The mRNA N6-Methyladenosine Response to Dehydration in Xenopus laevis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Treatments and Tissues
2.2. Total Protein Extraction
2.3. SDS-PAGE
2.4. Immunoblotting
2.5. Data Quantification
2.6. Demethylase Activity
2.7. Total RNA Extraction
2.8. Dot Blot m6A Quantification
3. Results
3.1. Writers
3.2. Erasers
3.3. Readers
3.4. Demethylase Activity
3.5. Total m6A Quantification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Antibody | Company | Catalogue # |
---|---|---|
ALKBH5 | Abbexa | Abx125516 |
FTO | Abbexa | Abx125855 |
METTL14 | Abbexa | Abx123810 |
WTAP | Cell Signalling | 56501T |
YTHDF1 | Abclonal | A13260 |
YTHDF2 | Abclonal | A15616 |
YTHDF3 | Abclonal | A8395 |
SRSF3 | Abclonal | A6067 |
m6A | Abclonal | A19841 |
References
- Loveridge, J.P. Strategies of Water Conservation in Southern African Frogs. Zool. Afr. 1976, 11, 319–333. [Google Scholar] [CrossRef]
- Hillman, S.S. The Roles of Oxygen Delivery and Electrolyte Levels in the Dehydrational Death of Xenopus Laevis. J. Comp. Physiol. B 1978, 128, 169–175. [Google Scholar] [CrossRef]
- Dawson, N.J.; Biggar, Y.; Malik, A.I.; Storey, K.B. Increased Transcript Levels and Kinetic Function of Pyruvate Kinase during Severe Dehydration in Aestivating African Clawed Frogs, Xenopus Laevis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2018, 224, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Storey, K.B.; Storey, J.M. Metabolic Rate Depression and Biochemical Adaptation in Anaerobiosis, Hibernation and Estivation. Q. Rev. Biol. 1990, 65, 145–174. [Google Scholar] [CrossRef]
- Naranjo, M.; Breedon, S.A.; Storey, K.B. Cardiac MicroRNA Expression Profile in Response to Estivation. Biochimie 2023, 210, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Hillman, S.S.; Withers, P.C. Aerobic Contributions to Sustained Activity Metabolism in Xenopus Laevis. Comp. Biochem. Physiol. A Physiol. 1981, 69, 605–606. [Google Scholar] [CrossRef]
- Jiang, C.; Storey, K.B.; Yang, H.; Sun, L. Aestivation in Nature: Physiological Strategies and Evolutionary Adaptations in Hypometabolic States. Int. J. Mol. Sci. 2023, 24, 14093. [Google Scholar] [CrossRef]
- Storey, K.B.; Storey, J.M. Aestivation: Signaling and Hypometabolism. J. Exp. Biol. 2012, 215, 1425–1433. [Google Scholar] [CrossRef]
- Childers, C.L.; Storey, K.B. Purification and Characterization of a Urea Sensitive Lactate Dehydrogenase from Skeletal Muscle of the African Clawed Frog, Xenopus Laevis. J. Comp. Physiol. B 2019, 189, 271–281. [Google Scholar] [CrossRef]
- Malik, A.L.; Storey, K.B. Activation of Extracellular Signal-Regulated Kinases during Dehydration in the African Clawed Frog, Xenopus Laevis. J. Exp. Biol. 2009, 212, 2595–2603. [Google Scholar] [CrossRef]
- Rehman, S.; Storey, K.B. Dynamics of Epigenetic Regulation in Dryophytes Versicolor Skeletal Muscle: Lysine Methylation and Acetylation Involvement in Metabolic Rate Depression. J. Therm. Biol. 2024, 122, 103865. [Google Scholar] [CrossRef] [PubMed]
- Breedon, S.A.; Storey, K.B. Lost in Translation: Exploring MicroRNA Biogenesis and Messenger RNA Fate in Anoxia-Tolerant Turtles. Oxygen 2022, 2, 227–245. [Google Scholar] [CrossRef]
