochores and chromatin diminution in Parascaris. Trends Genet. 1989, 5, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Grishanin, A.; Shekhovtsov, A.; Boikova, T.; Akif’ev, A.; Zhimulev, I. Chromatin diminution at the border of the XX and XXI centuries. Tsitologiia 2006, 48, 379–397. [Google Scholar] [PubMed]
- Smith, J.J.; Timoshevskiy, V.A.; Saraceno, C. Programmed DNA elimination in vertebrates. Annu. Rev. Anim. Biosci. 2020, 9, 173–201. [Google Scholar] [CrossRef] [PubMed]
- Zagoskin, M.V.; Wang, J. Programmed DNA elimination: Silencing genes and repetitive sequences in somatic cells. Biochem. Soc. Trans. 2021, 49, 1891–1903. [Google Scholar] [CrossRef]
- Dedukh, D.; Krasikova, A. Delete and survive: Strategies of programmed genetic material elimination in eukaryotes. Biol. Rev. 2022, 97, 195–216. [Google Scholar] [CrossRef]
- Borodin, P.; Chen, A.; Forstmeier, W.; Fouché, S.; Malinovskaya, L.; Pei, Y.; Reifová, R.; Ruiz-Ruano, F.J.; Schlebusch, S.A.; Sotelo-Muñoz, M.; et al. Mendelian nightmares: The germline-restricted chromosome of songbirds. Chromosome Res. 2022, 30, 255–272. [Google Scholar] [CrossRef]
- Borodin, P.M. Germline-restricted chromosomes of the songbirds. Vavilov J. Genet. Breed. 2023, 27, 641. [Google Scholar] [CrossRef]
- Grishanin, A. Chromatin diminution as a tool to study some biological problems. Comp. Cytogenet. 2024, 18, 27. [Google Scholar] [CrossRef]
- Herla, V. Etude des variations de la mitose chez l’Ascaride mégalocéphale. Arch. Biol. 1983, 13, 423–520. [Google Scholar]
- Fogg, L.C. A study of chromatin diminution in Ascaris and Ephestia. J. Morphol. 1930, 50, 413–451. [Google Scholar] [CrossRef]
- King, R.L.; Beams, H.W. An experimental study of chromatin diminution in Ascaris. J. Exp. Zool. 1938, 77, 425–443. [Google Scholar] [CrossRef]
- Sager, R.; Kitchin, R. Selective Silencing of Eukaryotic DNA: A molecular basis is proposed for programmed inactivation or loss of eukaryotic DNA. Science 1975, 189, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.C.; Choi, J.; Yokoyama, S.; Austerberry, C.F.; Yao, C.H. DNA elimination in Tetrahymena: A developmental process involving extensive breakage and rejoining of DNA at defined sites. Cell 1984, 36, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Hennig, W. Heterochromatin and germ line-restricted DNA. In Germ Line—Soma Differentiation. Results and Problems in Cell Differentiation; Hennig, W., Ed.; Springer: Berlin/Heidelberg, Germany, 1986; Volume 13, pp. 1–69. [Google Scholar] [CrossRef]
- Yao, M.C. Programmed DNA deletions in Tetrahymena: Mechanisms and implications. Trends Genet. 1996, 12, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Godiska, R.; Yao, M.C. A programmed site-specific DNA rearrangement in Tetrahymena thermophila requires flanking polypurine tracts. Cell 1990, 61, 1237–1246. [Google Scholar] [CrossRef]
- Goday, C.; Pigozzi, M.I. Heterochromatin and histone modifications in the germline-restricted chromosome of the zebra finch undergoing elimination during spermatogenesis. Chromosoma 2010, 119, 325–336. [Google Scholar] [CrossRef]
- Coyne, R.S.; Nikiforov, M.A.; Smothers, J.F.; Allis, C.D.; Yao, M.C. Parental expression of the chromodomain protein Pdd1p is required for completion of programmed DNA elimination and nuclear differentiation. Mol. Cell 1999, 4, 865–872. [Google Scholar] [CrossRef]
