Effect of Dietary Concentrate-to-Forage Ratios During the Cold Season on Slaughter Performance, Meat Quality, Rumen Fermentation and Gut Microbiota of Tibetan Sheep
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets and Experimental Design
2.2. Animal Slaughter and Carcass Characteristics
2.3. Meat Quality Determination
2.4. Rumen Fluid and Fecal Sampling and Ruminal Fermentation Analysis
2.5. DNA Extraction, Microbiome Sequencing, and Analysis
2.6. Statistical Analysis
3. Results
3.1. Slaughter Performance
3.2. Meat Quality Attributes
3.3. Rumen Fermentation Parameters
3.4. Rumen and Fecal Bacterial Diversity
3.5. Rumen and Fecal Bacterial Community Structure
3.6. Correlation Analysis
4. Discussion
4.1. Effect on Slaughter Performance
4.2. Effect on Meat Quality Attributes
4.3. Effect on Rumen Fermentation Parameters
4.4. Effect on Rumen and Fecal Bacterial Diversity
4.5. Effect on Rumen and Fecal Bacterial Community Structure
4.6. Correlation Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, Y.; Sun, X.; Zhao, S.; Hu, M.; Li, D.; Qi, S.; Jiao, X.; Sun, Y.; Wang, C.; Zhu, X.; et al. Dietary alfalfa powder supplementation improves growth and development, body health, and meat quality of Tibetan sheep. Food Chem. 2022, 396, 133709. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Han, L.; Hou, S.; Raza, S.H.A.; Wang, Z.; Yang, B.; Sun, S.; Ding, B.; Gui, L.; Simal-Gandara, J.; et al. Effects of different feeding regimes on muscle metabolism and its association with meat quality of Tibetan sheep. Food Chem. 2022, 374, 131611. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Wang, Z.; Tan, Y.; Chang, S.; Zheng, H.; Wang, H.; Yan, T.; Guru, T.; Hou, F. Selenium yeast dietary supplement affects rumen bacterial population dynamics and fermentation parameters of Tibetan sheep (Ovis aries) in alpine meadow. Front. Microbiol. 2021, 12, 663945. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.P.; Liu, Q.Q.; Meng, Z.; Chen, J.H.; Zhang, Y.; Cheng, X.; Huang, Y.F.; Ren, C.H.; Dong, Q.M.; Zhang, Z.J. Enhancing the resilience of coupled human and natural systems of alpine rangelands on the Qinghai-Tibetan Plateau. Trans. Chin. Soc. Agric. Eng. 2021, 37, 297–306. [Google Scholar]
- Zhang, C. Breeding Experiment and Adaptability of Yak and Tibetan Sheep in Jianghuai Watershed Area. Master’s Thesis, Anhui Agricultural University, HeFei, China, 2021. [Google Scholar]
- Pang, K.; Yang, Y.; Chai, S.; Li, Y.; Wang, X.; Sun, L.; Cui, Z.; Wang, S.; Liu, S. Dynamics changes of the fecal bacterial community fed diets with different concentrate-to-forage ratios in Qinghai yaks. Animals 2022, 12, 2334. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; You, W.; Zhao, H.; Wei, C.; Jin, Q.; Liu, X.; Liu, G.; Tan, X.; Wang, X.; et al. In vitro degradability of corn silage and Leymus chinensis silage and evaluation of their mixed ratios on performance, digestion and serum parameters in beef cattle. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1628–1636. [Google Scholar] [CrossRef]
- Papi, N.; Mostafa-Tehrani, A.; Amanlou, H.; Memarian, M. Effects of dietary forage-to-concentrate ratios on performance and carcass characteristics of growing fat-tailed lambs. Anim. Feed Sci. Technol. 2011, 163, 93–98. [Google Scholar] [CrossRef]
- Grilli, D.J.; Fliegerova, K.; Kopeny, J.; Lama, S.P.; Egea, V.; Sohaefer, N.; Pereyra, C.; Ruiz, M.S.; Sosa, M.A.; Arenas, G.N.; et al. Analysis of the rumen bacterial diversity of goats during shift from forage to concentrate diet. Anaerobe 2016, 42, 17–26. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Zhang, Y.; Wang, L. The effects of different concentrate-to-forage ratio diets on rumen bacterial microbiota and the structures of Holstein cows during the feeding cycle. Animals 2020, 10, 957. [Google Scholar] [CrossRef]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Collaborators, G.R.C.; Janssen, P.H. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Y.; Wang, Z.; Ge, G.; Jia, Y.; Du, S. Effects of replacing alfalfa hay with oat hay in fermented total mixed ration on growth performance and rumen microbiota in lambs. Fermentation 2023, 9, 9. [Google Scholar] [CrossRef]
- Zhou, L.; Li, X.Q.; Peng, X.X.; Wang, J.; Hou, S.Z.; Gui, L.S. Effect of different ratio of concentrate to roughage on slaughtering performance and meat quality of Tibetan sheep in fattening period. Southwest China J. Agric. Sci. 2021, 34, 400–405. [Google Scholar]
- Huang, Y.; Zhao, M.; Zhang, X.; Wei, H.; Liu, L.; Zhang, Z.; Cheng, X.; Wang, G.; Ren, C. Indoor feeding combined with restricted grazing time improves body health, slaughter performance, and meat quality in Huang-huai sheep. Anim. Biosci. 2023, 36, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, X.; Jin, Y.; Zhao, K.; Duan, Z. Comparison and analysis on sheep meat quality and flavor under pasture-based fattening contrast to intensive pasture-based feeding system. Anim. Biosci. 2022, 35, 1069–1079. [Google Scholar] [CrossRef]
