Characterization of Pseudomonas aeruginosa Isolated from Bovine Mastitis in Northern Jiangsu Province and Correlation to Drug Resistance and Biofilm Formability
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Isolation and Identification
2.2. MLST Typing
2.3. Phenotypic Determination of Drug Resistance
2.4. Investigation of Virulence Genes in Isolated Pseudomonas Aeruginosa
2.5. Biofilm and Cell Viability Assay
- (1)
- If 0 < SI ≤ 1.5, it represents a weak or no biofilm formation ability.
- (2)
- If 1.5 < SI < 2.5, it represents a moderate biofilm formation ability.
- (3)
- If SI ≥ 2.5, it represents a strong biofilm formation ability.
2.6. Quality Control Procedures
3. Statistical Analysis
4. Results
4.1. Correlation of Antimicrobial Susceptibility and ST Type of 63 Pseudomonas aeruginosa Strains
4.2. Correlation Between Virulence Gene Detection and ST Type of 63 Pseudomonas aeruginosa Strains
4.3. Correlation of Biofilm Formation and Drug Resistance Phenotypes of 63 Pseudomonas aeruginosa Strains
4.4. Correlation of Biofilm Formation and Virulence Genes of 63 Pseudomonas aeruginosa Strains
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heikkilä, A.-M.; Liski, E.; Pyörälä, S.; Taponen, S. Pathogen-specific production losses in bovine mastitis. J. Dairy Sci. 2018, 101, 9493–9504. [Google Scholar] [CrossRef] [PubMed]
- Čobirka, M.; Tančin, V.; Slama, P. Epidemiology and classification of mastitis. Animal 2020, 10, 2212. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.L.; Kamphuis, C.; Martins, C.; Barreiro, J.R.; Tomazi, T.; Gameiro, A.H.; Hogeveen, H.; dos Santos, M.V. Bovine subclinical mastitis reduces milk yield and economic return. Livest Sci. 2018, 210, 25–32. [Google Scholar] [CrossRef]
- Amoh, T.; Murakami, K.; Kariyama, R.; Hori, K.; Viducic, D.; Hirota, K.; Igarashi, J.; Suga, H.; Parsek, M.R.; Kumon, H.; et al. Effects of an autoinducer analogue on antibiotic tolerance in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2017, 72, 2230–2240. [Google Scholar] [CrossRef]
- Li, X.; Ye, Y.; Zhou, X.; Huang, C.; Wu, M. Atg7 enhances host defense against infection via down-regulation of superoxide but up-regulation of nitric oxide. J. Immunol. 2015, 194, 1112–1121. [Google Scholar] [CrossRef]
- Demirdjian, S.; Sanchez, H.; Hopkins, D.; Berwin, B. Motility-Independent Formation of Antibiotic-Tolerant Pseudomonas aeruginosa Aggregates. Appl. Environ. Microbiol. 2019, 85, e00844-19. [Google Scholar] [CrossRef]
- Pérez-Losada, M.; Cabezas, P.; Castro-Nallar, E.; Crandall, K.A. Pathogen typing in the genomics era: MLST and the future of molecular epidemiology. Infect. Genet. Evol. 2013, 16, 38–53. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Azab, K.S.M.; Abdel-Rahman, M.A.; El-Sheikh, H.H.; Azab, E.; Gobouri, A.A.; Farag, M.M.S. Distribution of Extended-Spectrum β-Lactamase (ESBL)-Encoding Genes among Multidrug-Resistant Gram-Negative Pathogens Collected from Three Different Countries. Antibiotics 2021, 10, 247. [Google Scholar] [CrossRef]