- Wang, J.; Davis, R.E. Programmed DNA elimination in multicellular organisms. Curr. Opin. Genet. Dev. 2014, 27, 26–34. [Google Scholar] [CrossRef]
- Pigozzi, M.I.; Solari, A.J. Germ cell restriction and regular transmission of an accessory chromosome that mimics a sex body in the zebra finch, Taeniopygia guttata. Chromosome Res. 1998, 6, 105–113. [Google Scholar] [CrossRef]
- Del Priore, L.; Pigozzi, M.I. Histone modifications related to chromosome silencing and elimination during male meiosis in Bengalese finch. Chromosoma 2014, 123, 293–302. [Google Scholar] [CrossRef]
- Kinsella, C.M.; Ruiz-Ruano, F.J.; Dion-Côté, A.M.; Charles, A.J.; Gossmann, T.I.; Cabrero, J.; Kappei, D.; Hemmings, N.; Simons, M.J.; Camacho, J.P.M.; et al. Programmed DNA elimination of germline development genes in songbirds. Nat. Commun. 2019, 10, 5468. [Google Scholar] [CrossRef] [PubMed]
- Torgasheva, A.A.; Malinovskaya, L.P.; Zadesenets, K.S.; Karamysheva, T.V.; Kizilova, E.A.; Akberdina, E.A.; Pristyazhnyuk, I.E.; Shnaider, E.P.; Volodkina, V.A.; Saifitdinova, A.F.; et al. Germline-restricted chromosome (GRC) is widespread among songbirds. Proc. Natl. Acad. Sci. USA 2019, 116, 11845–11850. [Google Scholar] [CrossRef] [PubMed]
- Schlebusch, S.A.; Rídl, J.; Poignet, M.; Ruiz-Ruano, F.J.; Reif, J.; Pajer, P.; Pačes, J.; Albrecht, T.; Suh, A.; Reifová, R. Rapid gene content turnover on the germline-restricted chromosome in songbirds. Nat. Commun. 2023, 14, 4579. [Google Scholar] [CrossRef] [PubMed]
- Malinovskaya, L.P.; Slobodchikova, A.Y.; Grishko, E.O.; Pristyazhnyuk, I.E.; Torgasheva, A.A.; Borodin, P.M. Germline-restricted chromosomes and autosomal variants revealed by pachytene karyotyping of 17 avian species. Cytogenet. Genome Res. 2022, 162, 148–160. [Google Scholar] [CrossRef] [PubMed]
- Pigozzi, M.I.; Solari, A.J. The germ-line-restricted chromosome in the zebra finch: Recombination in females and elimination in males. Chromosoma 2005, 114, 403–409. [Google Scholar] [CrossRef]
- Roeder, G.S.; Bailis, J.M. The pachytene checkpoint. Trends Genet. 2000, 16, 395–403. [Google Scholar] [CrossRef]
- Schoenmakers, S.; Wassenaar, E.; Laven, J.S.; Grootegoed, J.A.; Baarends, W.M. Meiotic silencing and fragmentation of the male germline restricted chromosome in zebra finch. Chromosoma 2010, 119, 311–324. [Google Scholar] [CrossRef]
- Solari, A.J. The behavior of the XY pair in mammals. Int. Rev. Cytol. 1974, 38, 273–317. [Google Scholar] [CrossRef]
- Peters, A.H.F.M.; Plug, A.W.; van Vugt, M.J.; de Boer, P. A drying-down technique for the spreading of mammalian meiocytes from the male and female germ line. Chromosome Res. 1997, 5, 66–71. [Google Scholar] [CrossRef]
- Page, J.; Berríos, S.; Rufas, J.S.; Parra, M.T.; Suja, J.Á.; Heyting, C.; Fernández-Donoso, R. The pairing of X and Y chromosomes during meiotic prophase in the marsupial species Thylamys elegans is maintained by a dense plate developed from their axial elements. J. Cell Sci. 2003, 116, 551–560. [Google Scholar] [CrossRef]
- Gil-Fernández, A.; Matveevsky, S.; Martín-Ruiz, M.; Ribagorda, M.; Parra, M.T.; Viera, A.; Rufas, J.S.; Kolomiets, O.; Bakloushinskaya, I.; Page, J. Sex differences in the meiotic behavior of an XX sex chromosome pair in males and females of the mole vole Ellobius tancrei: Turning an X into a Y chromosome? Chromosoma 2021, 130, 113–131. [Google Scholar] [CrossRef] [PubMed]
