The Interaction of Microalgae Dietary Inclusion and Forage-to-Concentrate Ratio on the Lipid Metabolism-Related Gene Expression in Subcutaneous Adipose Tissue of Dairy Goats
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Milk Sampling
2.3. Tail Tissue Sampling
2.4. RNA Isolation, DNAse Treatment and Cleaning, and cDNA Synthesis
2.5. Determination of Relative Transcript Levels
2.6. Statistical Analysis
3. Results
3.1. Feed Intake and Animal Performances
3.2. Gene Expressions
3.3. Correlations with Animal Performances
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vernon, R.G. Lipid Metabolism in the Adipose Tissue of Ruminant Animals. Prog. Lipid Res. 1980, 19, 23–106. [Google Scholar] [CrossRef] [PubMed]
- Bauman, D.; Griinari, J. Regulation and nutritional manipulation of milk fat: Low-fat milk syndrome. Livest. Prod. Sci. 2001, 70, 15–29. [Google Scholar] [CrossRef]
- Sumner, J.M.; McNamara, J.P. Expression of Lipolytic Genes in the Adipose Tissue of Pregnant and Lactating Holstein Dairy Cattle. J. Dairy Sci. 2007, 90, 5237–5246. [Google Scholar] [CrossRef] [PubMed]
- Bernard, L.; Leroux, C.; Chilliard, Y. Expression and Nutritional Regulation of Lipogenic Genes in the Ruminant Lactating Mammary Gland. Adv. Exp. Med. Biol. 2008, 606, 67–108. [Google Scholar] [CrossRef]
- Todorčević, M.; Hodson, L. The Effect of Marine Derived N-3 Fatty Acids on Adipose Tissue Metabolism and Function. JCM 2015, 5, 3. [Google Scholar] [CrossRef]
- Clarke, S.D. Polyunsaturated Fatty Acid Regulation of Gene Transcription: A Molecular Mechanism to Improve the Metabolic Syndrome. J. Nutr. 2001, 131, 1129–1132. [Google Scholar] [CrossRef]
- Krupa, K.N.; Fritz, K.; Parmar, M. Omega-3 Fatty Acids. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Bergen, W.G.; Mersmann, H.J. Comparative aspects of lipid metabolism: Impact on contemporary research and use of animal models. J. Nutr. 2005, 135, 2499–2502. [Google Scholar] [CrossRef]
- Postic, C.; Dentin, R.; Denechaud, P.D.; Girard, J. ChREBP, a transcriptional regulator of glucose and lipid metabolism. Annu. Rev. Nutr. 2007, 27, 179–192. [Google Scholar] [CrossRef]
- Schmitz, G.; Ecker, J. The opposing effects of n-3 and n-6 fatty acids. Prog. Lipid Res. 2008, 47, 147–155. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Dong, Y.; Wang, X.; Wang, G. Omega-3FAs Can Inhibit the Inflammation and Insulin Resistance of Adipose Tissue Caused by HHcy Induced Lipids Profile Changing in Mice. Front. Physiol. 2021, 12, 628122. [Google Scholar] [CrossRef]
- Peet, D.J.; Turley, S.D.; Ma, W.; Janowski, B.A.; Lobaccaro, J.M.; Hammer, R.E.; Mangelsdorf, D.J. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 1998, 93, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Corominas, J.; Ramayo-Caldas, Y.; Puig-Oliveras, A.; Estellé, J.; Castelló, A.; Alves, E.; Pena, R.N.; Ballester, M.; Folch, J.M. Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition. BMC Genom. 2013, 14, 843. [Google Scholar] [CrossRef] [PubMed]
