Investigation of Carriers of Salmonella and Other Hydrogen Sulphide-Positive Bacteria in the Digestive Content of Fish from the Atlantic Area of Macaronesia: A Comparative Study of Identification by API Gallery and MALDI-TOF MS
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Application of the ISO Standard and Bacterial Identification
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoslavskij, A.; Terentjeva, M.; Eizenberga, I.; Valciņa, O.; Bartkevičs, V.; Bērziņš, A. Major foodborne pathogens in fish and fish products: A review. Ann. Microbiol. 2016, 66, 1–15. [Google Scholar] [CrossRef]
- Fernándes, D.; Castro, V.S.; Cunha Neto, A.D.; Figueiredo, D.S. Salmonella spp. in the fish production chain: A review. Ciênc. Rural. 2018, 48, 1–11. [Google Scholar] [CrossRef]
- Setti, I.; Rodriguez-Castro, A.; Pata, M.P.; Cadarso-Suarez, C.; Yacoubi, B.; Bensmael, L.; Moukrim, A.; Martinez-Urtaza, J. Characteristics and dynamics of Salmonella contamination along the coast of Agadir, Morocco. Appl. Environ. Microbiol. 2009, 75, 7700–7709. [Google Scholar] [CrossRef]
- Lamichhane, B.; Mawad, A.M.M.; Saleh, M.; Kelley, W.G.; Harrington, P.J.; Lovestad, C.W.; Amezcua, J.; Sarhan, M.M.; El Zowalaty, M.E.; Ramadan, H.; et al. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics 2024, 13, 76. [Google Scholar] [CrossRef]
- Tirado-von der Pahlen, M.C.; Mukherjee, K. El cambio climático y sus repercusiones sobre la inocuidad alimentaria. Primera Conferencia Internacional FAO/OMS/UA sobre Inocuidad Alimentaria Addis Abeba. 2019. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/b5917417-a2ef-42e9-a935-d84f2d28424b/content (accessed on 20 April 2024).
- World Health Organization (WHO). (7 February 2018). E. coli. Available online: https://www.who.int/es/news-room/fact-sheets/detail/e-coli (accessed on 1 April 2024).
- World Health Organization (WHO). (20 February 2018). Salmonella (no tifoidea). Available online: https://www.who.int/es/news-room/fact-sheets/detail/salmonella-(non-typhoidal) (accessed on 23 May 2024).
- Silva, A.J.; Benitez, J.A. Vibrio cholerae Biofilms and Cholera Pathogenesis. PLoS Negl. Trop. Dis. 2016, 10, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, D.T. Bacterial zoonoses of fishes: A review and appraisal of evidence for linkages between fish and human infections. Vet. J. 2015, 203, 27–35. [Google Scholar] [CrossRef]
- Moore, J.E.; Corcoran, D.; Dooley, J.S.; Fanning, S.; Lucey, B.; Matsuda, M.; McDowell, D.A.; Mégraud, F.; Millar, B.C.; O’Mahony, R.; et al. Campylobacter. J. Vet. Res. 2005, 36, 351–382. [Google Scholar] [CrossRef] [PubMed]
- Pelić, M.; Gavrilović, A.; Jug-Dujaković, J.; Marinović, Z.; Mirilović, M.; Đorđević, V.; Novakov, N.; Ljubojević Pelić, D. Microbiological characteristics of fish reared in purified wastewater from an abattoir. Vet. Glas. 2022, 76, 147–159. [Google Scholar] [CrossRef]
- Wodajo, W. Review on Zoonotic Bacterial Diseases of Fish. ARC J. Anim. Vet. Sci. 2020, 6, 1–9. [Google Scholar] [CrossRef]
- Ziarati, M.; Zorriehzahra, M.J.; Hassantabar, F.; Mehrabi, Z.; Dhawan, M.; Sharun, K.; Emran, T.B.; Dhama, K.; Chaicumpa, W.; Shamsi, S. Zoonotic diseases of fish and their prevention and control. Vet. Q. 2022, 42, 95–118. [Google Scholar] [CrossRef]