- Wolfmeier, H.; Wardell, S.J.T.; Liu, L.T.; Falsafi, R.; Draeger, A.; Babiychuk, E.B.; Pletzer, D.; Hancock, R.E.W. Targeting the Pseudomonas aeruginosa Virulence Factor Phospholipase C With Engineered Liposomes. Front. Microbiol. 2022, 13, 867449. [Google Scholar] [CrossRef]
- Bleves, S.; Viarre, V.; Salacha, R.; Michel, G.P.; Filloux, A.; Voulhoux, R. Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons. Int. J. Med. Microbiol. 2010, 300, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Gervasoni, L.F.; Peixoto, I.C.; Imperador, A.C.; De Oliveira, L.B.; Correia, L.F.; Vieira, K.C.d.O.; Saeki, E.K.; Lima, P.E.d.S.; Mareco, E.A.; Pereira, V.C.; et al. Relationship between antibiotic resistance, biofilm formation, virulence factors and source of origin of Pseudomonas aeruginosa environmental isolates with regard to the presence of metallo-β-lactamase-encoding genes. Microb. Pathog. 2023, 182, 106223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, C.; Du, X.; Zhou, Y.; Kong, W.; Lau, G.W.; Chen, G.; Kohli, G.S.; Yang, L.; Wang, T.; et al. Glutathione Activates Type III Secretion System Through Vfr in Pseudomonas aeruginosa. Front. Cell Infect. Microbiol. 2019, 9, 164. [Google Scholar] [CrossRef]
- Guo, M.; Feng, C.; Ren, J.; Zhuang, X.; Zhang, Y.; Zhu, Y.; Dong, K.; He, P.; Guo, X.; Qin, J. A Novel Antimicrobial Endolysin, LysPA26, against Pseudomonas aeruginosa. Front. Microbiol. 2017, 8, 293. [Google Scholar] [CrossRef]
- Ghanbari, A.; Dehghany, J.; Schwebs, T.; Müsken, M.; Häussler, S.; Meyer-Hermann, M. Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms. Sci. Rep. 2016, 6, 32097. [Google Scholar] [CrossRef]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas aeruginosa Biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Curran, B.; Jonas, D.; Grundmann, H.; Pitt, T.; Dowson, C.G. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J. Clin. Microbiol. 2004, 42, 5644–5649. [Google Scholar] [CrossRef]
- Spinler, J.K.; Raza, S.; Thapa, S.; Venkatachalam, A.; Scott, T.; Runge, J.K.; Dunn, J.; Versalovic, J.; Luna, R.A. Comparison of Whole Genome Sequencing and Repetitive Element PCR for Multidrug-Resistant Pseudomonas aeruginosa Strain Typing. J. Mol. Diagn. 2022, 24, 158–166. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; CLSI document VET01-A4; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Zhang, Y.; Chen, R.; Wang, Y.; Wang, P.; Pu, J.; Xu, X.; Chen, F.; Jiang, L.; Jiang, Q.; Yan, F. Antibiofilm activity of ultra-small gold nanoclusters against Fusobacterium nucleatum in dental plaque biofilms. J. Nanobiotechnology 2022, 20, 470. [Google Scholar] [CrossRef]
- Ou, X.; Yang, B.; Chen, J. Analysis of film-forming capacity of biofilms in vitro models of common bacterial biofilms. Orient. Medicat. Diet. 2021, 3, 87. [Google Scholar]
- ISO 17025; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017.