- Bernard, L.; Leroux, C.; Bonnet, M.; Rouel, J.; Martin, P.; Chilliard, Y. Expression and nutritional regulation of lipogenic genes in mammary gland and adipose tissues of lactating goats. J. Dairy Res. 2005, 72, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.J.; Robbins, K.R.; Pavan, E.; Pratt, S.L.; Duckett, S.K.; Rekaya, R. Effect of Diet Supplementation on the Expression of Bovine Genes Associated with Fatty Acid Synthesis and Metabolism. Bioinform. Biol. Insights 2010, 4, 19–31. [Google Scholar] [CrossRef]
- Vargas-Bello-Pérez, E.; Bionaz, M.; Sciarresi-Arechabala, P.; Cancino-Padilla, N.; Morales, M.S.; Romero, J.; Leskinen, H.; Garnsworthy, P.C.; Loor, J.J. Long-Term Effects of Dietary Olive Oil and Hydrogenated Vegetable Oil on Expression of Lipogenic Genes in Subcutaneous Adipose Tissue of Dairy Cows. Vet. Sci. 2019, 6, 74. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Tsiplakou, E.; Zerva, A.; Pantiora, P.D.; Georgakis, N.D.; Tsintzou, G.P.; Madesis, P.; Labrou, N.E. Microalgae as a Sustainable Source of Antioxidants in Animal Nutrition, Health and Livestock Development. Antioxidants 2023, 12, 1882. [Google Scholar] [CrossRef] [PubMed]
- Puri, M.; Gupta, A.; Sahni, S. Schizochytrium sp. Trends Microbiol. 2023, 31, 872–873. [Google Scholar] [CrossRef]
- Zisis, F.; Kyriakaki, P.; Satolias, F.F.; Mavrommatis, A.; Simitzis, P.E.; Pappas, A.C.; Surai, P.F.; Tsiplakou, E. The Effect of Dietary Inclusion of Microalgae Schizochytrium spp. on Ewes’ Milk Quality and Oxidative Status. Foods 2022, 11, 2950. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Tsiplakou, E. The impact of the dietary supplementation level with Schizochytrium sp., on milk chemical composition and fatty acid profile of both blood plasma and milk of goats. Small Rumin. Res. 2020, 193, 106252. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Sotirakoglou, K.; Kamilaris, C.; Tsiplakou, E. Effects of Inclusion of Schizochytrium spp. and Forage-toConcentrate Ratios on Goats’ Milk Quality and Oxidative Status. Foods 2021, 10, 1322. [Google Scholar] [CrossRef]
- Franklin, S.T.; Martin, K.R.; Baer, R.J.; Schingoethe, D.J.; Hippen, A.R. Dietary marine algae (Schizochytrium sp.) increases concentrations of conjugated linoleic, docosahexaenoic and transvaccenic acids in milk of dairy cows. J. Nutr. 1999, 129, 2048–2054. [Google Scholar] [CrossRef] [PubMed]