- Bou, G.; Fernández-Olmos, A.; García, C.; Sáez-Nieto, J.A.; Valdezate, S. Métodos de identificación bacteriana en el laboratorio de microbiología. Enferm. Infecc. Microbiol. Clin. 2011, 29, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Barathan, M.; Ng, S.-L.; Lokanathan, Y.; Ng, M.H.; Law, J.X. Unseen Weapons: Bacterial Extracellular Vesicles and the Spread of Antibiotic Resistance in Aquatic Environments. Int. J. Mol. Sci. 2024, 25, 3080. [Google Scholar] [CrossRef] [PubMed]
- Leber, A.L. (Ed.) Clinical Microbiology Procedures Handbook, 4th ed.; ASM Press: New York, NY, USA, 2016. [Google Scholar]
- Mac Faddin, J.F. Biochemical Tests for Identification of Medical Bacteria, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000. [Google Scholar]
- Yoon, E.J.; Jeong, S.H. MALDI-TOF Mass Spectrometry Technology as a Tool for the Rapid Diagnosis of Antimicrobial Resistance in Bacteria. Antibiotics 2021, 10, 982. [Google Scholar] [CrossRef] [PubMed]
- Croxatto, A.; Prod’hom, G.; Greub, G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev. 2012, 36, 380–407. [Google Scholar] [CrossRef]
- Książczyk, M.; Kuczkowski, M.; Dudek, B.; Korzekwa, K.; Tobiasz, A.; Korzeniowska-Kowal, A.; Paluch, E.; Wieliczko, A.; Bugla-Płoskońska, G. Application of Routine Diagnostic Procedure, VITEK 2 Compact, MALDI-TOF MS, and PCR Assays in Identification Procedure of Bacterial Strain with Ambiguous Phenotype. Curr. Microbiol. 2016, 72, 570–582. [Google Scholar] [CrossRef]
- Jackson, E.E.; Forsythe, S.J. Comparative study of Cronobacter identification according to phenotyping methods. BMC Microbiol. 2016, 16, 146. [Google Scholar] [CrossRef]
- Artati, D.; Oman, M.; Supriyanto, S.; Sukarta, D.; Robisalmi, A. Validation of Analytical Method for Aeromonas hydrophila Identification using Analytical Profile Index (API) 20E KIT Method. J. Med. Vet. 2024, 7, 88–104. [Google Scholar] [CrossRef]
- Boggs, C.; Shiferawe, K.; Karsten, E.; Hamlet, J.; Altheide, S.T.; Marion, J.W. Evaluation of a Tetracycline-Resistant E. coli Enumeration Method for Correctly Classifying E. coli in Environmental Waters in Kentucky, USA. Pathogens 2023, 12, 1090. [Google Scholar] [CrossRef]
- ISO 6579-1,2017; Microbiology of the Food Chain, Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella spp. Part 1, Detection of Salmonella spp. International Organization for Standardization: Genève, Switzerland, 2017.
- Fernández Olmos, A.; García de la Fuente, C.; Saéz Nieto, J.A.; Valdezate Ramos, S. Métodos de identificación bacteriana en el laboratorio de microbiología. In Procedimientos en Microbiología Clínica; Cercenado, E., Cantón, R., Eds.; Seimc: Madrid, Spain, 2010. [Google Scholar]
- Herrera, F.C.; Santos, J.A.; Otero, A.; García-López, M.L. Presence of foodborne pathogenic bacteria in pre-packaged portions of retail marine fish in Spain. Rev. Microbiol. Apl. 2006, 100, 527–536. [Google Scholar]
- De Souza Sant’Ana, A. Introduction to the Special Issue: Salmonella in food: Evolution, strategies and challenges. Food Res. Int. 2012, 45, 451–454. [Google Scholar] [CrossRef]
- Traoré, O.; Nyholm, O.; Siitonen, A.; Bonkoungou, I.J.O.; Traoré, A.S.; Barro, N.; Haukka, K. Prevalence and diversity of Salmonella enterica in water, fish and lettuce in Ouagadougou, Burkina Faso. BMC Microbiol. 2015, 15, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lehane, L.; Rawlin, G.T. Topically acquired bacterial zoonoses of fish: A review. Med. J. Aust. 2000, 173, 256–259. [Google Scholar] [CrossRef]
