Impacts of Maternal Nutrition on Sow Performance and Potential Positive Effects on Piglet Performance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Nutritional Challenges and Opportunities to Update Feeding Programs
2.1. Estimated Amino Acid Requirements Based on Litter Size and Piglet Birthweight
2.2. Increased Provision of Other Amino Acids
Amino Acid | Ratio to Lys | Effect | Reference |
---|---|---|---|
Arg:Lys | 2.9 (gestation), 2.1 (lactation) | Increased individual weight of piglets born alive by 8% and number of ‘heavy’ piglets | [37] |
1.0 | Increased number of live births by 13% | [63] | |
1.5 | Increased the number of piglets born per sow by 7%, tended to reduce piglet mortality without modifying the sow intestinal microbial structure and gut eubiosis, and increased the placenta weight | [64] | |
Met:Lys | 0.42 | Enhanced reproductive performance of sows, alleviated local inflammation by changing the microbial composition of the hosts’ intestinal bacteria | [45] |
0.52 | Improved the survival rate of piglets | [45] | |
0.37 | Increased alive litter weight by 8% for high-prolificacy sows | [44] | |
0.37 | Decreased plasma homocysteine concentration, allowing the increase in placental vascular density | [46] | |
0.42 | Increased the antioxidant capacity and improved the intestinal microbiota in piglets | [65] | |
Leu:Lys | 2.15 and 2.65 | Improved the transportation of amino acids, fatty acids, and glucose across the placenta, and globally altered placental metabolism to enhance glycolysis and fatty acid oxidization for energy generation | [51] |
2.65 | Improved growth performance of fetal pigs | [49] | |
2.15, 2.65, and 3.16 | Increased expression of amino acid transporters in the sow placenta | [49] | |
Val:Lys | 0.99 and 1.11 | Increased placental area, decrease stillborn, and improve pig performance at weaned period, by increasing the amino acid and glucose transports | [54] |
0.93 | Improved piglet weaning weight by 12% and ADG during lactation by 13% | [53] | |
1.01 | Improved the growth performance of piglets by altering serum metabolites in sows, the lactose concentration in colostrum, and serum immunoglobins in piglets | [55] |
3. Physiological Challenges and Opportunities with Bioactive Compounds
3.1. Oxidative Stress
3.2. Prolapse and Lameness
3.3. Colostrum and Milk Production
3.4. Intestinal Health
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, Y.B.; Crenshaw, J.D. Physiological Changes in Sows That May Contribute to Higher Risk for Mortality and Prolapse. J. Vet. Sci. 2022, 6, S3. [Google Scholar] [CrossRef]
- Kim, S.W.; Weaver, A.C.; Shen, Y.B.; Zhao, Y. Improving Efficiency of Sow Productivity: Nutrition and Health. J. Anim. Sci. Biotechnol. 2013, 4, 26. [Google Scholar] [CrossRef]
- Benchmarking. Available online: https://www.pigchamp.com/benchmarking (accessed on 5 February 2024).
- Surveys: Hog Inventory. Available online: https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Hog_Inventory/index.php (accessed on 5 February 2024).
- Wientjes, J.G.M.; Soede, N.M.; Knol, E.F.; van den Brand, H.; Kemp, B. Piglet Birth Weight and Litter Uniformity: Effects of Weaning-to-Pregnancy Interval and Body Condition Changes in Sows of Different Parities and Crossbred Lines. J. Anim. Sci. 2013, 91, 2099–2107. [Google Scholar] [CrossRef]
- Johnston, L.J. Feeding Reproducing Swine and Neonatal Pigs. In Sustainable Swine Nutrition; Wiley: Hoboken, NJ, USA, 2022; pp. 623–645. [Google Scholar]
- Bergsma, R.; Kanis, E.; Verstegen, M.W.A.; van der Peet–Schwering, C.M.C.; Knol, E.F. Lactation Efficiency as a Result of Body Composition Dynamics and Feed Intake in Sows. Livest. Sci. 2009, 125, 208–222. [Google Scholar] [CrossRef]
- Kim, S.W.; Easter, R.A. Nutrient Mobilization from Body Tissues as Influenced by Litter Size in Lactating Sows. J. Anim. Sci. 2001, 79, 2179. [Google Scholar] [CrossRef]
- Osotsi, J.M.; Balogh, P.; Novotnine-Danko, G. Characterization of Removal Reasons for Nurse Sows and the Associated Removal Due to Their Extended Lactation Length in Hyperprolific Farrow-Wean Herds. Animals 2024, 14, 1607. [Google Scholar] [CrossRef] [PubMed]
- Black, J.L.; Mullan, B.P.; Lorschy, M.L.; Giles, L.R. Lactation in the Sow during Heat Stress. Livest. Prod. Sci. 1993, 35, 153–170. [Google Scholar] [CrossRef]
- van Rens, B.T.T.M.; de Koning, G.; Bergsma, R.; van der Lende, T. Preweaning Piglet Mortality in Relation to Placental Efficiency. J. Anim. Sci. 2005, 83, 144–151. [Google Scholar] [CrossRef]
- van den Bosch, M.; van de Linde, I.B.; Kemp, B.; van den Brand, H. Disentangling Litter Size and Farrowing Duration Effects on Piglet Stillbirth, Acid–Base Blood Parameters and Pre-Weaning Mortality. Front. Vet Sci. 2022, 9, 836202. [Google Scholar] [CrossRef]
- Ji, F.; Kim, S.W. Effects of Carbohydrase Supplement on Lactation Performance of Primiparous Sows Fed Corn-Soybean Meal Based Lactation Diet. Asian-Australas. J. Anim. Sci. 2004, 17, 533–537. [Google Scholar] [CrossRef]
- Guo, J.Y.; Pasquetti, T.J.; Kim, S.W. Lowering Dietary Cation-Anion Difference Increases Sow Blood and Milk Calcium Concentrations. J. Anim. Sci. 2019, 97, 2927–2939. [Google Scholar] [CrossRef] [PubMed]
- Jang, K.B.; Kim, J.H.; Purvis, J.M.; Chen, J.; Ren, P.; Vazquez-Anon, M.; Kim, S.W. Effects of Mineral Methionine Hydroxy Analog Chelate in Sow Diets on Epigenetic Modification and Growth of Progeny. J. Anim. Sci. 2020, 98, skaa271. [Google Scholar] [CrossRef] [PubMed]
- Schulz, L.L.; Tonsor, G.T. Assessment of the Economic Impacts of Porcine Epidemic Diarrhea Virus in the United States. J. Anim. Sci. 2015, 93, 5111–5118. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academies Press: Washington, DC, USA, 2012; ISBN 978-0-309-22423-9. [Google Scholar]
- de Oliveira Araújo, V.; de Oliveira, R.A.; Vieira, M.d.F.A.; Silveira, H.; Fonseca, L.d.S.; Alves, L.K.S.; Guimarães, E.B.B.; Schinckel, A.P.; Garbossa, C.A.P. Bump Feed for Gestating Sows Is Really Necessary? Livest. Sci. 2020, 240, 104184. [Google Scholar] [CrossRef]