- Meale, S.J.; Chaves, A.V.; He, M.L.; McAllister, T.A. Dose-response of supplementing marine algae (Schizochytrium spp.) on production performance, fatty acid profiles, and wool parameters of growing lambs. J. Anim. Sci. 2014, 92, 2202–2213. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhang, J.; Li, S.; Ji, S.; Cao, Z.; Zhang, H.; Wang, Y. Effects of a Wide Range of Dietary Forage-to-Concentrate Ratios on Nutrient Utilization and Hepatic Transcriptional Profiles in Limit-Fed Holstein Heifers. BMC Genom. 2018, 19, 148. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Raza, S.H.A.; Ma, B.; Wang, Z.; Mubarak Alwutayd, K.; Al Abdulmonem, W.; Mesfer Alharbi, Y.; Aljohani, A.S.M.; Hou, S.; Gui, L. Effects of Dietary Forage-to-Concentrate Ratio on Fat Deposition, Fatty Acid Composition, Oxidative Stability and mRNA Expression of Sirtuins Genes of Subcutaneous Fat in Sheep (Ovis Aries). J. Appl. Anim. Res. 2023, 51, 382–387. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Skliros, D.; Sotirakoglou, K.; Flemetakis, E.; Tsiplakou, E. The Effect of Forage-to-Concentrate Ratio on Schizochytrium Spp.-Supplemented Goats: Modifying Rumen Microbiota. Animals 2021, 11, 2746. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids. and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Kyriakaki, P.; Zisis, F.; Pappas, A.C.; Mavrommatis, A.; Tsiplakou, E. Effects of PUFA-Rich Dietary Strategies on Ruminants’ Mammary Gland Gene Network: A Nutrigenomics Review. Metabolites 2022, 13, 44. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of Stable Housekeeping Genes, Differentially Regulated Target Genes and Sample Integrity: BestKeeper—Excel-Based Tool Using Pair-Wise Correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Allen, M.S. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J. Dairy Sci. 2000, 83, 1598–1624. [Google Scholar] [CrossRef]
- Baumont, R. Palatability and feeding behaviour in ruminants. A Review. Ann. Zootech. 1996, 45, 385–400. [Google Scholar] [CrossRef]
- Jones, B.H.; Maher, M.A.; Banz, W.J.; Zemel, M.B.; Whelan, J.; Smith, P.J.; Moustaid, N. Adipose Tissue Stearoyl-CoA Desaturase mRNA Is Increased by Obesity and Decreased by Polyunsaturated Fatty Acids. Am. J. Physiol.-Endocrinol. Metab. 1996, 271, E44–E49. [Google Scholar] [CrossRef]
- Rangan, V.S.; Smith, S. Chapter 6 Fatty Acid Synthesis in Eukaryotes. In New Comprehensive Biochemistry; Elsevier: Amsterdam, The Netherlands, 2002; Volume 36, pp. 151–179. ISBN 978-0-444-51138-6. [Google Scholar]
- Jump, D.B. Dietary Polyunsaturated Fatty Acids and Regulation of Gene Transcription. Curr. Opin. Lipidol. 2002, 13, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Daniel, Z.C.T.R.; Wynn, R.J.; Salter, A.M.; Buttery, P.J. Differing Effects of Forage and Concentrate Diets on the Oleic Acid and Conjugated Linoleic Acid Content of Sheep Tissues: The Role of Stearoyl-CoA Desaturase1,2. J. Anim. Sci. 2004, 82, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Vahmani, P.; Glover, K.E.; Fredeen, A.H. Effects of Pasture versus Confinement and Marine Oil Supplementation on the Expression of Genes Involved in Lipid Metabolism in Mammary, Liver, and Adipose Tissues of Lactating Dairy Cows. J. Dairy Sci. 2014, 97, 4174–4183. [Google Scholar] [CrossRef] [PubMed]