- Bibi, F.; Qaisrani, S.N.; Ahmad, A.N.; Akhtar, M.; Khan, B.N.; Ali, Z. Occurrence of Salmonella in freshwater fish: A review. J. Anim. Plant Sci. 2015, 25, 303–310. [Google Scholar]
- Novotny, L.; Dvorska, L.; Lorencova, A.; Beran, V.; Pavlik, I. Fish: A potential source of bacterial pathogens for humans beings. Vet. Med. 2004, 49, 343–358. [Google Scholar] [CrossRef]
- Bonyadian, M.; Fardizad, H.; Akbarian, A.; Karimi Ghahfarokh, E. Pool water and rainbow trout contamination to some enteric bacteria in Chaharmahal va Bakhtiari province. Iran. Vet. J. 2014, 10, 94–99. [Google Scholar]
- Youssef, H.; Eltimawy, A.K.; Ahmed, S. Role of Aerobic Intestinal Pathogens of Fresh Water Fish in Transmission of Human Diseases. J. Food. Prot. 1992, 55, 739–740. [Google Scholar] [CrossRef]
- Ferreira, L.; Vega, S.; Sánchez-Juanes, F.; González, M.; Herrero, A.; Muñiz, M.C.; González-Buitrago, J.M.; Muñoz, J.L. Identificación bacteriana mediante espectrometría de masas matrix-assisted laser desorption ionization time-of-flight. Comparación con la metodología habitual en los laboratorios de Microbiología Clínica. Enferm. Infecc. Microbiol. Clin. 2010, 28, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Uchida-Fujii, E.; Niwa, H.; Kinoshita, Y.; Katayama, Y.; Nukada, T. Molecular phylogenetic and matrix-assisted laser desorption ionization time-of-flight mass spectrometry identification of isolates from horses identified as Enterobacter cloacae by biochemical identification. J. Equine Sci. 2020, 31, 49–55. [Google Scholar] [CrossRef]
- Méndez-Álvarez, S.; Pérez-Rotha, E. La PCR múltiple en microbiología clínica. Enferm. Infecc. Microbiol. Clin. 2004, 22, 183–192. [Google Scholar] [CrossRef]
- Zayet, S.; Lang, S.; Garnier, P.; Pierron, A.; Plantin, J.; Toko, L.; Royer, P.Y.; Villemain, M.; Klopfenstein, T.; Gendrin, V. Leclercia adecarboxylata as Emerging Pathogen in Human Infections: Clinical Features and Antimicrobial Susceptibility Testing. Pathogens 2021, 10, 1399. [Google Scholar] [CrossRef]
- Steinberg, J.P.; Burd, E.M. 238-Other Gram-Negative and Gram-Variable Bacilli. Mand. Douglas Bennett’s Princ. Pract. Infect. Dis. 2015, 2, 2667–2683.e4. [Google Scholar] [CrossRef]
- Tsuchida, S.; Umemura, H.; Nakayama, T. Current Status of Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) in Clinical Diagnostic Microbiology. Molecules 2020, 25, 4775. [Google Scholar] [CrossRef]
- Zboromyrska, Y. Aplicaciones del MALDI-TOF en el laboratorio de microbiología. Sociedad española de Medicina de Laboratorio. Seqc. Educación continuada en el laboratorio clínico. Ed. Cont. Lab. Clin. 2014, 20, 87–98. [Google Scholar]
- García, P.; Allende, F.; Legarraga, P.; Huilcaman, M.; Solari, S. Identificación bacteriana basada en el espectro de masas de proteínas: Una nueva mirada a la microbiología del siglo XXI. Rev. Chil. Infectol. 2012, 29, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Seng, P.; Drancourt, M.; Gouriet, F.; La Scola, B.; Fournier, P.E.; Rolain, J.M.; Raoult, D. Ongoing revolution in bacteriology: Routine identification of bacteria by matrixassisted laser desorption ionization time-of-flight mass spectrometry. Clin. Infect. Dis. 2009, 49, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Giebel, R.; Worden, C.; Rust, S.M.; Kleinheinz, G.T.; Robbins, M.; Sandrin, T.R. Microbial fingerprinting using matrix-assisted laser desorption ionization time-offlight mass spectrometry (MALDI-TOF MS) applications and challenges. Adv. Appl. Microbiol. 2010, 71, 149–184. [Google Scholar]