- McPherson, R.L.; Ji, F.; Wu, G.; Blanton, J.R.; Kim, S.W. Growth and Compositional Changes of Fetal Tissues in Pigs. J. Anim. Sci. 2004, 82, 2534–2540. [Google Scholar] [CrossRef] [PubMed]
- Feyera, T.; Theil, P.K. Energy and Lysine Requirements and Balances of Sows during Transition and Lactation: A Factorial Approach. Livest. Sci. 2017, 201, 50–57. [Google Scholar] [CrossRef]
- Nyachoti, C.M.; Zijlstra, R.T.; de Lange, C.F.M.; Patience, J.F. Voluntary Feed Intake in Growing-Finishing Pigs: A Review of the Main Determining Factors and Potential Approaches for Accurate Predictions. Can. J. Anim. Sci. 2004, 84, 549–566. [Google Scholar] [CrossRef]
- Kraeling, R.R.; Webel, S.K. Current Strategies for Reproductive Management of Gilts and Sows in North America. J. Anim. Sci. Biotechnol. 2015, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Weldon, W.C.; Thulin, A.J.; MacDougald, O.A.; Johnston, L.J.; Miller, E.R.; Tucker, H.A. Effects of Increased Dietary Energy and Protein during Late Gestation on Mammary Development in Gilts. J. Anim. Sci. 1991, 69, 194. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Baker, D.H.; Easter, R.A. Dynamic Ideal Protein and Limiting Amino Acids for Lactating Sows: The Impact of Amino Acid Mobilization. J. Anim. Sci. 2001, 79, 2356. [Google Scholar] [CrossRef]
- Kim, S.W.; Hurley, W.L.; Wu, G.; Ji, F. Ideal Amino Acid Balance for Sows during Gestation and Lactation. J. Anim. Sci. 2009, 87, E123–E132. [Google Scholar] [CrossRef]
- Goodband, R.D.; Tokach, M.D.; Goncalves, M.A.D.; Woodworth, J.C.; Dritz, S.S.; DeRouchey, J.M. Nutritional Enhancement during Pregnancy and Its Effects on Reproduction in Swine. Anim. Front. 2013, 3, 68–75. [Google Scholar] [CrossRef]
- Cappelaere, L.; Le Cour Grandmaison, J.; Martin, N.; Lambert, W. Amino Acid Supplementation to Reduce Environmental Impacts of Broiler and Pig Production: A Review. Front. Vet. Sci. 2021, 8, 689259. [Google Scholar] [CrossRef] [PubMed]
- Pomar, C.; Remus, A. Precision Pig Feeding: A Breakthrough toward Sustainability. Anim. Front. 2019, 9, 52–59. [Google Scholar] [CrossRef] [PubMed]
- The PIC Camborough. Available online: https://www.pic.com/products/camborough/ (accessed on 17 March 2024).
- Rostagno, H.S.; Albino, L.F.T.; Calderano, A.A.; Hannas, M.I.; Sakomura, N.K.; Perazzo, F.G.; Rocha, G.C.; Saraiva, A.; de Abreu, M.L.T.; Genova, J.L.; et al. Brazilian Tables for Poultry and Swine: Composition of Feedstuffs and Nutritional Requirements, 5th ed.; Rostagno, H.S., Albino, L.F.T., Eds.; Universidade Federal de Viçosa, Departamento de Zootecnia: Viçosa, Brazil, 2024. [Google Scholar]
- Kim, S.W.; McPherson, R.L.; Wu, G. Dietary Arginine Supplementation Enhances the Growth of Milk-Fed Young Pigs. J. Nutr. 2004, 134, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Knabe, D.A. Free and Protein-Bound Amino Acids in Sow’s Colostrum and Milk. J. Nutr. 1994, 124, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Mateo, R.D.; Wu, G.; Moon, H.K.; Carroll, J.A.; Kim, S.W. Effects of Dietary Arginine Supplementation during Gestation and Lactation on the Performance of Lactating Primiparous Sows and Nursing Piglets. J. Anim. Sci. 2008, 86, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Mateo, R.D.; Wu, G.; Bazer, F.W.; Park, J.C.; Shinzato, I.; Kim, S.W. Dietary L-Arginine Supplementation Enhances the Reproductive Performance of Gilts. J. Nutr. 2007, 137, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Bérard, J.; Bee, G. Effects of Dietary L-Arginine Supplementation to Gilts during Early Gestation on Foetal Survival, Growth and Myofiber Formation. Animal 2010, 4, 1680–1687. [Google Scholar] [CrossRef] [PubMed]
- Hines, E.A.; Romoser, M.R.; Kiefer, Z.E.; Keating, A.F.; Baumgard, L.H.; Niemi, J.; Haberl, B.; Williams, N.H.; Kerr, B.J.; Touchette, K.J.; et al. The Impact of Dietary Supplementation of Arginine during Gestation in a Commercial Swine Herd: II. Offspring Performance. J. Anim. Sci. 2019, 97, 3626–3635. [Google Scholar] [CrossRef]
- da Silva Fonseca, L.; Lanferdini, E.; Moreira, R.H.R.; Chaves, R.F.; Perazolli, P.H.; de Paula, Y.H.; Rennó, L.N.; Garbossa, C.A.P.; de Souza Cantarelli, V.; de Abreu, M.L.T. Arginine Supplementation in the Feed of Gestating Sows. Livest. Sci. 2022, 263, 104999. [Google Scholar] [CrossRef]
- Hazeleger, W.; Ramaekers, R.; Smits, C.; Kemp, B. Effect of Progenos on Placenta and Fetal Development in Pigs. J. Anim. Sci. 2007, 85, 98. [Google Scholar]
- Madsen, J.G.; Pardo, C.; Kreuzer, M.; Bee, G. Impact of Dietary L-Arginine Supply during Early Gestation on Myofiber Development in Newborn Pigs Exposed to Intra-Uterine Crowding. J. Anim. Sci. Biotechnol. 2017, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Hines, E.A.; Romoser, M.R.; Kiefer, Z.E.; Keating, A.F.; Baumgard, L.H.; Niemi, J.; Gabler, N.K.; Patience, J.F.; Haberl, B.; Williams, N.H.; et al. The Impact of Dietary Supplementation of Arginine during Gestation in a Commercial Swine Herd: I. Gilt Reproductive Performance. J. Anim. Sci. 2019, 97, 3617–3625. [Google Scholar] [CrossRef] [PubMed]
- Quesnel, H.; Quiniou, N.; Roy, H.; Lottin, A.; Boulot, S.; Gondret, F. Supplying Dextrose before Insemination and L-Arginine during the Last Third of Pregnancy in Sow Diets: Effects on within-Litter Variation of Piglet Birth Weight. J. Anim. Sci. 2014, 92, 1445–1450. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bazer, F.W.; Johnson, G.A.; Burghardt, R.C.; Erikson, D.W.; Frank, J.W.; Spencer, T.E.; Shinzato, I.; Wu, G. Dietary Supplementation with 0.8% L-Arginine between Days 0 and 25 of Gestation Reduces Litter Size in Gilts. J. Nutr. 2010, 140, 1111–1116. [Google Scholar] [CrossRef] [PubMed]
- Kalhan, S.C.; Marczewski, S.E. Methionine, Homocysteine, One Carbon Metabolism and Fetal Growth. Rev. Endocr. Metab. Disord. 2012, 13, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Pan, Y.; Guo, L.; Wei, X.X.; Xiong, J.; Wang, L.; Peng, J.; Wang, C.; Peng, J.; Wei, H.K. Effect of Gestation Dietary Methionine/Lysine Ratio on Placental Angiogenesis and Reproductive Performance of Sows. J. Anim. Sci. 2019, 97, 3487–3497. [Google Scholar] [CrossRef] [PubMed]