- Hernandez, L.; Bottini, E.; Cadona, J.; Cacciato, C.; Monteavaro, C.; Bustamante, A.; Sanso, A.M. Multidrug Resistance and Molecular Characterization of Streptococcus agalactiae Isolates From Dairy Cattle With Mastitis. Front. Cell Infect. Microbiol. 2021, 11, 647324. [Google Scholar] [CrossRef] [PubMed]
- Schürch, A.C.; Arredondo-Alonso, S.; Willems, R.J.L.; Goering, R.V. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clin. Microbiol. Infect. 2018, 24, 350–354. [Google Scholar] [CrossRef]
- Mayer, K.; Kucklick, M.; Marbach, H.; Ehling-Schulz, M.; Engelmann, S.; Grunert, T. Within-Host Adaptation of Staphylococcus aureus in a Bovine Mastitis Infection Is Associated with Increased Cytotoxicity. Int. J. Mol. Sci. 2021, 22, 8840. [Google Scholar] [CrossRef]
- Hancock, R.E. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin. Infect. Dis. 1998, 27 (Suppl. S1), S93–S99. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Chen, P.; You, B.; Zhang, Y.; Jiang, B.; Huang, G.; Yang, Z.; Chen, Y.; Chen, J.; Yuan, Z.; et al. Molecular Typing and Carbapenem Resistance Mechanisms of Pseudomonas aeruginosa Isolated From a Chinese Burn Center from 2011 to 2016. Front. Microbiol. 2018, 9, 1135. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.E.; Buckley, D.G.; Wu, Z.; Saenphimmachak, C.; Hoffman, L.R.; D’argenio, D.A.; Ramsey, B.W.; Speert, D.P.; Moskowitz, S.M.; Burns, J.L.; et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 2006, 103, 8487–8492. [Google Scholar] [CrossRef]
- Almaghrabi, R.S.; Macori, G.; Sheridan, F.; McCarthy, S.C.; Floss-Jones, A.; Fanning, S.; Althawadi, S.; Mutabagani, M.; Binsaslloum, A.; Alrasheed, M.; et al. Whole genome sequencing of resistance and virulence genes in multi-drug resistant Pseudomonas aeruginosa. J. Infect. Public Health 2024, 17, 299–307. [Google Scholar] [CrossRef]
- She, P.; Liu, Y.; Luo, Z.; Chen, L.; Zhou, L.; Hussain, Z.; Wu, Y. PA2146 Gene Knockout Is Associated With Pseudomonas aeruginosa Pathogenicity in Macrophage and Host Immune Response. Front. Cell Infect. Microbiol. 2020, 10, 559803. [Google Scholar] [CrossRef]
- Díaz-Ríos, C.; Hernández, M.; Abad, D.; Álvarez-Montes, L.; Varsaki, A.; Iturbe, D.; Calvo, J.; Ocampo-Sosa, A.A. New Sequence Type ST3449 in Multidrug-Resistant Pseudomonas aeruginosa Isolates from a Cystic Fibrosis Patient. Antibiotics 2021, 10, 491. [Google Scholar] [CrossRef]
- Wolfgang, M.C.; Kulasekara, B.R.; Liang, X.; Boyd, D.; Wu, K.; Yang, Q.; Miyada, C.G.; Lory, S. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2003, 100, 8484–8489. [Google Scholar] [CrossRef] [PubMed]
- Subedi, D.; Vijay, A.K.; Kohli, G.S.; Rice, S.A.; Willcox, M. Association between possession of ExoU and antibiotic resistance in Pseudomonas aeruginosa. PLoS ONE 2018, 13, e0204936. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Amirkhani, A.; Chowdhury, D.; Mempin, M.; Molloy, M.P.; Deva, A.K.; Vickery, K.; Hu, H. Proteome of Staphylococcus aureus Biofilm Changes Significantly with Aging. Int. J. Mol. Sci. 2022, 23, 6415. [Google Scholar] [CrossRef]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [PubMed]