- Matveevsky, S.; Bakloushinskaya, I.; Kolomiets, O. Unique sex chromosome systems in Ellobius: How do male XX chromosomes recombine and undergo pachytene chromatin inactivation? Sci. Rep. 2016, 6, 29949. [Google Scholar] [CrossRef] [PubMed]
- Matveevsky, S.; Chassovnikarova, T.; Grishaeva, T.; Atsaeva, M.; Malygin, V.; Bakloushinskaya, I.; Kolomiets, O. Kinase CDK2 in mammalian meiotic prophase I: Screening for hetero-and homomorphic sex chromosomes. Int. J. Mol. Sci. 2021, 22, 1969. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.; Pratto, F.; Schimenti, J.C.; Turner, J.M.; Camerini-Otero, R.D.; Höög, C. Phosphorylation of chromo-some core components may serve as axis marks for the status of chromosomal events during mammalian meiosis. PLoS Genet. 2012, 8, e1002485. [Google Scholar] [CrossRef]
- Wold, M.S. Replication protein A: A heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 1997, 66, 61–92. [Google Scholar] [CrossRef]
- Corden, J.L. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem. Rev. 2013, 113, 8423–8455. [Google Scholar] [CrossRef]
- Kuzmichev, A.; Nishioka, K.; Erdjument-Bromage, H.; Tempst, P.; Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 2002, 16, 2893–2905. [Google Scholar] [CrossRef]
- Bernstein, E.; Duncan, E.M.; Masui, O.; Gil, J.; Heard, E.; Allis, C.D. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol. Cell. Biol. 2006, 26, 2560–2569. [Google Scholar] [CrossRef]
- Sun, J.M.; Chen, H.Y.; Espino, P.S.; Davie, J.R. Phosphorylated serine 28 of histone H3 is associated with destabilized nucleosomes in transcribed chromatin. Nucleic Acids Res. 2007, 35, 6640–6647. [Google Scholar] [CrossRef]
- Lau, P.N.I.; Cheung, P. Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing. Proc. Natl. Acad. Sci. USA 2011, 108, 2801–2806. [Google Scholar] [CrossRef]
- Gehani, S.S.; Agrawal-Singh, S.; Dietrich, N.; Christophersen, N.S.; Helin, K.; Hansen, K. Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol Cell. 2010, 39, 886–900. [Google Scholar] [CrossRef] [PubMed]
- Itoh, Y.; Arnold, A.P. Chromosomal polymorphism and comparative painting analysis in the zebra finch. Chromosome Res. 2005, 13, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Tong, Z.; Ye, Q.; Sun, T.; Hong, Z.; Zhang, L.; Bortnick, A.; Cho, S.; Beuzer, P.; Axelrod, J.; et al. Molecular organization of mammalian meiotic chromosome axis revealed by expansion STORM microscopy. Proc. Natl. Acad. Sci. USA 2019, 116, 18423–18428. [Google Scholar] [CrossRef] [PubMed]
- West, A.M.; Rosenberg, S.C.; Ur, S.N.; Lehmer, M.K.; Ye, Q.; Hagemann, G.; Caballero, I.; Uson, I.; MacQueen, A.J.; Herzog, F.; et al. A conserved filamentous assembly underlies the structure of the meiotic chromosome axis. eLife 2019, 8, e40372. [Google Scholar] [CrossRef]
- Yuan, L.; Liu, J.G.; Zhao, J.; Brundell, E.; Daneholt, B.; Höög, C. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol. Cell 2000, 5, 73–83. [Google Scholar] [CrossRef]
- Yang, F.; Fuente, R.D.L.; Leu, N.A.; Baumann, C.; McLaughlin, K.J.; Wang, P.J. Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis. J. Cell Biol. 2006, 173, 497–507. [Google Scholar] [CrossRef]
