Energy Expenditure and Maintenance Requirements in Non-Pregnant First-Parity Sows
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Respiration System
2.3. Diets, Feeding, and BW and Fecal Sample Collection
2.4. Analyses
2.5. Calculation of Results
2.5.1. Acid Insoluble Ash Content
2.5.2. Digestibility
2.5.3. Gas Consumed or Produced
2.5.4. Heat Production
2.5.5. Maintenance Energy Requirements
2.6. Statistical Evaluation
3. Results
3.1. Indirect Calorimetry System
3.2. Energy Metabolism
3.3. Comparison to 24 h Values
4. Discussion
4.1. Indirect Calorimetry System
4.2. Energy Metabolism
4.3. Nutrient Metabolism
4.4. Comparison to 24 h Values
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foxcroft, G.R. Hyper-prolificacy and acceptable post-natal development—A possible contradiction. Adv. Pork Prod. 2008, 19, 205–211. [Google Scholar]
- Niemi, J.K.; Sevon-Aimonen, M.-L.; Stalder, K.J.; Peltoniemi, O.A.T. Genetic and economic impacts of litter size on pig production. J. Anim. Sci. 2019, 97, 3680–3692. [Google Scholar]
- NRC. Nutrient Requirements of Swine, 10th ed.; National Academies Press: Washington, DC, USA, 1998. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar] [CrossRef]
- Aherne, F.X.; Foxcroft, G.R.; Pettigrew, J.E. Diseases in Swine, 8th ed.; Iowa University Press: Ames, IA, USA, 1999; pp. 1029–1044. [Google Scholar]
- Samuel, R.S. Simultaneous Measurement of Protein and Energy Metabolism and Application to Determine Lysine Requirements in Sows. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2011. [Google Scholar] [CrossRef]
- McCarthy, J.F.; Bowland, J.P.; Aherne, F.X. Influence of method upon the determination of apparent digestibility in the pig. Can. J. Anim. Sci. 1977, 57, 131–135. [Google Scholar] [CrossRef]
- Agricultural Research Council. The Nutrient Requirements of Pigs, 1st ed.; Commonwealth: Slough, UK, 1981. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Brouwer, E. Report of Sub-Committee on Constants and Factors; Blaxter, K.L., Ed.; EAAP Publ. No. 11; Academic Press: New York, NY, USA, 1965; pp. 441–443. [Google Scholar]
- Weir, J.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef]
- Lodge, G.A.; Friend, D.W.; Wolynetz, M.S. Effect of pregnancy on body composition and energy balance of the gilt. Can. J. Anim. Sci. 1979, 59, 51–61. [Google Scholar] [CrossRef]
- Verstegen, M.W.A.; van Es, A.J.H.; Nijkamp, H.J. Some aspects of energy metabolism of the sow during pregnancy. Anim. Prod. 1971, 13, 677–683. [Google Scholar] [CrossRef]
- Noblet, J.; Shi, X.S.; Dubois, S. Energy cost of standing activity in sows. Livest. Prod. Sci. 1993, 34, 127–136. [Google Scholar] [CrossRef]
- Close, W.H.; Stanier, M.W. Effects of plane of nutrition and environmental temperature on the growth and development of the early-weaned piglet. 2. Energy metabolism. Anim. Prod. 1984, 38, 221–231. [Google Scholar] [CrossRef]
- Wenk, C.; Pfirter, H.P.; Bickel, H. Energetic aspects of feed conversion in growing pigs. Livest. Prod. Sci. 1980, 7, 483–495. [Google Scholar] [CrossRef]
- Halter, H.M.; Wenk, C.; Schürch, A. Effect of Feeding Level and Feed Composition on Energy Utilization, Physical Activity and Growth Performance of Piglets. In Energy Metabolism; Mount, L.E., Ed.; EAAP Publ. No. 26.; Butterworths: London, UK, 1980; pp. 395–398. [Google Scholar]
- Tess, M.W.; Dickerson, G.E.; Nienaber, J.A.; Ferrell, C.L. The effects of body composition on fasting heat production in pigs. J. Anim. Sci. 1984, 58, 99–110. [Google Scholar] [CrossRef]