- Radwan, E.-Z.; Ebshahy, E.M.; Khalil, S.A.; Torky, H.A. Relation Between Biofilm Formation and Resistance to Antibacterial Agents of Pseudomonas aeruginosa Isolated from Different Sources. Alex. J. Vet. Sci. 2021, 70, 25. [Google Scholar] [CrossRef]
- Khoramian, B.; Jabalameli, F.; Niasari-Naslaji, A.; Taherikalani, M.; Emaneini, M. Comparison of virulence factors and biofilm formation among Staphylococcus aureus strains isolated from human and bovine infections. Microb. Pathog. 2015, 88, 73–77. [Google Scholar] [CrossRef]
- Horiuk, Y.; Kukhtyn, M.; Kovalenko, V.; Kornienko, L.; Horiuk, V.; Liniichuk, N. Biofilm formation in bovine mastitis pathogens and the effect on them of antimicrobial drugs. Indep. J. Manag. Prod. 2019, 10, 897–910. [Google Scholar] [CrossRef]
- Ferenci, T. Trade-off Mechanisms Shaping the Diversity of Bacteria. Trends Microbiol. 2016, 24, 209–223. [Google Scholar] [CrossRef]
- Gomes, F.; Saavedra, M.J.; Henriques, M. Bovine mastitis disease/pathogenicity: Evidence of the potential role of microbial biofilms. Pathog. Dis. 2016, 74, ftw006. [Google Scholar] [CrossRef]
- Lin, Q.; Pilewski, J.M.; Di, Y.P. Acidic Microenvironment Determines Antibiotic Susceptibility and Biofilm Formation of Pseudomonas aeruginosa. Front. Microbiol. 2021, 12, 747834. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Li, Z.; Liu, R.; Bartlam, M.; Wang, Y. Polystyrene nanoparticles induce biofilm formation in Pseudomonas aeruginosa. J. Hazard. Mater. 2024, 469, 133950. [Google Scholar] [CrossRef] [PubMed]
- Stepanyan, K.; Wenseleers, T.; Duéñez-Guzmán, E.A.; Muratori, F.; Van den Bergh, B.; Verstraeten, N.; De Meester, L.; Verstrepen, K.J.; Fauvart, M.; Michiels, J. Fitness trade-offs explain low levels of persister cells in the opportunistic pathogen Pseudomonas aeruginosa. Mol. Ecol. 2015, 24, 1572–1583. [Google Scholar] [CrossRef] [PubMed]
Resistance Number | Resistance Rate | Intermediate Number | Intermediate Rate | Sensitive Number | Sensitive Rate | R/I/S Breakpoint (mg/mL) | |
---|---|---|---|---|---|---|---|
Tetracycline | 15 | 23.81% | 1 | 1.59% | 47 | 74.60% | ≥16/8/≤4 |
Streptomycin | 44 | 69.84% | 3 | 4.76% | 16 | 25.40% | ≥16/8/≤4 |
Ciprofloxacin | 0 | 0.00% | 7 | 11.11% | 56 | 88.89% | ≥2/1/≤0.5 |
Gentamicin | 31 | 49.21% | 7 | 11.11% | 25 | 39.68% | ≥16/8/≤4 |
Imipenem | 0 | 0.00% | 1 | 1.59% | 62 | 98.41% | ≥8/4/≤2 |
Meropenem | 0 | 0.00% | 0 | 0.00% | 63 | 100.00% | ≥8/4/≤2 |
Piperacilln | 5 | 7.94% | 13 | 20.63% | 45 | 71.43% | ≥64/32/≤16 |
Ceftazidime | 0 | 0.00% | 0 | 0.00% | 63 | 100.00% | ≥32/16/≤8 |
Penicillin | 63 | 100.00% | 0 | 0.00% | 0 | 0.00% | ≥64/32/≤16 |
Cefotaxime | 1 | 1.59% | 0 | 0.00% | 62 | 98.41% | ≥32/16/≤8 |
Virulence Gene | ST277 | ST450 | ST571 | ST641 | ST463 | p Value |
---|---|---|---|---|---|---|
exoU | 3 (27.27%) | 7 (87.5%) | 8 (100%) | 5 (62.5%) | 3 (50%) | 0.010 |