- Hawkins, L.J.; Storey, K.B. Histone Methylation in the Freeze-Tolerant Wood Frog (Rana sylvatica). J. Comp. Physiol. B 2018, 188, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Ingelson-Filpula, W.A.; Kadamani, K.L.; Ojaghi, M.; Pamenter, M.E.; Storey, K.B. Hypoxia-induced downregulation of RNA m6A protein machinery in the naked mole-rat heart. Biochimie 2024, 225, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Fuery, C.J.; Withers, P.C.; Hobbs, A.A.; Guppy, M. The Role of Protein Synthesis during Metabolic Depression in the Australian Desert Frog Neobatrachus Centralis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 1998, 119, 469–476. [Google Scholar] [CrossRef]
- Cooper, S.T.; Richters, K.E.; Melin, T.E.; Liu, Z.J.; Hordyk, P.J.; Benrud, R.R.; Geiser, L.R.; Cash, S.E.; Simon Shelley, C.; Howard, D.R.; et al. The Hibernating 13-Lined Ground Squirrel as a Model Organism for Potential Cold Storage of Platelets. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, R1202. [Google Scholar] [CrossRef]
- Tessier, S.N.; Wu, C.W.; Storey, K.B. Molecular Control of Protein Synthesis, Glucose Metabolism, and Apoptosis in the Brain of Hibernating Thirteen-Lined Ground Squirrels. Biochem. Cell Biol. 2019, 97, 536–544. [Google Scholar] [CrossRef]
- Tessier, S.N.; Zhang, J.; Biggar, K.K.; Wu, C.W.; Pifferi, F.; Perret, M.; Storey, K.B. Regulation of the PI3K/AKT Pathway and Fuel Utilization During Primate Torpor in the Gray Mouse Lemur, Microcebus Murinus. Genom. Proteom. Bioinform. 2015, 13, 91–102. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Junhu, S.U.; Huan, L.I.; Xiong, J.; Keyi, F.U.; Wang, Z.; Yuan, X.; Shi, Z.; Miao, X.; et al. Altitude-Dependent Metabolite Biomarkers Reveal the Mechanism of Plateau Pika Adaptation to High Altitudes. Integr. Zool. 2023, 18, 1041–1055. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, B.S.; Roundtree, I.A.; Lu, Z.; Han, D.; Ma, H.; Weng, X.; Chen, K.; Shi, H.; He, C. N6-Methyladenosine Modulates Messenger RNA Translation Efficiency. Cell 2015, 161, 1388–1399. [Google Scholar] [CrossRef]
- Karthiya, R.; Khandelia, P. m6A RNA Methylation: Ramifications for Gene Expression and Human Health. Mol. Biotechnol. 2020, 62, 467–484. [Google Scholar] [CrossRef] [PubMed]
- Cayir, A.; Byun, H.M.; Barrow, T.M. Environmental Epitranscriptomics. Environ. Res. 2020, 189, 109885. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Fu, H.; Sun, J.; Xu, Q. Interaction between N6-Methyladenosine (m6A) Modification and Environmental Chemical-Induced Diseases in Various Organ Systems. Chem. Biol. Interact 2023, 373, 110376. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.; Varma, A.; Gupta, A.; Storey, K.B. The Regulation of M6 A-Related Proteins during Whole-Body Freezing of the Freeze-Tolerant Wood Frog. Biochem. Cell Biol. 2023, 101, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Rudy, E.; Grabsztunowicz, M.; Arasimowicz-Jelonek, M.; Tanwar, U.K.; Maciorowska, J.; Sobieszczuk-Nowicka, E. N6-Methyladenosine (m6A) RNA Modification as a Metabolic Switch between Plant Cell Survival and Death in Leaf Senescence. Front. Plant Sci. 2023, 13, 1064131. [Google Scholar] [CrossRef]
- Engel, M.; Eggert, C.; Kaplick, P.M.; Eder, M.; Röh, S.; Tietze, L.; Namendorf, C.; Arloth, J.; Weber, P.; Rex-Haffner, M.; et al. The Role of m6A/m-RNA Methylation in Stress Response Regulation. Neuron 2018, 99, 389. [Google Scholar] [CrossRef]
- Wang, P.; Doxtader, K.A.; Nam, Y. Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. Mol. Cell 2016, 63, 306–317. [Google Scholar] [CrossRef]