- Brown-Brandl, T.M.; Nienaber, J.A.; Xin, H.; Gates, R.S. A literature review of swine heat production. Trans. ASAE 2004, 47, 259–270. [Google Scholar] [CrossRef]
- Kolstad, K.; Vangen, O. Breed differences in maintenance requirements of growing pigs when accounting for changes in body composition. Livest. Prod. Sci. 1996, 47, 23–32. [Google Scholar] [CrossRef]
- Pettigrew, J.E.; Yang, H. Protein nutrition of gestating sows. J. Anim. Sci. 1997, 75, 2723–2730. [Google Scholar] [CrossRef]
- Möhn, S.; Gillis, A.M.; Moughan, P.J.; de Lange, C.F.M. Influence of dietary lysine and energy intakes on body protein deposition and lysine utilization in the growing pig. J. Anim. Sci. 2000, 78, 1510–1519. [Google Scholar] [CrossRef]
- Mohrmann, M.; Roehe, R.; Susenbeth, A.; Baulain, U.; Knap, P.W.; Looft, H.; Plastow, G.S.; Kalm, E. Association between body composition of growing pigs determined by magnetic resonance imaging, deuterium dilution technique and chemical analysis. Meat Sci. 2006, 72, 518–531. [Google Scholar] [CrossRef]
- Frisch, R.E. Body-fat, menarche, fitness and fertility. Hum. Reprod. 1987, 2, 521–533. [Google Scholar] [CrossRef]
- Dourmad, J.Y.; Étienne, M.; Noblet, J.; Causeur, D. Prédiction de la composition chimique des truies reproductrices à partir du poids vif et de l’épaisseur de lard dorsal. Journ. Rech. Porc. Fr. 1997, 29, 255–262. [Google Scholar]
- Noblet, J.; Henry, Y. Energy evaluation systems for pig diets: A review. Livest. Prod. Sci. 1993, 36, 121–141. [Google Scholar] [CrossRef]
- Noblet, J.; Shi, X.S. Comparative digestibility of energy and nutrients in growing pigs fed ad libitum and adult sows fed at maintenance. Livest. Prod. Sci. 1993, 34, 137–152. [Google Scholar] [CrossRef]
- Fairbairn, S.L.; Patience, J.F.; Classen, H.L.; Ziljstra, R.T. The energy content of barley fed to growing pigs: Characterizing the nature of its variability and developing prediction equations for its estimation. J. Anim. Sci. 1999, 77, 1502–1522. [Google Scholar] [CrossRef]
- Chassé, É.; Guay, F.; Létourneau-Montminy, M.P. High-or low-fibre diet, meal size and frequency: Effect on ileal and total tract digestibility and mean retention time in growing pigs. Anim. Feed Sci. Technol. 2023, 306, 115827. [Google Scholar] [CrossRef]
- Van Milgen, J.; Noblet, J.; Dubois, S.; Bernier, J.-F. Dynamic aspects of oxygen consumption and carbon dioxide production in swine. Br. J. Nutr. 1997, 78, 397–410. [Google Scholar] [CrossRef]
- Leveille, G.A.; Hanson, R.W. Influence of periodicity of eating on adipose tissue metabolism in the rat. Can. J. Physiol. Pharmacol. 1965, 43, 857–868. [Google Scholar] [CrossRef]
- Allee, G.L.; Romsos, D.R.; Leveille, G.A.; Baker, D.H. Metabolic adaptation induced by meal-eating in the pig. J. Nutr. 1972, 102, 1115–1122. [Google Scholar] [CrossRef]
- Bell, E.F.; Rios, G.R.; Wilmoth, P.K. Estimation of 24-hour energy expenditure from shorter measurement periods in premature infants. Pediatr Res. 1986, 20, 646–649. [Google Scholar] [CrossRef]
- Szwiega, S.; Pencharz, P.B.; Ball, R.O.; Tomlinson, C.; Elango, R. Courtney-Martin. Amino acid oxidation methods to determine amino acid requirements: Do we require lengthy adaptation periods? Br. J. Nutr. 2023, 129, 1848–1854. [Google Scholar] [CrossRef]
- Ravussin, E.; Bogardus, C. Relationship of genetics, age, and physical fitness to daily energy expenditure and fuel utilization. Am. J. Clin. Nutr. 1989, 49, 968–975. [Google Scholar] [CrossRef]