pyo | 8 (72.73%) | 8 (100%) | 7 (87.5%) | 7 (87.5%) | 3 (50%) | 0.170 |
toxA | 0 (0%) | 7 (87.5%) | 8 (100%) | 8 (100%) | 6 (100%) | 0.001 |
lasA | 9 (81.82%) | 1 (12.5%) | 4 (50%) | 3 (37.5%) | 3 (50%) | 0.051 |
lasR | 6 (54.55%) | 6 (75%) | 8 (100%) | 2 (25%) | 5 (83.33%) | 0.019 |
rhlL | 9 (81.82%) | 6 (75%) | 7 (87.5%) | 6 (75%) | 5 (83.33%) | 0.963 |
Antibiotic | Biofilm Forming Ability | χ2 | p | |||
---|---|---|---|---|---|---|
Weak | Medium | Strong | ||||
Tetracycline | R | 5 | 6 | 4 | 2.338 | 0.674 |
S | 18 | 21 | 8 | |||
I | 1 | 0 | 0 | |||
Streptomycin | R | 15 | 19 | 10 | 2.2548 | 0.636 |
S | 8 | 6 | 2 | |||
I | 1 | 2 | 0 | |||
Ciprofloxacin | R | 0 | 0 | 0 | 7.547 | 0.023 |
S | 23 | 25 | 8 | |||
I | 1 | 2 | 4 | |||
Gentamicin | R | 10 | 12 | 9 | 4.861 | 0.302 |
S | 12 | 11 | 2 | |||
I | 2 | 4 | 1 | |||
Piperacilln | R | 1 | 1 | 3 | 6.646 | 0.156 |
S | 17 | 20 | 8 | |||
I | 6 | 6 | 1 |
Virulence Genes | Biofilm Forming Ability | χ2 | p | |||
---|---|---|---|---|---|---|
Weak | Medium | Strong | ||||
exoU | + | 20 | 22 | 4 | 11.87 | 0.003 |
- | 4 | 5 | 8 | |||
pyo | + | 20 | 21 | 10 | 0.309 | 0.857 |
- | 4 | 6 | 2 | |||
toxA | + | 21 | 21 | 6 | 6.267 | 0.044 |
- | 3 | 6 | 6 | |||
lasA | + | 4 | 8 | 6 | 4.381 | 0.112 |
- | 20 | 19 | 6 | |||
lasR | + | 18 | 17 | 6 | 2.293 | 0.318 |
- | 6 | 10 | 6 | |||
rhlL | + | 20 | 21 | 9 | 0.412 | 0.814 |
- | 4 | 6 | 3 |
ST | Virulence Gene | Biofilm Forming Capacity | Total | ||
---|---|---|---|---|---|
exoU/toxA | Strong | Medium | Weak | ||
277 | + | 0/0 | 2/0 | 1/0 | 3/0 |
- | 4/4 | 2/4 | 2/3 | 8/11 | |
450 | + | 0/0 | 3/2 | 4/5 | 7/7 |
- | 0/0 | 0/1 | 1/0 | 1/1 | |
571 | + | 1/1 | 1/1 | 6/6 | 8/8 |
- | 0/0 | 0/0 | 0/0 | 0/0 | |
641 | + | 0/2 | 3/4 | 2/2 | 5/8 |
- | 2/0 | 1/0 | 0/0 | 3/0 | |
463 | + | 0/1 | 1/2 | 2/3 | 3/6 |
- | 1/0 | 1/0 | 1/0 | 3/0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Chen, P.; Cao, H.; Zhou, Z.; Xu, T. Characterization of Pseudomonas aeruginosa Isolated from Bovine Mastitis in Northern Jiangsu Province and Correlation to Drug Resistance and Biofilm Formability. Animals 2024, 14, 3290. https://doi.org/10.3390/ani14223290
Huang Y, Chen P, Cao H, Zhou Z, Xu T. Characterization of Pseudomonas aeruginosa Isolated from Bovine Mastitis in Northern Jiangsu Province and Correlation to Drug Resistance and Biofilm Formability. Animals. 2024; 14(22):3290. https://doi.org/10.3390/ani14223290
Chicago/Turabian StyleHuang, Yicai, Pengqiang Chen, Hainan Cao, Zheng Zhou, and Tianle Xu. 2024. "Characterization of Pseudomonas aeruginosa Isolated from Bovine Mastitis in Northern Jiangsu Province and Correlation to Drug Resistance and Biofilm Formability" Animals 14, no. 22: 3290. https://doi.org/10.3390/ani14223290
APA StyleHuang, Y., Chen, P., Cao, H., Zhou, Z., & Xu, T. (2024). Characterization of Pseudomonas aeruginosa Isolated from Bovine Mastitis in Northern Jiangsu Province and Correlation to Drug Resistance and Biofilm Formability. Animals, 14(22), 3290. https://doi.org/10.3390/ani14223290