- Thering, B.J.; Graugnard, D.E.; Piantoni, P.; Loor, J.J. Adipose Tissue Lipogenic Gene Networks Due to Lipid Feeding and Milk Fat Depression in Lactating Cows. J. Dairy Sci. 2009, 92, 4290–4300. [Google Scholar] [CrossRef] [PubMed]
- Waters, S.M.; Kelly, J.P.; O’Boyle, P.; Moloney, A.P.; Kenny, D.A. Effect of Level and Duration of Dietary N-3 Polyunsaturated Fatty Acid Supplementation on the Transcriptional Regulation of Δ9-Desaturase in Muscle of Beef Cattle1. J. Anim. Sci. 2009, 87, 244–252. [Google Scholar] [CrossRef]
- Urrutia, O.; Mendizabal, J.A.; Insausti, K.; Soret, B.; Purroy, A.; Arana, A. Effects of Addition of Linseed and Marine Algae to the Diet on Adipose Tissue Development, Fatty Acid Profile, Lipogenic Gene Expression, and Meat Quality in Lambs. PLoS ONE 2016, 11, e0156765. [Google Scholar] [CrossRef]
- Fan, Y.; Ren, C.; Meng, F.; Deng, K.; Zhang, G.; Wang, F. Effects of Algae Supplementation in High-Energy Dietary on Fatty Acid Composition and the Expression of Genes Involved in Lipid Metabolism in Hu Sheep Managed under Intensive Finishing System. Meat Sci. 2019, 157, 107872. [Google Scholar] [CrossRef]
- Alvarenga, T.I.R.C.; Chen, Y.; Lewandowski, P.; Ponnampalam, E.N.; Sadiq, S.; Clayton, E.H.; Van De Ven, R.J.; Perez, J.R.O.; Hopkins, D.L. The Expression of Genes Encoding Enzymes Regulating Fat Metabolism Is Affected by Maternal Nutrition When Lambs Are Fed Algae High in Omega-3. Livest. Sci. 2016, 187, 53–60. [Google Scholar] [CrossRef]
- Coleman, D.N.; Carranza Martin, A.C.; Jin, Y.; Lee, K.; Relling, A.E. Prepartum Fatty Acid Supplementation in Sheep. IV. Effect of Calcium Salts with Eicosapentaenoic Acid and Docosahexaenoic Acid in the Maternal and Finishing Diet on Lamb Liver and Adipose Tissue during the Lamb Finishing Period1. J. Anim. Sci. 2019, 97, 3071–3088. [Google Scholar] [CrossRef]
- Coleman, D.N.; Murphy, K.D.; Relling, A.E. Prepartum Fatty Acid Supplementation in Sheep. II. Supplementation of Eicosapentaenoic Acid and Docosahexaenoic Acid during Late Gestation Alters the Fatty Acid Profile of Plasma, Colostrum, Milk and Adipose Tissue, and Increases Lipogenic Gene Expression of Adipose Tissue1. J. Anim. Sci. 2018, 96, 1181–1204. [Google Scholar] [CrossRef]