- Bin, P.; Azad, M.A.K.; Liu, G.; Zhu, D.; Kim, S.W.; Yin, Y. Effects of Different Levels of Methionine on Sow Health and Plasma Metabolomics during Late Gestation. Food Funct. 2018, 9, 4979–4988. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Peng, J.; Cui, C.; Gu, Q.; Zhou, L.; Wang, C.; Sun, H.; Peng, J.; Wei, H. Effect of Gestation Dietary Methionine-to-Lysine Ratio on Methionine Metabolism and Antioxidant Ability of High-Prolific Sows. Anim. Nutr. 2021, 7, 849–858. [Google Scholar] [CrossRef]
- Suryawan, A.; Nguyen, H.V.; Almonaci, R.D.; Davis, T.A. Differential Regulation of Protein Synthesis in Skeletal Muscle and Liver of Neonatal Pigs by Leucine through an MTORC1-Dependent Pathway. J. Anim. Sci. Biotechnol. 2012, 3, 3. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Johnson, G.A.; Herring, C.; Seo, H.; Dai, Z.; Wang, J.; Wu, Z.; Wang, X. Functional Amino Acids in the Development of the Pig Placenta. Mol. Reprod. Dev. 2017, 84, 870–882. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, F.; Zhang, W.; Zhang, S.; Shi, K.; Song, H.; Wang, Y.; Kim, S.W.; Guan, W. Leucine Promotes the Growth of Fetal Pigs by Increasing Protein Synthesis through the MTOR Signaling Pathway in Longissimus Dorsi Muscle at Late Gestation. J. Agric. Food Chem. 2018, 66, 3840–3849. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wu, Z.; Li, W.; Zhang, C.; Sun, K.; Ji, Y.; Wang, B.; Jiao, N.; He, B.; Wang, W.; et al. Dietary L-Leucine Supplementation Enhances Intestinal Development in Suckling Piglets. Amino Acids 2015, 47, 1517–1525. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Wu, C.; Wang, J.; Zheng, X.; Ma, Z.; Zhu, P.; Guan, W.; Zhang, S.; Chen, F. Leucine Supplementation during Late Gestation Globally Alters Placental Metabolism and Nutrient Transport via Modulation of the PI3K/AKT/MTOR Signaling Pathway in Sows. Food Funct. 2022, 13, 2083–2097. [Google Scholar] [CrossRef] [PubMed]
- Manjarin, R.; Zamora, V.; Wu, G.; Steibel, J.P.; Kirkwood, R.N.; Taylor, N.P.; Wils-Plotz, E.; Trifilo, K.; Trottier, N.L. Effect of Amino Acids Supply in Reduced Crude Protein Diets on Performance, Efficiency of Mammary Uptake, and Transporter Gene Expression in Lactating Sows. J. Anim. Sci. 2012, 90, 3088–3100. [Google Scholar] [CrossRef] [PubMed]
- Che, L.; Xu, M.; Gao, K.; Wang, L.; Yang, X.; Wen, X.; Xiao, H.; Jiang, Z. Effects of Dietary Valine Supplementation during Late Gestation on the Reproductive Performance and Mammary Gland Development of Gilts. J. Anim. Sci. Biotechnol. 2020, 11, 15. [Google Scholar] [CrossRef]
- Wang, K.; Liu, J.; Zhao, L.; Li, Y.; Li, C. Effects of Dietary Valine-to-Lysine Ratio on Placenta Growth, the Placental Nutrient Transporters, and Reproductive Performance in Sows. Anim. Prod. Sci. 2023, 63, 742–750. [Google Scholar] [CrossRef]
- Duan, Y.H.; Zeng, L.M.; Li, F.N.; Li, Y.H.; Tan, B.E.; Ji, Y.J.; Kong, X.F.; Tang, Y.L.; Zhang, Y.Z.; Yin, Y.L. Effects of Dietary Branched-Chain Amino Acid Ratio on Growth Performance and Serum Amino Acid Pool of Growing Pigs. J. Anim. Sci. 2016, 94, 129–134. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.; Li, Z.; Wu, S.; Huang, K.; Chen, J.; Li, C. Effect of the Valine-to-Lysine Ratio on the Performance of Sows and Piglets in a Hot, Humid Environment. J. Therm. Biol. 2019, 81, 89–97. [Google Scholar] [CrossRef]
- Duan, Y.; Tan, B.; Li, J.; Liao, P.; Huang, B.; Li, F.; Xiao, H.; Liu, Y.; Yin, Y. Optimal Branched-Chain Amino Acid Ratio Improves Cell Proliferation and Protein Metabolism of Porcine Enterocytesin in Vivo and in Vitro. Nutrition 2018, 54, 173–181. [Google Scholar] [CrossRef]
- Cheng, Y.-C.; Lee, H.; Hwang, Y.; Kim, S.W. The Effects of Standardized Ileal Digestible His to Lys Ratio on Growth Performance, Intestinal Health, and Mobilization of Histidine-Containing Proteins in Pigs at 7 to 11 Kg Body Weight. J. Anim. Sci. 2023, 101, skac396. [Google Scholar] [CrossRef] [PubMed]
- Son, D.O.; Satsu, H.; Shimizu, M. Histidine Inhibits Oxidative Stress- and TNF-α-induced Interleukin-8 Secretion in Intestinal Epithelial Cells. FEBS Lett. 2005, 579, 4671–4677. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, T.; Nakamura, T.; Shibakusa, T.; Sugita, M.; Naganuma, F.; Iida, T.; Miura, Y.; Mohsen, A.; Harada, R.; Yanai, K. Insufficient Intake of L-Histidine Reduces Brain Histamine and Causes Anxiety-Like Behaviors in Male Mice. J. Nutr. 2014, 144, 1637–1641. [Google Scholar] [CrossRef] [PubMed]
- Mendl, M.; Zanella, A.J.; Broom, D.M. Physiological and Reproductive Correlates of Behavioral Strategies in Female Domestic Pigs. Anim. Behav. 1992, 44, 1107–1121. [Google Scholar] [CrossRef]
- Zhao, Y.; Flowers, W.L.; Saraiva, A.; Yeum, K.-J.; Kim, S.W. Effect of Social Ranks and Gestation Housing Systems on Oxidative Stress Status, Reproductive Performance, and Immune Status of Sows. J. Anim. Sci. 2013, 91, 5848–5858. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Jiang, Z.Y.; Gao, K.G.; Wang, L.; Yang, X.F.; Hu, Y.J.; Zhang, J.; Ma, X.Y. Low-Level Arginine Supplementation (0.1%) of Wheat-Based Diets in Pregnancy Increases the Total and Live-Born Litter Sizes in Gilts. Anim. Prod. Sci. 2017, 57, 1091. [Google Scholar] [CrossRef]
- Luise, D.; Bertocchi, M.; Bosi, P.; Correa, F.; Spinelli, E.; Trevisi, P. Contribution of L-Arginine Supplementation during Gestation on Sow Productive Performance and on Sow Microbial Faecal Profile. Ital. J. Anim. Sci. 2020, 19, 330–340. [Google Scholar] [CrossRef]
- Azad, M.A.K.; Bin, P.; Liu, G.; Fang, J.; Li, T.; Yin, Y. Effects of Different Methionine Levels on Offspring Piglets during Late Gestation and Lactation. Food Funct. 2018, 9, 5843–5854. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Wang, M.; Zhan, X.; Li, X.; Zhao, R. Effect of Different Selenium Sources on Productive Performance, Serum and Milk Se Concentrations, and Antioxidant Status of Sows. Biol. Trace Elem. Res. 2011, 142, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Han, J.H.; Guan, W.T.; Chen, F.; Wang, C.X.; Zhang, Y.Z.; Lv, Y.T.; Lin, G. Selenium and Vitamin E in Sow Diets: I. Effect on Antioxidant Status and Reproductive Performance in Multiparous Sows. Anim. Feed Sci. Technol. 2016, 221, 111–123. [Google Scholar] [CrossRef]