- Whittemore, C.T.; Green, D.M.; Knap, P.W. Technical note: A stochastic model for predicting feed intake of growing pigs. J. Anim. Sci. 2001, 81, 1482–1488. [Google Scholar]
- El-Khoury, A.E.; Fukagawa, N.K.; Sanchez, M.; Tsay, R.H.; Gleason, R.E.; Chapman, T.E.; Young, V.R. Validation of the tracer-balance concept with reference to leucine—24-H intravenous tracer studies with L-[1-13C]leucine and [15N-15N]urea(1-3). Am. J. Clin. Nutr. 1994, 59, 1000–1011. [Google Scholar] [CrossRef]
- Moehn, S.; Bertolo, R.F.P.; Pencharz, P.B.; Ball, R.O. Indicator amino acid oxidation responds rapidly to changes in lysine or protein intake in growing and adult pigs. J. Nutr. 2004, 134, 836–841. [Google Scholar] [CrossRef]
- Moehn, S.; Bertolo, R.F.P.; Pencharz, P.B.; Ball, R.O. Pattern of carbon dioxide production and retention is similar in adult pigs when fed hourly, but not when fed a single meal. BMC Physiol. 2004, 4, 11–18. [Google Scholar] [CrossRef] [PubMed]
Ingredient | % of Diet |
---|---|
Wheat, 12.5% CP 1 | 12.1 |
Barley, 11.2% CP | 69.0 |
Soybean meal, 48% CP | 6.5 |
Canola meal, 35% CP | 6.5 |
Canola oil | 0.9 |
Breeder premix 2 | 4.0 |
Celite 3 | 1.0 |
Calculated nutrients | |
Ca, % | 0.95 |
Total P, % | 0.72 |
DE 4, MJ/kg | 13.06 |
CP, % | 14.76 |
Total Lys, % | 0.65 |
Nutrient Digestibility, % | 1.0 Times | 2.0 Times | SEM | p-Value |
---|---|---|---|---|
Energy | 79.7 | 80.9 | 0.8 | 0.34 |
Nitrogen | 81.3 y | 83.6 x | 1.7 | 0.08 |
Carbon | 81.6 | 82.3 | 1.2 | 0.74 |
Fat | 87.3 | 85.6 | 3.0 | 0.73 |
NDF | 42.3 | 61.2 | 5.9 | 0.11 |
ADF | 24.4 b | 50.6 a | 4.9 | 0.03 |
Organic matter | 84.1 y | 86.1 x | 0.9 | 0.09 |
Energy Metabolism | 1.0 Times | 2.0 Times | SEM | p-Value |
---|---|---|---|---|
ME intake, MJ/d | 23.9 b | 44.9 a | 3.8 | <0.01 |
HP, MJ/d | 24.0 b | 32.3 a | 1.5 | 0.04 |
Maintenance EE, MJ/d | 24.3 b | 25.6 a | 0.3 | <0.01 |
Energy retention, MJ/d | −0.1 b | 12.6 a | 3.1 | <0.01 |
RQ | 1.03 b | 1.16 a | 0.02 | <0.01 |
Nibbling | Meal Fed | Post-Prandial | Fasting | SEM | p-Value | |
---|---|---|---|---|---|---|
Observations | 10 | 8 | 8 | 8 | ||
473 kJ ME | ||||||
HP, MJ/d | 30.4 a | 27.9 ab | 20.9 c | 23.9 b | 2.6 | <0.01 |
RQ | 0.96 b | 1.08 ab | 1.15 a | 0.91 b | 0.07 | <0.01 |
925 kJ ME | ||||||
HP, MJ/d | 35.6 a | 31.5 ab | 29.4 c | 29.1 c | 2.6 | <0.01 |
RQ | 1.12 ab | 1.21 ab | 1.25 a | 1.09 b | 0.07 | <0.05 |
Nibbling | Meal Fed | Post-Prandial | Fasting | SEM | p-Value | |
---|---|---|---|---|---|---|
Fraction of 24 h heat production | 1.17 | 1.00 | 0.90 | 0.95 | 0.8 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samuel, R.S.; Moehn, S.; Ball, R.O. Energy Expenditure and Maintenance Requirements in Non-Pregnant First-Parity Sows. Animals 2024, 14, 3276. https://doi.org/10.3390/ani14223276
Samuel RS, Moehn S, Ball RO. Energy Expenditure and Maintenance Requirements in Non-Pregnant First-Parity Sows. Animals. 2024; 14(22):3276. https://doi.org/10.3390/ani14223276
Chicago/Turabian StyleSamuel, Ryan S., Soenke Moehn, and Ronald O. Ball. 2024. "Energy Expenditure and Maintenance Requirements in Non-Pregnant First-Parity Sows" Animals 14, no. 22: 3276. https://doi.org/10.3390/ani14223276
APA StyleSamuel, R. S., Moehn, S., & Ball, R. O. (2024). Energy Expenditure and Maintenance Requirements in Non-Pregnant First-Parity Sows. Animals, 14(22), 3276. https://doi.org/10.3390/ani14223276