- Chilliard, Y.; Delavaud, C.; Bonnet, M. Leptin Expression in Ruminants: Nutritional and Physiological Regulations in Relation with Energy Metabolism. Domest. Anim. Endocrinol. 2005, 29, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Coleman, D.N.; Rivera-Acevedo, K.C.; Relling, A.E. Prepartum Fatty Acid Supplementation in Sheep I. Eicosapentaenoic and Docosahexaenoic Acid Supplementation Do Not Modify Ewe and Lamb Metabolic Status and Performance through Weaning. J. Anim. Sci. 2018, 96, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Al-Shuhaib, M.B.S.; Al-Thuwaini, T.M. The Effects of Grass-Based versus Grain-Based Feeding of Ruminants on the Human Hygienic Status, a Review. jwpr 2019, 9, 174–180. [Google Scholar] [CrossRef]
- Kyriakaki, P.; Mavrommatis, A.; Mitsiopoulou, C.; Tsiplakou, E. Effect of whole sesame seeds dietary inclusion levels on transcriptional signatures of lipid metabolism in mammary gland of goats. Small Rumin. Res. 2024, 236, 107294. [Google Scholar] [CrossRef]
Diets | ||||
---|---|---|---|---|
20 HF | 20 HG | 40 HF | 40 HG | |
Concentrate (g/kg) | ||||
Maize grain | 387 | 331.6 | 357 | 326.3 |
Barley grain | 200 | 200 | 200 | 200 |
Wheat middlings | 210 | 210 | 210 | 210 |
Sunflower meal | 80 | 80 | 80 | 80 |
Soybean meal | 60 | 120 | 70 | 110 |
Calcium phosphate | 15 | 15 | 15 | 15 |
Calcium carbonate | 5 | 5 | 5 | 5 |
Salt | 3 | 3 | 3 | 3 |
Mineral and vitamin | 20 | 20 | 20 | 20 |
Schizochytrium spp. | 20 | 15.4 | 40 | 30.7 |
Forward Primer | Reverse Primer | Amplicon Size (bp) | Acc. No. | |
---|---|---|---|---|
GAPDH | 5′-AAAGGCCATCACCATCTTCCA-3′ | 5′-ACCACGTACTCAGCACCAGCAT-3′ | 75 | XM_005680968.3 |
ACTB | 5′-CCTTTGCCTTCCCAAAAGCC-3′ | 5′-AAGCAATCACCTCCCCTGTG-3′ | 87 | XM_018039831.1 |
HPRT | 5′-TATGGACAGGACCGAACGAC-3′ | 5′-AGAGGGCCACAATGTGATGG-3′ | 71 | XM_018044253.1 |
SCD | 5′-TGGCGTTCCAGAATGACGTT-3′ | 5′-GGGAATTGTGGGGATCAGCA-3′ | 90 | NM_001285619.1 |
ACACA | 5′-CCAACAATGGCATTGCAGCT-3′ | 5′-CGCACGCTCATTTCGAAACA-3′ | 80 | XM_018064168.1 |
FASN | 5′-AACCTGGAGGAGTTTTGGGC-3′ | 5′-GCCATATAGTCCCGCCTTCC-3′ | 87 | NM_001285629.1 |
LPL | 5′-TCTCAGGACTCCCGAAGACA-3′ | 5′-AGCCACAGATTCCGTCACTC-3′ | 70 | NM_001285607.1 |
LEP | 5′-CCTGGAAGCCTCCCTCTACT-3′ | 5′-GCCGCAACATGTCCTGTAGA-3′ | 77 | XM_018046968.1 |
ELOVL1 | 5′-ATGTCCGGCTGGCTAAGTTC-3′ | 5′-GAACCATCCTCAGTGCCTCC-3′ | 82 | XM_005678573.3 |
ELOVL2 | 5′-CCGGCCATGGAGCATCTAAA-3′ | 5′-GCATGAACCAGCCTCTGACT-3′ | 100 | XM_018039308.1 |
ELOVL3 | 5′-TCTGAGGCTCTGGCTTGTTG-3′ | 5′-AAAGCTAGGGGACGGAGGAT-3′ | 92 | XM_005698356.2 |
ELOVL4 | 5′-CGACACCGTGGAGTTCTACC-3′ | 5′-GACTGCATCAGAGGCCAGTT-3′ | 75 | XM_018052902.1 |
ELOVL5 | 5′-GATCATCCGTGTGCTCTGGT-3′ | 5′-TGGTTGTTCTTGCGGAGGAT-3′ | 87 | NM_001285628.1 |
ELOVL6 | 5′-AGCCTCTAGTGCTCTGGTCT-3′ | 5′-ATGCTTCAGGCCTTTGGTCA-3′ | 107 | XM_005681307.3 |
ELOVL7 | 5′-TTGAGCATGGGCAGAGATCC-3′ | 5′-GCAACAAAGCCAAAGCCCAT-3′ | 86 | XM_018065758.1 |
CBR2 | 5′-AAAGGGATTGGACGGGACAC-3′ | 5′-CACTCCTTGGAGAGGCTGAC-3′ | 104 | XM_018065425.1 |