- Fan, Z.; Xiao, Y.; Chen, Y.; Wu, X.; Zhang, G.; Wang, Q.; Xie, C. Effects of Catechins on Litter Size, Reproductive Performance and Antioxidative Status in Gestating Sows. Anim. Nutr. 2015, 1, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, P.; Chen, G.; Luo, J.; Xi, Q.; Cai, G.; Wu, J.; Zeng, B.; Xie, Y.; Jiang, Q.; et al. Effect of Moringa Oleifera Supplementation on Productive Performance, Colostrum Composition and Serum Biochemical Indexes of Sow. J. Anim. Physiol. Anim. Nutr. 2020, 104, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Wei, H.; Sun, H.; Ao, J.; Long, G.; Jiang, S.; Peng, J. Effects of Dietary Supplementation of Oregano Essential Oil to Sows on Oxidative Stress Status, Lactation Feed Intake of Sows, and Piglet Performance. Biomed Res. Int. 2015, 2015, 525218. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jiang, G.; Kebreab, E.; Yu, Q.; Li, J.; Zhang, X.; He, H.; Fang, R.; Dai, Q. Effects of Dietary Grape Seed Polyphenols Supplementation during Late Gestation and Lactation on Antioxidant Status in Serum and Immunoglobulin Content in Colostrum of Multiparous Sows. J. Anim. Sci. 2019, 97, 2515–2523. [Google Scholar] [CrossRef] [PubMed]
- Oliviero, C.; Kokkonen, T.; Heinonen, M.; Sankari, S.; Peltoniemi, O. Feeding Sows with High Fibre Diet around Farrowing and Early Lactation: Impact on Intestinal Activity, Energy Balance Related Parameters and Litter Performance. Res. Vet. Sci. 2009, 86, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Fabà, L.; Gasa, J.; Tokach, M.D.; Varella, E.; Solà-Oriol, D. Effects of Supplementing Organic Microminerals and Methionine during the Rearing Phase of Replacement Gilts on Lameness, Growth, and Body Composition. J. Anim. Sci. 2018, 96, 3274–3287. [Google Scholar] [CrossRef] [PubMed]
- Lisgara, Μ.; Skampardonis, V.; Leontides, L. Effect of Diet Supplementation with Chelated Zinc, Copper and Manganese on Hoof Lesions of Loose Housed Sows. Porc. Health Manag. 2016, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Bussy, F.; Matthieu, L.G.; Salmon, H.; Delaval, J.; Berri, M.; Pi, N.C. Immunomodulating Effect of a Seaweed Extract from Lva Armoricana in Pig: Specific IgG and Total IgA in Colostrum, Milk, and Blood. Vet. Anim. Sci. 2019, 7, 100051. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Wei, T.; Yuan, A.; He, J.; Liu, J.; Xu, D.; Yang, Q. Dietary Supplementation of Astragalus Polysaccharides Enhanced Immune Components and Growth Factors EGF and IGF-1 in Sow Colostrum. J. Immunol. Res. 2017, 2017, 9253208. [Google Scholar] [CrossRef]
- Gao, L.; Xie, C.; Liang, X.; Li, Z.; Li, B.; Wu, X.; Yin, Y. Yeast-Based Nucleotide Supplementation in Mother Sows Modifies the Intestinal Barrier Function and Immune Response of Neonatal Pigs. Anim. Nutr. 2021, 7, 84–93. [Google Scholar] [CrossRef]
- Xu, S.; Jia, X.; Liu, Y.; Pan, X.; Chang, J.; Wei, W.; Lu, P.; Petry, D.; Che, L.; Jiang, X.; et al. Effects of Yeast-Derived Postbiotic Supplementation in Late Gestation and Lactation Diets on Performance, Milk Quality, and Immune Function in Lactating Sows. J. Anim. Sci. 2023, 101, skad201. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Wei, H.; Ao, J.; Long, G.; Peng, J. Inclusion of Konjac Flour in the Gestation Diet Changes the Gut Microbiota, Alleviates Oxidative Stress, and Improves Insulin Sensitivity in Sows. Appl. Environ. Microbiol. 2016, 82, 5899–5909. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, Z.; Lyu, H.; Gu, X.; Song, Z.; He, X.; Fan, Z. Effects of Dietary Inulin during Late Gestation on Sow Physiology, Farrowing Duration and Piglet Performance. Anim. Reprod. Sci. 2020, 219, 106531. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, T.; Masuda, T.; Kurosawa, D.; Tsukahara, T. Dietary Administration of Probiotics to Sows and/or Their Neonates Improves the Reproductive Performance, Incidence of Post-Weaning Diarrhea and Histopathological Parameters in the Intestine of Weaned Piglets. Anim. Sci. J. 2016, 87, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Berchieri-Ronchi, C.B.; Kim, S.W.; Zhao, Y.; Correa, C.R.; Yeum, K.J.; Ferreira, A.L.A. Oxidative Stress Status of Highly Prolific Sows during Gestation and Lactation. Animal 2011, 5, 1774–1779. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Zhang, Y.; Long, Y.; Wan, H.; Che, L.; Lin, Y.; Xu, S.; Feng, B.; Li, J.; Wu, D.; et al. Mammary Inflammatory Gene Expression Was Associated with Reproductive Stage and Regulated by Docosahexenoic Acid: In Vitro and in Vivo Studies. Lipids Health Dis. 2016, 15, 215. [Google Scholar] [CrossRef] [PubMed]
- Mueller, A.; Koebnick, C.; Binder, H.; Hoffmann, I.; Schild, R.L.; Beckmann, M.W.; Dittrich, R. Placental Defence Is Considered Sufficient to Control Lipid Peroxidation in Pregnancy. Med. Hypotheses. 2005, 64, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Kim, S.W. Oxidative Stress Status and Reproductive Performance of Sows during Gestation and Lactation under Different Thermal Environments. Asian-Australas. J. Anim. Sci. 2020, 33, 722–731. [Google Scholar] [CrossRef]
- Pendl, W.; Jenny, B.; Torgerson, P.R.; Spring, P.; Kümmerlen, D.; Sidler, X. Effect of Herd Health Management on the Prevalence of Postpartum Dysgalaktie Syndrome (PPDS) and the Treatment Incidence. Schweiz. Arch. Tierheilkd. 2017, 159, 109–116. [Google Scholar] [CrossRef]
- Kemper, N. Update on Postpartum Dysgalactia Syndrome in Sows. J. Anim. Sci. 2020, 98, S117–S125. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Vanderhaeghe, C.; Janssens, G.P.J.; Dewulf, J.; Maes, D.G.D. Risk Factors Associated with Postpartum Dysgalactia Syndrome in Sows. Vet. J. 2010, 184, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Bäckström, L.; Morkoç, A.C.; Connor, J.; Larson, R.; Price, W. Clinical Study of Mastitis-Metritis-Agalactia in Sows in Illinois. J. Am. Vet. Med. Assoc. 1984, 185, 70–73. [Google Scholar] [PubMed]