- Liu, J.; Yue, Y.; Han, D.; Wang, X.; Fu, Y.; Zhang, L.; Jia, G.; Yu, M.; Lu, Z.; Deng, X.; et al. A METTL3-METTL14 Complex Mediates Mammalian Nuclear RNA N6-Adenosine Methylation. Nat. Chem. Biol. 2014, 10, 93–95. [Google Scholar] [CrossRef]
- Ping, X.; Sun, B.; Wang, L.; Xiao, W.; Yang, X.; Wang, W.; Adhikari, S.; Shi, Y.; Lv, Y.; Chen, Y.; et al. Mammalian WTAP Is a Regulatory Subunit of the RNA N6-Methyladenosine Methyltransferase. Cell Res. 2014, 24, 177–189. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, Y.; Sun, B.-F.; Shi, Y.; Yang, X.; Xiao, W.; Hao, Y.-J.; Ping, X.-L.; Chen, Y.-S.; Wang, W.-J.; et al. FTO-Dependent Demethylation of N6-Methyladenosine Regulates MRNA Splicing and Is Required for Adipogenesis. Cell Res. 2014, 24, 1403–1419. [Google Scholar] [CrossRef]
- Zheng, G.; Dahl, J.A.; Niu, Y.; Fedorcsak, P.; Huang, C.M.; Li, C.J.; Vågbø, C.B.; Shi, Y.; Wang, W.L.; Song, S.H.; et al. ALKBH5 Is a Mammalian RNA Demethylase That Impacts RNA Metabolism and Mouse Fertility. Mol. Cell 2013, 49, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, W.; Shen, F.; Yang, X.; Liu, H.; Dai, S.; Sun, X.; Huang, J.; Guo, Q. YTH Domain Proteins: A Family of m6A Readers in Cancer Progression. Front. Oncol. 2021, 11, 629560. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Yuan, Y.; Li, Y.; Mutti, L.; Peng, J.; Jiang, X. The Function and Clinical Implication of YTHDF1 in the Human System Development and Cancer. Biomark. Res. 2023, 11, 5. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lu, Z.; Gomez, A.; Hon, G.C.; Yue, Y.; Han, D.; Fu, Y.; Parisien, M.; Dai, Q.; Jia, G.; et al. N 6-Methyladenosine-Dependent Regulation of Messenger RNA Stability. Nature 2014, 505, 117–120. [Google Scholar] [CrossRef]
- Roundtree, I.A.; Luo, G.-Z.; Zhang, Z.; Wang, X.; Zhou, T.; Cui, Y.; Sha, J.; Huang, X.; Guerrero, L.; Xie, P.; et al. YTHDC1 Mediates Nuclear Export of N6-Methyladenosine Methylated MRNAs. eLife 2017, 6, 31311. [Google Scholar] [CrossRef]
- Xiong, J.; Chen, Y.; Wang, W.; Sun, J. Biological Function and Molecular Mechanism of SRSF3 in Cancer and Beyond. Oncol. Lett. 2022, 23, 21. [Google Scholar] [CrossRef]
- Storey, K.B.; Storey, J.M. Metabolic Rate Depression in Animals: Transcriptional and Translational Controls. Biol. Rev. Camb. Philos. Soc. 2004, 79, 207–233. [Google Scholar] [CrossRef]
- Romspert, A.P. Osmoregulation of the African Clawed Frog. Xenopus Laevis, in Hypersaline Media. Comp. Biochem. Physiol. A Physiol. 1976, 54, 207–210. [Google Scholar] [CrossRef]
- Rehman, S.; Parent, M.; Storey, K.B. Histone Arginine Methylation as a Regulator of Gene Expression in the Dehydrating African Clawed Frog (Xenopus laevis). Genes 2024, 15, 1156. [Google Scholar] [CrossRef]
- Eaton, S.L.; Roche, S.L.; Llavero Hurtado, M.; Oldknow, K.J.; Farquharson, C.; Gillingwater, T.H.; Wishart, T.M. Total Protein Analysis as a Reliable Loading Control for Quantitative Fluorescent Western Blotting. PLoS ONE 2013, 8, e0072457. [Google Scholar] [CrossRef]
- Zaccara, S.; Ries, R.J.; Jaffrey, S.R. Reading, Writing and Erasing MRNA Methylation. Nat. Rev. Mol. Cell Biol. 2019, 20, 608–624. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Jia, G.; Pang, X.; Wang, R.; Wang, X.; Li, C.; Smemo, S.; Dai, Q.; Bailey, K.; Nobrega, M.; et al. FTO-Mediated Formation of N6-Hydroxymethyladenosine and N6-Formyladenosine in Mammalian RNA. Nat. Commun. 2013, 4, 1798. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lv, W.; Li, T.; Zhang, S.; Wang, H.; Li, X.; Wang, L.; Ma, D.; Zang, Y.; Shen, J.; et al. Dynamic Regulation and Functions of MRNA m6A Modification. Cancer Cell Int. 2022, 22, 48. [Google Scholar] [CrossRef] [PubMed]