- Hadi, S.H. Experimental Transmission of Enterobacter cloacae from Fishes to Wounds of Skin by Using balb/c Mice. J. Pure Appl. Microbiol. 2018, 12, 2117–2121. [Google Scholar] [CrossRef]
- Pati, N.B.; Doijad, S.P.; Schultze, T.; Mannala, G.K.; Yao, Y.; Jaiswal, S.; Ryan, D.; Suar, M.; Gwozdzinski, K.; Bunk, B.; et al. Enterobacter bugandensis: A novel enterobacterial species associated with severe clinical infection. Sci. Rep. 2018, 8, 5392. [Google Scholar] [CrossRef]
- Oliveira, R.V.; Oliveira, M.C.; Pelli, A. Disease Infection by Enterobacteriaceae Family in Fishes: A Review. J. Microbiol. Exp. 2017, 4, 00128. [Google Scholar] [CrossRef]
- Anderson, M.T.; Mitchell, L.A.; Zhao, L.; Mobley, H.L.T. Citrobacter freundii fitness during bloodstream infection. Sci. Rep. 2018, 8, 11792. [Google Scholar] [CrossRef]
- Samonis, G.; Karageorgopoulos, D.E.; Kofteridis, D.P.; Matthaiou, D.K.; Sidiropoulou, V.; Maraki, S.; Falagas, M.E. Citrobacter infections in a general hospital: Characteristics and outcomes. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Xian, M.; Ji, X.; Zhong, M.; Su, D.; Guan, J.; Chen, R. Severe asthma patient with secondary Citrobacter koseri abdominal infection: First case report and review of the literature. Gut Pathog. 2023, 15, 49. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, P. Escherichia hermannii Infections in Humans: A Systematic Review. Trop. Med. Infect. Dis. 2019, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Wang, B.; Pan, X.; Liu, C.; Jin, C.; Shi, Y.; Zhou, Y. First case of bloodstream infection caused by NDM-positive Escherichia hermannii. BMC Infect. Dis. 2023, 23, 355. [Google Scholar] [CrossRef] [PubMed]
- Bravenec, C.A.; Pandit, R.T.; Beaver, H.A. Shewanella algae keratitis. Indian J. Ophthalmol. 2019, 67, 148–150. [Google Scholar] [CrossRef]
- Yu, K.; Huang, Z.; Li, Y.; Fu, Q.; Lin, L.; Wu, S.; Dai, H.; Cai, H.; Xiao, Y.; Lan, R.; et al. Establishment and Application of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for Detection of Shewanella Genus. Front. Microbiol. 2021, 12, 625821. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Huang, Z.; Xiao, Y.; Wang, D. Shewanella infection in humans: Epidemiology, clinical features and pathogenicity. Virulence. 2022, 13, 1515–1532. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; McLaughlin, R.W.; Chen, M.; Liu, Y.L.; Xie, H.X.; Wan, X.L.; Zhou, J.Y.; Zheng, J.S. First case of Shewanella indica isolated from a Bryde’s whale (Balaenoptera edeni) stranded in the northern Beibu Gulf, China. Antonie Leeuwenhoek 2020, 113, 1385–1391. [Google Scholar] [CrossRef]
- Satomi, M. Shewanella. In Encyclopedia of Food Microbiology, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 397–407. [Google Scholar] [CrossRef]
- Doern, D. Charting Uncharted Territory: A Review of the Verification and Implementation Process for Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS) for Organism Identification. Clin. Microbiol. Newsl. 2013, 35, 69–78. [Google Scholar] [CrossRef]
ESPECIES | SPAIN | MAURITANIA | SENEGAL |
---|---|---|---|
Pagrus caeruleostictus | 0 | 2 | 2 |
Dentex angolensis | 0 | 2 | 0 |
Muraena augusti | 4 | 0 | 0 |
Muraena helena | 1 | 0 | 0 |
Enchelycore anatina | 1 | 0 | 0 |
Epinephelus aeneus | 0 | 14 | 0 |
Dentex gibbosus | 0 | 2 | 0 |
Pagrus auriga | 1 | 4 | 1 |