- Niemi, J.K.; Bergman, P.; Ovaska, S.; Sevón-Aimonen, M.-L.; Heinonen, M. Modeling the Costs of Postpartum Dysgalactia Syndrome and Locomotory Disorders on Sow Productivity and Replacement. Front. Vet. Sci. 2017, 4, 181. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, M.; Jacobsen, S.; Andersen, P.H.; Bækbo, P.; Cerón, J.J.; Dahl, J.; Escribano, D.; Theil, P.K.; Jacobson, M. Hormonal and Metabolic Indicators before and after Farrowing in Sows Affected with Postpartum Dysgalactia Syndrome. BMC Vet. Res. 2018, 14, 334. [Google Scholar] [CrossRef] [PubMed]
- Kanellopoulos-Langevin, C.; Caucheteux, S.M.; Verbeke, P.; Ojcius, D.M. Tolerance of the Fetus by the Maternal Immune System: Role of Inflammatory Mediators at the Feto-Maternal Interface. Reprod. Biol. Endocrinol. 2003, 1, 121. [Google Scholar] [CrossRef] [PubMed]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4, 118. [Google Scholar] [CrossRef]
- Wright, J.S.; Johnson, E.R.; DiLabio, G.A. Predicting the Activity of Phenolic Antioxidants: Theoretical Method, Analysis of Substituent Effects, and Application to Major Families of Antioxidants. J. Am. Chem. Soc. 2001, 123, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Doan, N.; Liu, Y.; Xiong, X.; Kim, K.; Wu, Z.; Bravo, D.M.; Blanchard, A.; Ji, P. Organic Selenium Supplement Partially Alleviated Diquat-Induced Oxidative Insults and Hepatic Metabolic Stress in Nursery Pigs. Br. J. Nutr. 2020, 124, 23–33. [Google Scholar] [CrossRef]
- Cao, J.; Guo, F.; Zhang, L.; Dong, B.; Gong, L. Effects of Dietary Selenomethionine Supplementation on Growth Performance, Antioxidant Status, Plasma Selenium Concentration, and Immune Function in Weaning Pigs. J. Anim. Sci. Biotechnol. 2014, 5, 46. [Google Scholar] [CrossRef]
- Wang, L.; Xu, X.; Su, G.; Shi, B.; Shan, A. High Concentration of Vitamin E Supplementation in Sow Diet during the Last Week of Gestation and Lactation Affects the Immunological Variables and Antioxidative Parameters in Piglets. J. Dairy Res. 2017, 84, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Amazan, D.; Rey, A.I.; Fernández, E.; López-Bote, C.J. Natural Vitamin E (d-α-Tocopherol) Supplementation in Drinking Water Prevents Oxidative Stress in Weaned Piglets. Livest. Sci. 2012, 145, 55–62. [Google Scholar] [CrossRef]
- Lauridsen, C.; Jensen, S.K. Influence of Supplementation of All-Rac-α-Tocopheryl Acetate Preweaning and Vitamin C Postweaning on α-Tocopherol and Immune Responses of Piglets. J. Anim. Sci. 2005, 83, 1274–1286. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.-P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.-J.; Li, H.-B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.W. Identification of Putative Factors Contributing to Pelvic Organ Prolapse in Sows (Grant # 17-224); 4starvets: Webster City, IA, USA, 2019; pp. 1–34. [Google Scholar]
- Iida, R.; Piñeiro, C.; Koketsu, Y. Incidences and Risk Factors for Prolapse Removal in Spanish Sow Herds. Prev. Vet. Med. 2019, 163, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, R.I.; McGlone, J.J.; Norman, R.L. Quantification of Stress in Sows: Comparison of Individual Housing versus Social Penning. J. Anim. Sci. 1993, 71, 112. [Google Scholar]
- Pearodwong, P.; Muns, R.; Tummaruk, P. Prevalence of Constipation and Its Influence on Post-Parturient Disorders in Tropical Sows. Trop. Anim. Health Prod. 2016, 48, 525–531. [Google Scholar] [CrossRef]
- Oliviero, C.; Heinonen, M.; Valros, A.; Peltoniemi, O. Environmental and Sow-Related Factors Affecting the Duration of Farrowing. Anim. Reprod. Sci. 2010, 119, 85–91. [Google Scholar] [CrossRef]
- Knage-Rasmussen, K.M.; Houe, H.; Rousing, T.; Sørensen, J.T. Herd- and Sow-Related Risk Factors for Lameness in Organic and Conventional Sow Herds. Animal 2014, 8, 121–127. [Google Scholar] [CrossRef]
- Ytrehus, B.; Grindflek, E.; Teige, J.; Stubsjoen, E.; Grondalen, T.; Carlson, C.S.; Ekman, S. The Effect of Parentage on the Prevalence, Severity and Location of Lesions of Osteochondrosis in Swine. J. Vet. Med. Ser. A 2004, 51, 188–195. [Google Scholar] [CrossRef]
- Maxson, P.F.; Mahan, D.C. Dietary Calcium and Phosphorus for Lactating Swine at High and Average Production Levels. J. Anim. Sci. 1986, 63, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Cross, N.; Hillman, L.; Allen, S.; Krause, G.; Vieira, N. Calcium Homeostasis and Bone Metabolism during Pregnancy, Lactation, and Postweaning: A Longitudinal Study. Am. J. Clin. Nutr. 1995, 61, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Kirk, R.K.; Svensmark, B.; Ellegaard, L.P.; Jensen, H.E. Locomotive Disorders Associated with Sow Mortality in Danish Pig Herds. J. Vet. Med. Ser. A 2005, 52, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.M.; Witschi, A.-K.M.; Wenk, C.; Martens, H. Effects of Dietary 25-Hydroxycholecalciferol and Cholecalciferol on Blood Vitamin D and Mineral Status, Bone Turnover, Milk Composition, and Reproductive Performance of Sows. J. Anim. Sci. 2014, 92, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Dersjant-Li, Y.; Awati, A.; Schulze, H.; Partridge, G. Phytase in Non-ruminant Animal Nutrition: A Critical Review on Phytase Activities in the Gastrointestinal Tract and Influencing Factors. J. Sci. Food Agric. 2015, 95, 878–896. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.P.; Young, E.P.; Earle, I.P.; Davey, R.J.; Stevenson, J.W. Effects of Dietary Calcium and Zinc on Calcium, Phosphorus and Zinc Retention in Swine. J. Anim. Sci. 1969, 29, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Hardwick, L.L.; Jones, M.R.; Brautbar, N.; Lee, D.B.N. Magnesium Absorption: Mechanisms and the Influence of Vitamin D, Calcium and Phosphate. J. Nutr. 1991, 121, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, Y.L.; Zhao, J.M.; Vazquez-Añón, M.; Stein, H.H. Digestibility and Retention of Zinc, Copper, Manganese, Iron, Calcium, and Phosphorus in Pigs Fed Diets Containing Inorganic or Organic Minerals. J. Anim. Sci. 2014, 92, 3407–3415. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, F.; Zhang, Y.; Lv, Y.; Heng, J.; Min, T.; Li, L.; Guan, W. Recent Progress of Porcine Milk Components and Mammary Gland Function. J. Anim. Sci. Biotechnol. 2018, 9, 77. [Google Scholar] [CrossRef]