- Ishiguro, K.I.; Kim, J.; Shibuya, H.; Hernández-Hernández, A.; Suzuki, A.; Fukagawa, T.; Shioi, G.; Kiyonari, H.; Li, X.C.; Schimenti, J.; et al. Meiosis-specific cohesin mediates homolog recognition in mouse spermatocytes. Genes Dev. 2014, 28, 594–607. [Google Scholar] [CrossRef]
- Llano, E.; Herrán, Y.; García-Tuñón, I.; Gutiérrez-Caballero, C.; de Álava, E.; Barbero, J.L.; Schimenti, J.; de Rooij, D.G.; Sánchez-Martín, M.; Pendás, A.M. Meiotic cohesin complexes are essential for the formation of the axial element in mice. J. Cell Biol. 2012, 197, 877–885. [Google Scholar] [CrossRef]
- Brar, G.A.; Hochwagen, A.; Ee, L.S.S.; Amon, A. The multiple roles of cohesin in meiotic chromosome morpho-genesis and pairing. Mol. Biol. Cell 2009, 20, 1030–1047. [Google Scholar] [CrossRef]
- Rong, M.; Matsuda, A.; Hiraoka, Y.; Lee, J. Meiotic cohesin subunits RAD21L and REC8 are positioned at distinct regions between lateral elements and transverse filaments in the synaptonemal complex of mouse spermatocytes. J. Reprod. Dev. 2006, 62, 623–630. [Google Scholar] [CrossRef]
- Biswas, U.; Hempel, K.; Llano, E.; Pendas, A.; Jessberger, R. Distinct roles of meiosis-specific cohesin complexes in mammalian spermatogenesis. PLoS Genet. 2016, 12, e1006389. [Google Scholar] [CrossRef] [PubMed]
- Pelttari, J.; Hoja, M.R.; Yuan, L.; Liu, J.G.; Brundell, E.; Moens, P.; Santucci-Darmanin, S.; Jessberger, R.; Barbero, J.L.; Heyting, C.; et al. A meiotic chromosomal core con-sisting of cohesin complex proteins recruits DNA recombination proteins and promotes synapsis in the absence of an axial element in mammalian meiotic cells. Mol. Cell. Biol. 2001, 21, 5667–5677. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, Y.; Horisawa-Takada, Y.; Inoue, E.; Tani, N.; Shibuya, H.; Fujimura, S.; Kariyazono, R.; Sakata, T.; Ohta, K.; Araki, K.; et al. Meiotic cohesins mediate initial loading of HORMAD1 to the chromosomes and coordinate SC formation during meiotic prophase. PLoS Genet. 2020, 16, e1009048. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.; Daniel, K.; Wojtasz, L.; Toth, A.; Höög, C. A novel mammalian HORMA domain-containing protein, HORMAD1, preferentially associates with unsynapsed meiotic chromosomes. Exp. Cell Res. 2010, 316, 158–171. [Google Scholar] [CrossRef]
- Shin, Y.H.; Choi, Y.; Erdin, S.U.; Yatsenko, S.A.; Kloc, M.; Yang, F.; Wang, P.J.; Meistrich, M.L.; Rajkovic, A. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis. PLoS Genet. 2010, 6, e1001190. [Google Scholar] [CrossRef]
- Kogo, H.; Tsutsumi, M.; Ohye, T.; Inagaki, H.; Abe, T.; Kurahashi, H. HORMAD1-dependent check-point/surveillance mechanism eliminates asynaptic oocytes. Genes Cells 2012, 17, 439–454. [Google Scholar] [CrossRef]
- Wojtasz, L.; Daniel, K.; Roig, I.; Bolcun-Filas, E.; Xu, H.; Boonsanay, V.; Eckmann, C.R.; Cooke, H.J.; Jasin, M.; Keeney, S.; et al. Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genet. 2009, 5, e1000702. [Google Scholar] [CrossRef]
- Pavlova, S.V.; Romanenko, S.A.; Matveevsky, S.N.; Kuksin, A.N.; Dvoyashov, I.A.; Kovalskaya, Y.M.; Proskuryakova, A.A.; Serdyukova, N.A.; Petrova, T.V. Supernumerary Chromosomes Enhance Karyotypic Diversification of Narrow-Headed Voles of the Subgenus Stenocranius (Rodentia, Mammalia). J. Exp. Zool. Part B Mol. Dev. Evol. 2024, in press. [Google Scholar] [CrossRef]