- Zhen, D.; Wu, Y.; Zhang, Y.; Chen, K.; Song, B.; Xu, H.; Tang, Y.; Wei, Z.; Meng, J. m6A Reader: Epitranscriptome Target Prediction and Functional Characterization of N6-Methyladenosine (m6A) Readers. Front. Cell Dev. Biol. 2020, 8, 741. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Liu, Z.; Cui, P.; Pincheira, R.; Yang, Y.; Liu, J.; Zhang, J.T. Role of EIF3a in Regulating Cell Cycle Progression. Exp. Cell Res. 2009, 315, 1889–1894. [Google Scholar] [CrossRef]
- Hawkins, L.J.; Storey, K.B. MicroRNA Expression in the Heart of Xenopus Laevis Facilitates Metabolic Adaptation to Dehydration. Genomics 2020, 112, 3525–3536. [Google Scholar] [CrossRef]
- Do Amaral, M.C.F.; Lee, R.E.; Costanzo, J.P. Enzymatic Regulation of Glycogenolysis in a Subarctic Population of the Wood Frog: Implications for Extreme Freeze Tolerance. PLoS ONE 2013, 8, 79169. [Google Scholar] [CrossRef]
- Shi, H.; Wang, X.; Lu, Z.; Zhao, B.S.; Ma, H.; Hsu, P.J.; Liu, C.; He, C. YTHDF3 Facilitates Translation and Decay of N 6-Methyladenosine-Modified RNA. Cell Res. 2017, 27, 315–328. [Google Scholar] [CrossRef]
- Du, H.; Zhao, Y.; He, J.; Zhang, Y.; Xi, H.; Liu, M.; Ma, J.; Wu, L. YTHDF2 Destabilizes m6A-Containing RNA through Direct Recruitment of the CCR4–NOT Deadenylase Complex. Nat. Commun. 2016, 7, 12626. [Google Scholar] [CrossRef]
- Park, O.H.; Ha, H.; Lee, Y.; Boo, S.H.; Kwon, D.H.; Song, H.K.; Kim, Y.K. Endoribonucleolytic Cleavage of m6A-Containing RNAs by RNase P/MRP Complex. Mol. Cell 2019, 74, 494–507.e8. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, C.; Pan, X.; Storey, K.B.; Zhang, W. Distinct Metabolic Responses to Thermal Stress between Invasive Freshwater Turtle Trachemys Scripta Elegans and Native Freshwater Turtles in China. Integr. Zool. 2024, 19, 1057–1075. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Sun, B.; Zhang, Q.; Teng, L.; Zhang, F.; Liu, Z. Metabolic Regulation Reduces the Oxidative Damage of Arid Lizards in Response to Moderate Heat Events. Integr. Zool. 2024, 19, 1034–1046. [Google Scholar] [CrossRef] [PubMed]
- Wiener, D.; Schwartz, S. The Epitranscriptome beyond m6A. Nat. Rev. Genet. 2021, 22, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Zetzsche, J.; Fallet, M. To Live or Let Die? Epigenetic Adaptations to Climate Change—A Review. Environ. Epigenet. 2024, 10, dvae009. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, S.; Parent, M.; Storey, K.B. The mRNA N6-Methyladenosine Response to Dehydration in Xenopus laevis. Animals 2024, 14, 3288. https://doi.org/10.3390/ani14223288
Rehman S, Parent M, Storey KB. The mRNA N6-Methyladenosine Response to Dehydration in Xenopus laevis. Animals. 2024; 14(22):3288. https://doi.org/10.3390/ani14223288
Chicago/Turabian StyleRehman, Saif, Mackenzie Parent, and Kenneth B. Storey. 2024. "The mRNA N6-Methyladenosine Response to Dehydration in Xenopus laevis" Animals 14, no. 22: 3288. https://doi.org/10.3390/ani14223288
APA StyleRehman, S., Parent, M., & Storey, K. B. (2024). The mRNA N6-Methyladenosine Response to Dehydration in Xenopus laevis. Animals, 14(22), 3288. https://doi.org/10.3390/ani14223288