- Devillers, N.; Farmer, C.; Le Dividich, J.; Prunier, A. Variability of Colostrum Yield and Colostrum Intake in Pigs. Animal 2007, 1, 1033–1041. [Google Scholar] [CrossRef]
- King, R.H. Factors That Influence Milk Production in Well-Fed Sows. J. Anim. Sci. 2000, 78, 19. [Google Scholar] [CrossRef]
- Guo, J.Y.; Sun, Y.; DeDecker, A.E.; Coffey, M.T.; Kim, S.W. Effect of Suckling Intensity of Primiparous Sows on Production Performance during Current and Subsequent Parities. J. Anim. Sci. 2019, 97, 4845–4854. [Google Scholar] [CrossRef]
- Kim, S.W.; Osaka, I.; Hurley, W.L.; Easter, R.A. Mammary Gland Growth as Influenced by Litter Size in Lactating Sows: Impact on Lysine Requirement. J. Anim. Sci. 1999, 77, 3316. [Google Scholar] [CrossRef] [PubMed]
- Auldist, D.E.; Morrish, L.; Eason, P.; King, R.H. The Influence of Litter Size on Milk Production of Sows. Anim. Sci. 1998, 67, 333–337. [Google Scholar] [CrossRef]
- Wu, W.Z.; Wang, X.Q.; Wu, G.Y.; Kim, S.W.; Chen, F.; Wang, J.J. Differential Composition of Proteomes in Sow Colostrum and Milk from Anterior and Posterior Mammary Glands. J. Anim. Sci. 2010, 88, 2657–2664. [Google Scholar] [CrossRef]
- Kim, S.W.; Hurley, W.L.; Hant, I.K.; Easter, R.A. Growth of Nursing Pigs Related to the Characteristics of Nursed Mammary Glands. J. Anim. Sci. 2000, 78, 1313. [Google Scholar] [CrossRef]
- Farmer, C.; Palin, M.-F.; Theil, P.K.; Sorensen, M.T.; Devillers, N. Milk Production in Sows from a Teat in Second Parity Is Influenced by Whether It Was Suckled in First Parity. J. Anim. Sci. 2012, 90, 3743–3751. [Google Scholar] [CrossRef] [PubMed]
- Strathe, A.V.; Bruun, T.S.; Hansen, C.F. Sows with High Milk Production Had Both a High Feed Intake and High Body Mobilization. Animal 2017, 11, 1913–1921. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Wu, G. Regulatory Role for Amino Acids in Mammary Gland Growth and Milk Synthesis. Amino Acids 2009, 37, 89–95. [Google Scholar] [CrossRef]
- Drew, M.D.; Owen, B.D. The Provision of Passive Immunity to Colostrum-Deprived Piglets by Bovine or Porcine Serum Immunoglobulins. Can. J. Anim. Sci. 1988, 68, 1277–1284. [Google Scholar] [CrossRef]
- Markowska-Daniel, I.; Pomorska-Mól, M. Shifts in Immunoglobulins Levels in the Porcine Mammary Secretions during Whole Lactation Period. Bull. Vet. Inst. Pulawy 2010, 54, 345–349. [Google Scholar]
- Bourne, F.J.; Curtis, J. The Transfer of Immunoglobins IgG, IgA and IgM from Serum to Colostrum and Milk in the Sow. Immunology 1973, 24, 157–162. [Google Scholar] [PubMed]
- Niimi, K.; Usami, K.; Fujita, Y.; Abe, M.; Furukawa, M.; Suyama, Y.; Sakai, Y.; Kamioka, M.; Shibata, N.; Park, E.J.; et al. Development of Immune and Microbial Environments Is Independently Regulated in the Mammary Gland. Mucosal Immunol. 2018, 11, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.E.; Rainard, P.; Lippolis, J.; Salmon, H.; Kacskovics, I. The Mammary Gland in Mucosal and Regional Immunity. In Mucosal Immunology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 2269–2306. [Google Scholar]
- Quesnel, H. Colostrum Production by Sows: Variability of Colostrum Yield and Immunoglobulin G Concentrations. Animal 2011, 5, 1546–1553. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.; Jacobi, S.; Liu, Y.; Robertson, K.H.; Drayton, J.; Medina, I.; Polo, J.; Crenshaw, J.; Odle, J. Evaluation of Immunoglobulin G Absorption from Colostrum Supplements Gavaged to Newborn Piglets. J. Anim. Sci. 2012, 90, 299–301. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Mahan, D.C.; Wu, G.; Kim, S.W. Protein Digestibility of Porcine Colostrum by Neonatal Pigs. Livest. Sci. 2009, 121, 182–186. [Google Scholar] [CrossRef]
- White, L.A.; Newman, M.C.; Cromwell, G.L.; Lindemann, M.D. Brewers Dried Yeast as a Source of Mannan Oligosaccharides for Weanling Pigs. J. Anim. Sci. 2002, 80, 2619–2628. [Google Scholar] [CrossRef]
- Davis, M.E.; Maxwell, C.V.; Erf, G.F.; Brown, D.C.; Wistuba, T.J. Dietary Supplementation with Phosphorylated Mannans Improves Growth Response and Modulates Immune Function of Weanling Pigs. J. Anim. Sci. 2004, 82, 1882–1891. [Google Scholar] [CrossRef]
- Czech, A.; Grela, E.R.; Mokrzycka, A.; Pejsak, Z. Efficacy of Mannanoligosaccharides Additive to Sows Diets on Colostrum, Blood Immunoglobulin Content and Production Parameters of Piglets. Pol. J. Vet. Sci. 2010, 13, 525–531. [Google Scholar]
- Zhao, Y.; Wang, Q.; Zhou, P.; Li, Z.; Zhong, W.; Zhuo, Y.; Che, L.; Xu, S.; Fang, Z.; Jiang, X.; et al. Effects of Yeast Culture Supplementation from Late Gestation to Weaning on Performance of Lactating Sows and Growth of Nursing Piglets. Animal 2022, 16, 100526. [Google Scholar] [CrossRef]
- Kim, S.W.; Brandherm, M.; Newton, B.; Cook, D.R.; Yoon, I.; Fitzner, G. Effect of Supplementing Saccharomyces Cerevisiae Fermentation Product in Sow Diets on Reproductive Performance in a Commercial Environment. Can. J. Anim. Sci. 2010, 90, 229–232. [Google Scholar] [CrossRef]
- Bass, B.E.; Tsai, T.-C.; Yang, H.; Perez, V.; Holzgraefe, D.; Chewning, J.; Frank, J.W.; Maxwell, C.V. Influence of a Whole Yeast Product (Pichia Guilliermondii) Fed throughout Gestation and Lactation on Performance and Immune Parameters of the Sow and Litter. J. Anim. Sci. 2019, 97, 1671–1678. [Google Scholar] [CrossRef] [PubMed]
- Thayer, M.T.; Garcia, R.M.; Duttlinger, A.W.; Mahoney, J.A.; Schinckel, A.P.; Asmus, M.D.; Jones, D.B.; Dunn, J.L.; Richert, B.T. Feeding a Whole-Cell Inactivated Pichia guilliermondii Yeast to Gestating and Lactating Sows in a Commercial Production System. Transl. Anim. Sci. 2023, 7, txac160. [Google Scholar] [CrossRef] [PubMed]