- Kolomiets, O.L.; Borbiev, T.E.; Safronova, L.D.; Borisov, Y.M.; Bogdanov, Y.F. Synaptonemal complex analysis of B-chromosome behavior in meiotic prophase I in the East-Asiatic mouse Apodemus peninsulae (Muridae, Rodentia). Cytogenet. Genome Res. 1988, 48, 183–187. [Google Scholar] [CrossRef]
- Basheva, E.A.; Torgasheva, A.A.; Sakaeva, G.R.; Bidau, C.; Borodin, P.M. A-and B-chromosome pairing and recombination in male meiosis of the silver fox (Vulpes vulpes L., 1758, Carnivora, Canidae). Chromosome Res. 2010, 18, 689–696. [Google Scholar] [CrossRef]
- Karamysheva, T.V.; Torgasheva, A.A.; Yefremov, Y.R.; Bogomolov, A.G.; Liehr, T.; Borodin, P.M.; Rubtsov, N.B. Spatial organization of fibroblast and spermatocyte nuclei with different B-chromosome content in Korean field mouse, Apodemus peninsulae (Rodentia, Muridae). Genome 2017, 60, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Del Priore, L.; Pigozzi, M.I. Heterologous synapsis and crossover suppression in heterozygotes for a pericentric inversion in the Zebra Finch. Cytogenet. Genome Res. 2015, 147, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Lizarralde, M.S.; Bolzán, A.D.; Poljak, S.; Pigozzi, M.I.; Bustos, J.; Merani, M.S. Chromosomal localization of the telomeric (TTAGGG) n sequence in four species of armadillo (Dasypodidae) from Argentina: An approach to explaining karyotype evolution in the Xenarthra. Chromosome Res. 2005, 13, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Matveevsky, S.N.; Pavlova, S.V.; Acaeva, M.M.; Kolomiets, O.L. Synaptonemal complex analysis of interracial hybrids between the Moscow and Neroosa chromosomal races of the common shrew Sorex araneus showing regular for-mation of a complex meiotic configuration (ring-of-four). Comp. Cytogenet. 2012, 6, 301. [Google Scholar] [CrossRef]
- Kauppi, L.; Jasin, M.; Keeney, S. How much is enough? Control of DNA double-strand break numbers in mouse meiosis. Cell Cycle 2013, 12, 2719–2720. [Google Scholar] [CrossRef]
- Mahadevaiah, S.K.; Turner, J.; Baudat, F.; Rogakou, E.P.; de Boer, P.; Blanco-Rodríguez, J.; Jasin, M.; Keeney, S.; Bonner, W.M.; Burgoyne, P.S. Recombinational DNA double-strand breaks in mice precede synapsis. Nat. Genet. 2001, 27, 271–276. [Google Scholar] [CrossRef]
- Page, J.; De La Fuente, R.; Manterola, M.; Parra, M.T.; Viera, A.; Berríos, S.; Fernández-Donoso, R.; Rufas, J.S. Inactivation or non-reactivation: What accounts better for the silence of sex chromosomes during mammalian male meiosis? Chromosoma 2012, 121, 307–326. [Google Scholar] [CrossRef]
- Ribeiro, J.; Abby, E.; Livera, G.; Martini, E. RPA homologs and ssDNA processing during meiotic recombination. Chromosoma 2016, 125, 265–276. [Google Scholar] [CrossRef]
- Crickard, J.B.; Greene, E.C. Biochemical attributes of mitotic and meiotic presynaptic complexes. DNA Repair 2018, 71, 148–157. [Google Scholar] [CrossRef]
- Berchowitz, L.E.; Hanlon, S.E.; Lieb, J.D.; Copenhaver, G.P. A positive but complex association between meiotic double-strand break hotspots and open chromatin in Saccharomyces cerevisiae. Genome Res. 2009, 19, 2245–2257. [Google Scholar] [CrossRef]