Gymnothorax unicolor | 3 | 0 | 0 |
Zeus faber | 0 | 0 | 1 |
Xyrichtys novacula | 0 | 0 | 6 |
Epinephelus marginatus | 0 | 1 | 1 |
Epinephelus costae | 0 | 1 | 0 |
TOTAL | 11 | 25 | 11 |
API Identifications (n° of Strain) | Concordance in the Species % | Concordance in the Genera % | No Concordance Identifications % | MALDI-TOF MS Identifications (n° of Strain) |
---|---|---|---|---|
Enterobacter cloacae 74.46% (35/47) | 100 | 100 | 0 | Enterobacter cloacae (28) |
100 | 100 | 0 | Enterobacter cloacae (3) | |
0 | 100 | 0 | Enterobacter bugandensis (1) | |
0 | 100 | 0 | Enterobacter hormaechei (1) | |
0 | 100 | 0 | Enterobacter kobei (1) | |
0 | 0 | 100 | Citrobacter freundii (1) | |
Escherichia hermannii 6.38% (3/47) | 100 | 100 | 0 | Escherichia hermannii (1) |
0 | 0 | 100 | Enterobacter cloacae (2) | |
Citrobacter freundii 2.12% (1/47) | 100 | 100 | 0 | Citrobacter freundii (1) |
Citrobacter koseri/farmeri 2.12% (1/47) | 0 | 0 | 100 | Escherichia hermannii (1) |
Leclercia adecarboxylata 2.12% (1/47) | 100 | 100 | 0 | Leclercia adecarboxylata (1) |
Shewanella putrefaciens 10.63% (5/47) | 0 | 100 | 0 | Shewanella indica (1) |
0 | 100 | 0 | Shewanella algae (1) | |
0 | 100 | 0 | Shewanella algae (2) | |
0 | 0 | 100 | Citrobacter freundii (1) | |
Burkholderia cepacia 2.12% (1/47) | 0 | 0 | 100 | Shewanella indica (1) |
TOTAL (47) | 72.34% | 87.23% | 12.76% |
Code Fishes RASPA Project | API Profiles | API Identifications | MALDI-TOF MS Identifications | Value of MALDI-TOF MS |
---|---|---|---|---|
326 | 1144113 | Escherichia hermannii | Escherichia hermannii | 2.28 |
340 | 0044553 | Leclercia adecarboxylata | Leclercia adecarboxylata | 2.41 |
354 | 3305773 | Enterobacter cloacae | Enterobacter cloacae | 2.31 |
355 | 3305773 | Enterobacter cloacae | Enterobacter cloacae | 2.33 |
356 | 3305773 | Enterobacter cloacae | Enterobacter cloacae | 2.32 |
357 | 3305773 | Enterobacter cloacae | Enterobacter cloacae | 2.34 |
359 | 3307573 | Enterobacter cloacae | Enterobacter bugandensis | 2.12 |
360 | 3205573 | Enterobacter cloacae | Enterobacter cloacae | 2.19 |
366 | 3304573 | Enterobacter cloacae | Enterobacter cloacae | 2.24 |
371 | 1744573 | Citrobacter koseri/farmeri | Escherichia hermannii | 2.45 |
375 | 3705573 | Enterobacter cloacae | Enterobacter cloacae | 2.17 |
376 | 3305573 | Enterobacter cloacae | Enterobacter cloacae | 2.24 |
377 | 1144133 | Escherichia hermannii | Enterobacter cloacae | 2.23 |
379 | 5410114 | Shewanella putrefaciens group | Shewanella indica | 2.04 |
381 | 5411114 | Shewanella putrefaciens group | Shewanella algae | 2.02 |
384 | 5411174 | Shewanella putrefaciens group | Shewanella algae | 1.91 |
385 | 5410114 | Shewanella putrefaciens group | Shewanella algae | 1.74 |
386 | 3305573 | Enterobacter cloacae | Enterobacter cloacae | 1.94 |
388 | 3705573 | Enterobacter cloacae | Citrobacter freundii | 2.26 |
390 | 3305173 | Enterobacter cloacae | Enterobacter cloacae | 2.19 |
391 | 1144133 | Escherichia hermannii | Enterobacter cloacae | 2.28 |
392 | 3305573 | Enterobacter cloacae | Enterobacter cloacae | 2.05 |
393 | 3305573 | Enterobacter cloacae | Enterobacter cloacae | 2.22 |
394 | 3305573 | Enterobacter cloacae | Enterobacter cloacae | 2.14 |
395 | 3305573 | Enterobacter cloacae | Enterobacter hormaechei | 2.16 |
404 | 3305573 | Enterobacter cloacae | Enterobacter cloacae | 2.16 |
405 | 3305573 | Enterobacter cloacae | Enterobacter cloacae | 2.20 |