- Sohn, E.-J.; Kang, H.; Min, K.; Park, M.; Kim, J.-H.; Seo, H.-W.; Lee, S.-J.; Kim, H.; Tark, D.; Cho, H.-S.; et al. A Plant-Derived Maternal Vaccine against Porcine Epidemic Diarrhea Protects Piglets through Maternally Derived Immunity. Vaccines 2023, 11, 965. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.; Park, Y.; Choi, B.-H.; Park, S.; Gu, S.; Park, J.; Kim, J.-K.; Sohn, E.-J. Field Application of a New CSF Vaccine Based on Plant-Produced Recombinant E2 Marker Proteins on Pigs in Areas with Two Different Control Strategies. Vaccines 2021, 9, 537. [Google Scholar] [CrossRef]
- Le Dividich, J.; Esnault, T.; Lynch, B.; Hoo-Paris, R.; Castex, C.; Peiniau, J. Effect of Colostral Fat Level on Fat Deposition and Plasma Metabolites in the Newborn Pig. J. Anim. Sci. 1991, 69, 2480–2488. [Google Scholar] [CrossRef] [PubMed]
- Neal, S.M.; Irvin, K.M.; Shurson, G.C.; Harris, B.; Hatfield, E.E. Effect of Lactation Diet Fat Level on Sow and Litter Performance. Prof. Anim. Sci. 1999, 15, 7–13. [Google Scholar] [CrossRef]
- Bai, Y.S.; Wang, C.Q.; Zhao, X.; Shi, B.M.; Shan, A.S. Effects of Fat Sources in Sow on the Fatty Acid Profiles and Fat Globule Size of Milk and Immunoglobulins of Sows and Piglets. Anim. Feed Sci. Technol. 2017, 234, 217–227. [Google Scholar] [CrossRef]
- Bontempo, V.; Sciannimanico, D.; Pastorelli, G.; Rossi, R.; Corino, C.; Rosi, F. Dietary Conjugated Linoleic Acid Positively Affects Immunologic Variables in Lactating Sows and Piglets. J. Nutr. 2004, 134, 817–824. [Google Scholar] [CrossRef]
- Pariza, M.W.; Park, Y.; Cook, M.E. The Biologically Active Isomers of Conjugated Linoleic Acid. Prog. Lipid Res. 2001, 40, 283–298. [Google Scholar] [CrossRef]
- Mukhopadhya, I.; Hansen, R.; El-Omar, E.M.; Hold, G.L. IBD—What Role Do Proteobacteria Play? Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Azad, M.A.K.; Tang, W.; Zhu, Q.; Wang, W.; Gao, Q.; Kong, X. Maternal Probiotics Supplementation Improves Immune and Antioxidant Function in Suckling Piglets via Modifying Gut Microbiota. J. Appl. Microbiol. 2022, 133, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Starke, I.C.; Pieper, R.; Neumann, K.; Zentek, J.; Vahjen, W. Individual Responses of Mother Sows to a Probiotic Enterococcus Faecium Strain Lead to Different Microbiota Composition in Their Offspring. Benef. Microbes 2013, 4, 345–356. [Google Scholar] [CrossRef]
- Lan, R.; Kim, I. Enterococcus Faecium Supplementation in Sows during Gestation and Lactation Improves the Performance of Sucking Piglets. Vet. Med. Sci. 2020, 6, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Scharek, L.; Guth, J.; Reiter, K.; Weyrauch, K.D.; Taras, D.; Schwerk, P.; Schierack, P.; Schmidt, M.F.G.; Wieler, L.H.; Tedin, K. Influence of a Probiotic Enterococcus Faecium Strain on Development of the Immune System of Sows and Piglets. Vet. Immunol. Immunopathol. 2005, 105, 151–161. [Google Scholar] [CrossRef]
- de Goffau, M.C.; Charnock-Jones, D.S.; Smith, G.C.S.; Parkhill, J. Batch Effects Account for the Main Findings of an in Utero Human Intestinal Bacterial Colonization Study. Microbiome 2021, 9, 6. [Google Scholar] [CrossRef]
- Wang, X.; Tsai, T.; Deng, F.; Wei, X.; Chai, J.; Knapp, J.; Apple, J.; Maxwell, C.V.; Lee, J.A.; Li, Y.; et al. Longitudinal Investigation of the Swine Gut Microbiome from Birth to Market Reveals Stage and Growth Performance Associated Bacteria. Microbiome 2019, 7, 109. [Google Scholar] [CrossRef]
- Ardissone, A.N.; de la Cruz, D.M.; Davis-Richardson, A.G.; Rechcigl, K.T.; Li, N.; Drew, J.C.; Murgas-Torrazza, R.; Sharma, R.; Hudak, M.L.; Triplett, E.W.; et al. Meconium Microbiome Analysis Identifies Bacteria Correlated with Premature Birth. PLoS ONE 2014, 9, e90784. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Ma, Y.; Ge, X.; Zhang, X.; Cai, C.; Yang, Y.; Lu, C.; Liang, G.; Guo, X.; et al. Effects of Maternal Factors and Postpartum Environment on Early Colonization of Intestinal Microbiota in Piglets. Front. Vet. Sci. 2022, 9, 815944. [Google Scholar] [CrossRef]
- Luo, Y.; Ren, W.; Smidt, H.; Wright, A.-D.G.; Yu, B.; Schyns, G.; McCormack, U.M.; Cowieson, A.J.; Yu, J.; He, J.; et al. Dynamic Distribution of Gut Microbiota in Pigs at Different Growth Stages: Composition and Contribution. Microbiol. Spectr. 2022, 10, e00688-21. [Google Scholar] [CrossRef]
- Guevarra, R.B.; Hong, S.H.; Cho, J.H.; Kim, B.-R.; Shin, J.; Lee, J.H.; Kang, B.N.; Kim, Y.H.; Wattanaphansak, S.; Isaacson, R.E.; et al. The Dynamics of the Piglet Gut Microbiome during the Weaning Transition in Association with Health and Nutrition. J. Anim. Sci. Biotechnol. 2018, 9, 54. [Google Scholar] [CrossRef]
- Zhong, X.; Zhang, Z.; Wang, S.; Cao, L.; Zhou, L.; Sun, A.; Zhong, Z.; Nabben, M. Microbial-Driven Butyrate Regulates Jejunal Homeostasis in Piglets during the Weaning Stage. Front. Microbiol. 2019, 9, 3335. [Google Scholar] [CrossRef]
- Guevarra, R.B.; Lee, J.H.; Lee, S.H.; Seok, M.-J.; Kim, D.W.; Kang, B.N.; Johnson, T.J.; Isaacson, R.E.; Kim, H.B. Piglet Gut Microbial Shifts Early in Life: Causes and Effects. J. Anim. Sci. Biotechnol. 2019, 10, 1. [Google Scholar] [CrossRef]
- Wiciński, M.; Sawicka, E.; Gębalski, J.; Kubiak, K.; Malinowski, B. Human Milk Oligosaccharides: Health Benefits, Potential Applications in Infant Formulas, and Pharmacology. Nutrients 2020, 12, 266. [Google Scholar] [CrossRef]
- Marcobal, A.; Barboza, M.; Froehlich, J.W.; Block, D.E.; German, J.B.; Lebrilla, C.B.; Mills, D.A. Consumption of Human Milk Oligosaccharides by Gut-Related Microbes. J. Agric. Food Chem. 2010, 58, 5334–5340. [Google Scholar] [CrossRef]
- Barba-Vidal, E.; Castillejos, L.; Roll, V.F.B.; Cifuentes-Orjuela, G.; Moreno Muñoz, J.A.; Martín-Orúe, S.M. The Probiotic Combination of Bifidobacterium longum subsp. Infantis CECT 7210 and Bifidobacterium animalis subsp. Lactis BPL6 Reduces Pathogen Loads and Improves Gut Health of Weaned Piglets Orally Challenged with Salmonella Typhimurium. Front. Microbiol. 2017, 8, 1570. [Google Scholar] [CrossRef]