- Pan, J.; Sasaki, M.; Kniewel, R.; Murakami, H.; Blitzblau, H.G.; Tischfield, S.E.; Zhu, X.; Neale, M.J.; Jasin, M.; Socci, N.D.; et al. A hierarchical combi-nation of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 2011, 144, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Nicetto, D.; Zaret, K.S. Role of H3K9me3 heterochromatin in cell identity establishment and maintenance. Curr. Opin. Genet. Dev. 2019, 55, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Schotta, G.; Lachner, M.; Sarma, K.; Ebert, A.; Sengupta, R.; Reuter, G.; Reinberg, D.; Jenuwein, T. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 2004, 18, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Ball, A.R., Jr.; Yokomori, K. HP1: Heterochromatin binding proteins working the genome. Epigenetics 2010, 5, 287–292. [Google Scholar] [CrossRef]
- Wongtawan, T.; Taylor, J.E.; Lawson, K.A.; Wilmut, I.; Pennings, S. Histone H4K20me3 and HP1α are late heterochromatin markers in development, but present in undifferentiated embryonic stem cells. J. Cell Sci. 2011, 124, 1878–1890. [Google Scholar] [CrossRef]
- Allshire, R.C.; Madhani, H.D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 2018, 19, 229–244. [Google Scholar] [CrossRef]
- Fukuda, K.; Shimi, T.; Shimura, C.; Ono, T.; Suzuki, T.; Onoue, K.; Okayama, S.; Miura, H.; Hiratani, I.; Ikeda, K.; et al. Epigenetic plasticity safeguards heterochromatin configuration in mammals. Nucleic Acids Res. 2023, 51, 6190–6207. [Google Scholar] [CrossRef]
- MacDonald, V.E.; Howe, L.J. Histone acetylation: Where to go and how to get there. Epigenetics 2009, 4, 139–143. [Google Scholar] [CrossRef]
- Huang, X.; Gao, X.; Li, W.; Jiang, S.; Li, R.; Hong, H.; Zhao, C.; Zhou, P.; Chen, H.; Bo, X.; et al. Stable H3K4me3 is associated with transcription initiation during early embryo development. Bioinformatics 2019, 35, 3931–3936. [Google Scholar] [CrossRef]
- Beacon, T.H.; Delcuve, G.P.; López, C.; Nardocci, G.; Kovalchuk, I.; van Wijnen, A.J.; Davie, J.R. The dynamic broad epigenetic (H3K4me3, H3K27ac) domain as a mark of essential genes. Clin. Epigenet. 2021, 13, 138. [Google Scholar] [CrossRef]
- Biederman, M.K.; Nelson, M.M.; Asalone, K.C.; Pedersen, A.L.; Saldanha, C.J.; Bracht, J.R. Discovery of the first germline-restricted gene by subtractive transcriptomic analysis in the zebra finch, Taeniopygia guttata. Curr. Biol. 2018, 28, 1620–1627. [Google Scholar] [CrossRef] [PubMed]
- Schoenmakers, S.; Wassenaar, E.; Hoogerbrugge, J.W.; Laven, J.S.; Grootegoed, J.A.; Baarends, W.M. Female meiotic sex chromosome inactivation in chicken. PLoS Genet. 2009, 5, e1000466. [Google Scholar] [CrossRef] [PubMed]
- Viera, A.; Parra, M.T.; Rufas, J.S.; Page, J. Transcription reactivation during the first meiotic prophase in bugs is not dependent on synapsis. Chromosoma 2017, 126, 179–194. [Google Scholar] [CrossRef]
- Matveevsky, S.; Tropin, N.; Kucheryavyy, A.; Kolomiets, O. The first analysis of synaptonemal complexes in jawless vertebrates: Chromosome synapsis and transcription reactivation at meiotic prophase I in the lamprey Lampetra fluviatilis (Petromyzontiformes, Cyclostomata). Life 2023, 13, 501. [Google Scholar] [CrossRef]
- Baarends, W.M.; Wassenaar, E.; van der Laan, R.; Hoogerbrugge, J.; Sleddens-Linkels, E.; Hoeijmakers, J.H.; de Boer, P.; Grootegoed, J.A. Silencing of unpaired chro-matin and histone H2A ubiquitination in mammalian meiosis. Mol. Cell. Biol. 2005, 25, 1041–1053. [Google Scholar] [CrossRef]