407 | 3305573 | Enterobacter cloacae | Enterobacter cloacae | 2.28 |
408-2 | 5410114 | Shewanella putrefaciens group | Citrobacter freundii | 2.10 |
408-1 | 3307573 | Enterobacter cloacae | Enterobacter cloacae | 2.26 |
414 | 3305573 | Enterobacter cloacae | Enterobacter cloacae | 2.04 |
417 | 3305573 | Enterobacter cloacae | Enterobacter cloacae | 2.16 |
418 | 3305573 | Enterobacter cloacae | Enterobacter cloacae | 2.16 |
426 | 3305573 | Enterobacter cloacae | Enterobacter cloacae | 2.11 |
427 | 3305573 | Enterobacter cloacae | Enterobacter cloacae | 2.22 |
429 | 3305573 | Enterobacter cloacae | Enterobacter cloacae | 2.18 |
430 | 3307573 | Enterobacter cloacae | Enterobacter cloacae | 1.77 |
431 | 3307573 | Enterobacter cloacae | Enterobacter cloacae | 2.26 |
432 | 3305573 | Enterobacter cloacae | Enterobacter kobei | 2.16 |
435 | 3305573 | Enterobacter cloacae | Enterobacter cloacae | 2.23 |
444 | 3305573 | Enterobacter cloacae | Enterobacter cloacae | 2.38 |
445 | 3307573 | Enterobacter cloacae | Enterobacter cloacae | 1.96 |
446 | 3305573 | Enterobacter cloacae | Enterobacter cloacae | 2.06 |
447-1 | 3307573 | Enterobacter cloacae | Enterobacter cloacae | 2.34 |
447-2 | 1577757 | Burkholderia cepacia | Shewanella indica | 2.10 |
448-1 | 1604773 | Citrobacter freundii | Citrobacter freundii | 2.35 |
448-2 | 3305773 | Enterobacter cloacae | Enterobacter cloacae | 2.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosario Medina, I.; Suárez Benítez, M.A.; Ojeda-Vargas, M.d.M.; Gallo, K.; Padilla Castillo, D.; Batista-Arteaga, M.; Déniz Suárez, S.; Díaz Rodríguez, E.L.; Acosta-Hernández, B. Investigation of Carriers of Salmonella and Other Hydrogen Sulphide-Positive Bacteria in the Digestive Content of Fish from the Atlantic Area of Macaronesia: A Comparative Study of Identification by API Gallery and MALDI-TOF MS. Animals 2024, 14, 3247. https://doi.org/10.3390/ani14223247
Rosario Medina I, Suárez Benítez MA, Ojeda-Vargas MdM, Gallo K, Padilla Castillo D, Batista-Arteaga M, Déniz Suárez S, Díaz Rodríguez EL, Acosta-Hernández B. Investigation of Carriers of Salmonella and Other Hydrogen Sulphide-Positive Bacteria in the Digestive Content of Fish from the Atlantic Area of Macaronesia: A Comparative Study of Identification by API Gallery and MALDI-TOF MS. Animals. 2024; 14(22):3247. https://doi.org/10.3390/ani14223247
Chicago/Turabian StyleRosario Medina, Inmaculada, Marco Antonio Suárez Benítez, María del Mar Ojeda-Vargas, Kiara Gallo, Daniel Padilla Castillo, Miguel Batista-Arteaga, Soraya Déniz Suárez, Esther Licia Díaz Rodríguez, and Begoña Acosta-Hernández. 2024. "Investigation of Carriers of Salmonella and Other Hydrogen Sulphide-Positive Bacteria in the Digestive Content of Fish from the Atlantic Area of Macaronesia: A Comparative Study of Identification by API Gallery and MALDI-TOF MS" Animals 14, no. 22: 3247. https://doi.org/10.3390/ani14223247
APA StyleRosario Medina, I., Suárez Benítez, M. A., Ojeda-Vargas, M. d. M., Gallo, K., Padilla Castillo, D., Batista-Arteaga, M., Déniz Suárez, S., Díaz Rodríguez, E. L., & Acosta-Hernández, B. (2024). Investigation of Carriers of Salmonella and Other Hydrogen Sulphide-Positive Bacteria in the Digestive Content of Fish from the Atlantic Area of Macaronesia: A Comparative Study of Identification by API Gallery and MALDI-TOF MS. Animals, 14(22), 3247. https://doi.org/10.3390/ani14223247