- Shu, Q.; Qu, F.; Gill, H.S. Probiotic Treatment Using Bifidobacterium Lactis HN019 Reduces Weanling Diarrhea Associated with Rotavirus and Escherichia Coli Infection in a Piglet Model. J. Pediatr. Gastroenterol. Nutr. 2001, 33, 171–177. [Google Scholar] [CrossRef]
- Fukuda, S.; Toh, H.; Hase, K.; Oshima, K.; Nakanishi, Y.; Yoshimura, K.; Tobe, T.; Clarke, J.M.; Topping, D.L.; Suzuki, T.; et al. Bifidobacteria Can Protect from Enteropathogenic Infection through Production of Acetate. Nature 2011, 469, 543–547. [Google Scholar] [CrossRef]
- Rasmussen, S.O.; Martin, L.; Østergaard, M.V.; Rudloff, S.; Roggenbuck, M.; Nguyen, D.N.; Sangild, P.T.; Bering, S.B. Human Milk Oligosaccharide Effects on Intestinal Function and Inflammation after Preterm Birth in Pigs. J. Nutr. Biochem. 2017, 40, 141–154. [Google Scholar] [CrossRef]
- Wang, M.; Monaco, M.H.; Hauser, J.; Yan, J.; Dilger, R.N.; Donovan, S.M. Bovine Milk Oligosaccharides and Human Milk Oligosaccharides Modulate the Gut Microbiota Composition and Volatile Fatty Acid Concentrations in a Preclinical Neonatal Model. Microorganisms 2021, 9, 884. [Google Scholar] [CrossRef]
- Difilippo, E.; Bettonvil, M.; Willems, R.; Braber, S.; Fink-Gremmels, J.; Jeurink, P.V.; Schoterman, M.H.C.; Gruppen, H.; Schols, H.A. Oligosaccharides in Urine, Blood, and Feces of Piglets Fed Milk Replacer Containing Galacto-Oligosaccharides. J. Agric. Food Chem. 2015, 63, 10862–10872. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Bauer, L.L.; Chen, X.; Wang, M.; Kuhlenschmidt, T.B.; Kuhlenschmidt, M.S.; Fahey, G.C.; Donovan, S.M. Microbial Composition and In Vitro Fermentation Patterns of Human Milk Oligosaccharides and Prebiotics Differ between Formula-Fed and Sow-Reared Piglets. J. Nutr. 2012, 142, 681–689. [Google Scholar] [CrossRef] [PubMed]
Concern | Intervention | Effect | Reference |
---|---|---|---|
Oxidative stress | Selenomethionine (0.3 mg Se/kg diet) | Increased litter weaning weight, increased total antioxidant capability, and decreased MDA in sows, increased glutathione peroxidase, superoxide dismutase in colostrum | [66] |
Organic Se (0.3 mg/kg diet) | Increased litter birthweight, greater number of pigs weaned, increased total antioxidant capability, decreased MDA | [67] | |
Catechins (200 or 300 mg/kg diet) | Increased litter born alive, litter born healthy, decreased stillborn rate | [68] | |
Catechins (100, 200, 300, or 400 mg/kg diet) | Decreased sow serum H2O2 levels | [68] | |
Moringa oleifera (4 or 8% of diet) | Reduction in farrowing duration, decrease in number of stillborn, decreased sow serum MDA, increased total antioxidant capability, reduced serum nitrogen in sows and offspring | [69] | |
Oregano essential oil (15 mg/kg diet) | Reduced sow serum concentration of 8-hydroxy-deoxyguanosine and thiobarbituric acid reactive substances, increased sow feed intake during lactation, increased average daily gain of piglets | [70] | |
Grape seed polyphenols (200 or 300 mg/kg diet) | Increased activity of superoxide dismutase and glutathione peroxidase, higher IgM and IgG content in colostrum | [71] | |
Prolapse and lameness | Crude fiber (7%) | Increased sow water intake during lactation, decreased constipation and faster recovery to normal intestinal activity post-farrowing, increased piglet weight gain at day 5 | [72] |
Organic minerals (10, 20, and 50 mg/kg of Cu, Mn, and Zn, respectively) | Decreased the incidence of lameness during rearing by 12.8% and during lactation by 14.3% | [73] | |
Partial substitution of inorganic salts with organic trace minerals (Zn, Cu, Mn) | Reduced the odds of higher versus lower lesion scores | [74] | |
Colostrum and milk production/quality | Algal sulfated polysaccharide (Ulva aromricana,8 or 16 g/day) | Improved specific IgG transudation from blood to colostrum, increased total IgA titer in milk 7 days post-farrowing | [75] |
Astragalus polysaccharide (1.5 g/day) | Improved levels of IgM and IgG in colostrum 7 days pre-farrowing, increased maternal-derived antibodies to vaccinated diseases in colostrum | [76] | |
Yeast-based nucleotide (4 g/day) | Increased litter weaning weight, decreased diarrhea in piglets, improved ileal villus development in piglets, increased expression of interleukin (IL)-17, IL-8, IL-1β, IL-10, and tumor necrosis factor (TNF)-α in the jejunal and ileal tissue of piglets | [77] | |
Yeast-derived postbiotic (1.25 or 2.00 g/kg diet) | Increased sow backfat deposition during late gestation, improved IgA, lactose content in milk, greater concentrations of IgG and IgM in piglet serum, decreased piglet diarrhea and mortality | [78] | |
Intestinal health | Fiber, konjac flour (2.2%) | Decreased serum ROS, increased relative abundance of Proteobacteria in fecal samples | [79] |
Fiber, inulin (1.6%) | Increased serum superoxide dismutase, glutathione peroxidase | [80] | |
Probiotics (Bacillus mesentericus, Clostriduim butyricum, and Enterococcus faecailis) | Shortened length of gestation, increased litter weight at birth | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gormley, A.; Jang, K.B.; Garavito-Duarte, Y.; Deng, Z.; Kim, S.W. Impacts of Maternal Nutrition on Sow Performance and Potential Positive Effects on Piglet Performance. Animals 2024, 14, 1858. https://doi.org/10.3390/ani14131858
Gormley A, Jang KB, Garavito-Duarte Y, Deng Z, Kim SW. Impacts of Maternal Nutrition on Sow Performance and Potential Positive Effects on Piglet Performance. Animals. 2024; 14(13):1858. https://doi.org/10.3390/ani14131858
Chicago/Turabian StyleGormley, Alexa, Ki Beom Jang, Yesid Garavito-Duarte, Zixiao Deng, and Sung Woo Kim. 2024. "Impacts of Maternal Nutrition on Sow Performance and Potential Positive Effects on Piglet Performance" Animals 14, no. 13: 1858. https://doi.org/10.3390/ani14131858
APA StyleGormley, A., Jang, K. B., Garavito-Duarte, Y., Deng, Z., & Kim, S. W. (2024). Impacts of Maternal Nutrition on Sow Performance and Potential Positive Effects on Piglet Performance. Animals, 14(13), 1858. https://doi.org/10.3390/ani14131858