- Turner, J.M.; Mahadevaiah, S.K.; Fernandez-Capetillo, O.; Nussenzweig, A.; Xu, X.; Deng, C.X.; Burgoyne, P.S. Silencing of unsynapsed meiotic chromosomes in the mouse. Nat. Genet. 2005, 37, 41–47. [Google Scholar] [CrossRef]
- Burgoyne, P.S.; Mahadevaiah, S.K.; Turner, J.M. The consequences of asynapsis for mammalian meiosis. Nat. Rev. Genet. 2009, 10, 207–216. [Google Scholar] [CrossRef]
- Fernandez-Capetillo, O.; Mahadevaiah, S.K.; Celeste, A.; Romanienko, P.J.; Camerini-Otero, R.D.; Bonner, W.M.; Manova, K.; Burgoyne, P.; Nussenzweig, A. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev. Cell 2003, 4, 497–508. [Google Scholar] [CrossRef]
- Torgasheva, A.; Malinovskaya, L.; Zadesenets, K.; Shnaider, E.; Rubtsov, N.; Borodin, P. Germline-restricted chromosome (GRC) in female and male meiosis of the great tit (Parus major, Linnaeus, 1758). Front. Genet. 2021, 12, 768056. [Google Scholar] [CrossRef]
- Spangenberg, V.; Losev, M.; Volkhin, I.; Smirnova, S.; Nikitin, P.; Kolomiets, O. DNA environment of centromeres and non-homologous chromosomes interactions in mouse. Cells 2021, 10, 3375. [Google Scholar] [CrossRef]
- Takki, O.; Komissarov, A.; Kulak, M.; Galkina, S. Identification of centromere-specific repeats in the zebra finch genome. Cytogenet. Genome Res. 2022, 162, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Poignet, M.; Johnson Pokorná, M.; Altmanová, M.; Majtánová, Z.; Dedukh, D.; Albrecht, T.; Reif, J.; Osiejuk, T.S.; Reifová, R. Comparison of karyotypes in two hybridizing passerine species: Conserved chromosomal structure but divergence in centromeric repeats. Front. Genet. 2021, 12, 768987. [Google Scholar] [CrossRef] [PubMed]
- Sotelo-Muñoz, M.; Poignet, M.; Albrecht, T.; Kauzál, O.; Dedukh, D.; Schlebusch, S.A.; Janko, K.; Reifová, R. Germline-restricted chromosome shows remarkable variation in size among closely related passerine species. Chromosoma 2022, 131, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Malinovskaya, L.P.; Zadesenets, K.S.; Karamysheva, T.V.; Akberdina, E.A.; Kizilova, E.A.; Romanenko, M.V.; Shnaider, E.P.; Scherbakova, M.M.; Korobitsyn, I.G.; Rubtsov, N.B.; et al. Germline-restricted chromosome (GRC) in the sand martin and the pale martin (Hirundinidae, Aves): Synapsis, recombination and copy number variation. Sci. Rep. 2020, 10, 1058. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matveevsky, S. The Germline-Restricted Chromosome of Male Zebra Finches in Meiotic Prophase I: A Proteinaceous Scaffold and Chromatin Modifications. Animals 2024, 14, 3246. https://doi.org/10.3390/ani14223246
Matveevsky S. The Germline-Restricted Chromosome of Male Zebra Finches in Meiotic Prophase I: A Proteinaceous Scaffold and Chromatin Modifications. Animals. 2024; 14(22):3246. https://doi.org/10.3390/ani14223246
Chicago/Turabian StyleMatveevsky, Sergey. 2024. "The Germline-Restricted Chromosome of Male Zebra Finches in Meiotic Prophase I: A Proteinaceous Scaffold and Chromatin Modifications" Animals 14, no. 22: 3246. https://doi.org/10.3390/ani14223246
APA StyleMatveevsky, S. (2024). The Germline-Restricted Chromosome of Male Zebra Finches in Meiotic Prophase I: A Proteinaceous Scaffold and Chromatin Modifications. Animals, 14(22), 3246. https://doi.org/10.3390/ani14223246