EPHX2 | 5′-AACTACCCCATGCTTCAGGC-3′ | 5′-CTCTCTCAGCGCTGTCATCC-3′ | 97 | XM_005684042.2 |
COX4I1 | 5′-ATGCTCGACATGAAGGTGGC-3′ | 5′-GCCTCACTTCTTCCACTCGT-3′ | 81 | XM_018061817.1 |
FADD | 5′-AACCACGCGTCACAAGTTTG-3′ | 5′-AGCCTCTTCAGCACATCACC-3′ | 82 | XM_018043148.1 |
ACOX1 | 5′-GGCATCGCAGATCCTGATGA-3′ | 5′-GTGAAGATCCAGAGGCCCAG-3′ | 78 | XM_018063769.1 |
PTGS1 | 5′-ATCCACTTTCTGCTGACGCA-3′ | 5′-GGAACGCACTGTGAGTACCA-3′ | 99 | XM_005687044.3 |
PTGS2 | 5′-CCATGGGTGTGAAAGGGAGG-3′ | 5′-ATTTGTGCCCTGGGGATCAG-3′ | 101 | XM_018060731.1 |
AKT2 | 5′-CGGACCCCATGGACTACAAG-3′ | 5′-CTAACCGCCACCTCCATCTC-3′ | 73 | XM_018062407.1 |
AGPAT1 | 5′-TTGCCTCTCCCTCATCCTCA-3′ | 5′-GGGAGAGAAGACCACAACGG-3′ | 97 | NM_001285761.1 |
AGPAT2 | 5′-TAAGATCGGCCTGTACTGCG-3′ | 5′-TGCTCATGTTCTCCACCGTC-3′ | 101 | XM_018056130.1 |
AGPAT3 | 5′-TGGCTGGACGTGGTACTTTC-3′ | 5′-ATTCGGGGTAGTTGGCCAAG-3′ | 107 | XM_018051810.1 |
AGPAT4 | 5′-TATCTGCGGTTCGTGCTGTT-3′ | 5′-AACGAGGGAGAGACAGAGGG-3′ | 80 | XM_005684958.3 |
AGPAT5 | 5′-CAAGTGGCTCCCGCTGTATG-3′ | 5′-GTAGCGCTGCAGCTTTTTCC-3′ | 109 | XM_018042052.1 |
Treatment | ||||
---|---|---|---|---|
20 HF | 20 HG | 40 HF | 40 HG | |
Diet consumption in kg/goat/day (% of the offered quantity) | ||||
Alfalfa Hay | 1.2 (100) | 0.7 (100) | 1.2 (100) | 0.7 (100) |
Wheat Straw | 0.2 (66) | 0.18 (99) | 0.15 (50) | 0.16 (90) |
Concentrate | 0.97 (97) | 1.29 (99) | 0.84 (84) | 1.09 (84) |
Schizochytrium spp. (g) | 19.3 (97) | 19.8 (99) | 33.7 (84) | 33.2 (83) |
Forage-to-Concentrate Ratio | 1.4:0.97 (59:41) | 0.88:1.29 (40:60) | 1.35:0.84 (61:39) | 0.76:1.09 (41:59) |
Nutrient intake in g/goat/day (except as noted) | ||||
Dry Matter | 2161 | 1980 | 2010 | 1788 |
Ash | 179 | 144 | 173 | 131 |
Crude Protein | 305 | 309 | 286 | 276 |
Protein Digestible in the Small Intestine (PDI) | 190 | 184 | 176 | 162 |
Ether Extract | 79 | 87 | 76 | 83 |
Ash-free NDF Amylase Treated | 853 | 709 | 788 | 649 |
Acid Detergent Fiber | 555 | 398 | 515 | 383 |
Non Fibrous Carbohydrate | 954 | 920 | 866 | 810 |
Starch | 460 | 538 | 393 | 459 |
NDF/Starch Ratio | 1.9 | 1.3 | 2.0 | 1.4 |
NE Lactation (MJ/day) | 11.9 | 12.2 | 11 | 10.9 |
F:C | ML | Effects | |||||||
---|---|---|---|---|---|---|---|---|---|
60:40 | 40:60 | SEM | 20 g | 40 g | SEM | F:C | ML | F:C × ML | |
ACACA | 1.061 | 0.861 | 0.062 | 1.130 | 0.792 | 0.062 | 0.041 | 0.002 | 0.005 |
ACOX1 | 0.969 | 1.143 | 0.078 | 1.019 | 1.092 | 0.078 | 0.140 | 0.520 | 0.289 |
AGPAT1 | 0.936 | 1.012 | 0.080 | 1.000 | 0.947 | 0.080 | 0.516 | 0.649 | 0.210 |
AGPAT2 | 1.352 | 0.628 | 0.183 | 1.079 | 0.901 | 0.183 | 0.016 | 0.504 | 0.168 |
AGPAT3 | 1.293 | 0.596 | 0.133 | 1.094 | 0.795 | 0.133 | 0.003 | 0.140 | 0.240 |
AGPAT4 | 1.071 | 0.657 | 0.190 | 1.059 | 0.669 | 0.190 | 0.150 | 0.173 | 0.260 |
AGPAT5 | 1.067 | 0.891 | 0.080 | 1.024 | 0.934 | 0.080 | 0.144 | 0.439 | 0.037 |
AKT2 | 1.134 | 0.761 | 0.141 | 1.060 | 0.835 | 0.141 | 0.086 | 0.281 | 0.407 |
CBR2 | 0.979 | 0.875 | 0.091 | 1.099 | 0.755 | 0.091 | 0.435 | 0.021 | 0.618 |
COX4I1 | 1.100 | 0.951 | 0.054 | 1.185 | 0.867 | 0.054 | 0.075 | 0.001 | 0.622 |
ELOVL1 | 1.001 | 1.139 | 0.092 | 1.010 | 1.130 | 0.092 | 0.312 | 0.378 | 0.217 |
ELOVL2 | 1.296 | 0.846 | 0.255 | 1.326 | 0.817 | 0.255 | 0.236 | 0.183 | 0.376 |
ELOVL3 | 1.390 | 0.590 | 0.295 | 1.400 | 0.580 | 0.295 | 0.079 | 0.073 | 0.602 |
ELOVL4 | 0.866 | 1.342 | 0.179 | 0.992 | 1.216 | 0.179 | 0.085 | 0.396 | 0.299 |
ELOVL5 | 1.254 | 0.770 | 0.126 | 1.314 | 0.710 | 0.126 | 0.019 | 0.005 | 0.424 |
ELOVL6 | 1.450 | 0.570 | 0.161 | 1.240 | 0.779 | 0.161 | 0.002 | 0.065 | 0.352 |
ELOVL7 | 1.220 | 0.860 | 0.279 | 1.497 | 0.583 | 0.279 | 0.381 | 0.039 | 0.601 |
EPHX2 | 1.157 | 0.714 | 0.100 | 1.002 | 0.869 | 0.100 | 0.009 | 0.366 | 0.225 |
FADD | 1.053 | 1.068 | 0.210 | 1.020 | 1.101 | 0.210 | 0.960 | 0.788 | 0.445 |
FASN | 1.188 | 0.516 | 0.130 | 0.967 | 0.737 | 0.130 | 0.003 | 0.235 | 0.140 |
LEP | 1.145 | 0.897 | 0.139 | 1.250 | 0.792 | 0.139 | 0.231 | 0.038 | 0.120 |
LPL | 1.107 | 0.838 | 0.163 | 0.909 | 1.037 | 0.163 | 0.265 | 0.589 | 0.185 |
PTGS1 | 0.824 | 0.956 | 0.126 | 0.940 | 0.840 | 0.126 | 0.474 | 0.583 | 0.837 |
PTGS2 | 1.179 | 1.095 | 0.160 | 1.165 | 1.109 | 0.160 | 0.719 | 0.810 | 0.060 |
SCD | 1.246 | 0.772 | 0.074 | 1.190 | 0.828 | 0.074 | 0.001 | 0.005 | 0.116 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriakaki, P.; Mavrommatis, A.; Tsiplakou, E. The Interaction of Microalgae Dietary Inclusion and Forage-to-Concentrate Ratio on the Lipid Metabolism-Related Gene Expression in Subcutaneous Adipose Tissue of Dairy Goats. Animals 2024, 14, 3291. https://doi.org/10.3390/ani14223291
Kyriakaki P, Mavrommatis A, Tsiplakou E. The Interaction of Microalgae Dietary Inclusion and Forage-to-Concentrate Ratio on the Lipid Metabolism-Related Gene Expression in Subcutaneous Adipose Tissue of Dairy Goats. Animals. 2024; 14(22):3291. https://doi.org/10.3390/ani14223291
Chicago/Turabian StyleKyriakaki, Panagiota, Alexandros Mavrommatis, and Eleni Tsiplakou. 2024. "The Interaction of Microalgae Dietary Inclusion and Forage-to-Concentrate Ratio on the Lipid Metabolism-Related Gene Expression in Subcutaneous Adipose Tissue of Dairy Goats" Animals 14, no. 22: 3291. https://doi.org/10.3390/ani14223291
APA StyleKyriakaki, P., Mavrommatis, A., & Tsiplakou, E. (2024). The Interaction of Microalgae Dietary Inclusion and Forage-to-Concentrate Ratio on the Lipid Metabolism-Related Gene Expression in Subcutaneous Adipose Tissue of Dairy Goats. Animals, 14(22), 3291. https://doi.org/10.3390/ani14223291