- Payne, C.E.; Pannier, L.; Anderson, F.; Pethick, D.W.; Gardner, G.E. Lamb age has little impact on eating quality. Foods 2020, 9, 187. [Google Scholar] [CrossRef]
- Grochowska, E.; Borys, B.; Lisiak, D.; Mroczkowski, S. Genotypic and allelic effects of the myostatin gene (MSTN) on carcass, meat quality, and biometric traits in Colored Polish Merino sheep. Meat Sci. 2018, 151, 4–17. [Google Scholar] [CrossRef]
- Eikanger, K.S.; Kjær, S.T.; Dörsch, P.; Iwaasa, A.D.; Alemu, A.W.; Schei, I.; Pope, P.B.; Hagen, L.H.; Kidane, A. Asparagopsis taxiformis inclusion in grass silage-based diets fed to Norwegian red dairy cows: Effects on ruminal fermentation, milk yield, and enteric methane emission. Livest. Sci. 2024, 285, 105495. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, X.; Chen, Y.; Ren, C.; Sun, Y.; Wang, P.; Cheng, X.; Zhang, Z.; Chen, J.; Huang, Y. Stall-feeding of sheep on restricted grazing: Effects on performance and serum metabolites, ruminal fermentation, and fecal microbiota. Animals 2023, 13, 2644. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microb. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Armstrong, E.; Ciappesoni, G.; Iriarte, W.; Silva, C.D.; Macedo, F.; Navajas, E.A.; Brito, G.; San Julián, R.; Gimeno, D.; Postiglioni, A. Novel genetic polymorphisms associated with carcass traits in grazing Texel sheep. Meat Sci. 2018, 145, 202–208. [Google Scholar] [CrossRef]
- Rufino-Moya, P.J.; Blanco, M.; Lobón, S.; Bertolín, J.R.; Armengol, R.; Joy, M. The inclusion of concentrate with quebracho is advisable in two forage-based diets of ewes according to the in vitro fermentation parameters. Animals 2019, 9, 451. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Dai, D.; Wu, H.; Chai, S.; Liu, S.; Meng, Q.; Zhou, Z. Dietary concentrate-to-forage ratio affects rumen bacterial community composition and metabolome of yaks. Front. Nutr. 2022, 9, 927206. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhou, Y. Effects of concentrate level and chromium-methionine supplementation on the performance, nutrient digestibility, rumen fermentation, blood metabolites, and meat quality of Tan lambs. Anim. Biosci. 2022, 35, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Luo, J.; Yu, B.; Zheng, P.; Huang, Z.; Mao, X.; He, J.; Yu, J.; Chen, J.; Chen, D. Dietary resveratrol supplementation improves meat quality of finishing pigs through changing muscle fiber characteristics and antioxidative status. Meat Sci. 2015, 102, 15–21. [Google Scholar] [CrossRef]
- Hussain, Z.; Li, X.; Zhang, D.; Hou, C.; Ijaz, M.; Bai, Y.; Xiao, X.; Zheng, X. Influence of adding cinnamon bark oil on meat quality of ground lamb during storage at 4 °C. Meat Sci. 2021, 171, 108269. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Z.; Chen, Y.; Liu, X.; Liu, K.; Zhang, Y.; Luo, H. Carcass traits, meat quality, and volatile compounds of lamb meat from different restricted grazing time and indoor supplementary feeding systems. Foods 2021, 10, 2822. [Google Scholar] [CrossRef]
- Listyarini, K.; Rahayu, S.; Uddin, M.J.; Gunawan, A. Association study and expression analysis of olfactomedin like 3 gene related to meat quality, carcass characteristics, retail meat cut, and fatty acid composition in sheep. Anim. Biosci. 2022, 35, 1489–1498. [Google Scholar] [CrossRef]
- Kang, K.; Ma, J.; Wang, H.; Wang, Z.; Peng, Q.; Hu, R.; Zou, H.; Bao, S.; Zhang, W.; Sun, B. High-energy diet improves growth performance, meat quality and gene expression related to intramuscular fat deposition in finishing yaks raised by barn feeding. Vet. Med. Sci. 2020, 6, 755–765. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Wu, F.; Qiu, X.; Yu, Z.; Niu, W.; He, Y.; Su, H.; Cao, B. Effects of dietary energy on growth performance, rumen fermentation and bacterial community, and meat quality of Holstein-Friesians Bulls slaughtered at different ages. Animals 2019, 9, 1123. [Google Scholar] [CrossRef]
- Zeng, Z.; Yu, B.; Mao, X.; Chen, D. Effects of dietary digestible energy concentration on growth, meat quality, and PPARγ gene expression in muscle and adipose tissues of Rongchang piglets. Meat Sci. 2012, 90, 66–70. [Google Scholar] [CrossRef]
- Cherif, M.; Valenti, B.; Abidi, S.; Luciano, G.; Mattioli, S.; Pauselli, M.; Bouzarraa, I.; Priolo, A.; Salem, H.B. Supplementation of Nigella sativa seeds to Barbarine lambs raised on low- or high-concentrate diets: Effects on meat fatty acid composition and oxidative stability. Meat Sci. 2018, 139, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.B.; Kawachi, H.; Choi, C.B.; Choi, C.W.; Wu, G.; Sawyer, J.E. Cellular regulation of bovine intramuscular adipose tissue development and composition. J. Anim. Sci. 2009, 87, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Aurousseau, B.; Bauchart, D.; Calichon, E.; Micol, D.; Priolo, A. Effect of grass or concentrate feeding systems and rate of growth on triglyceride and phospholipid and their fatty acids in the M. longissimus thoracis of lambs. Meat Sci. 2004, 66, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Wang, W.; Yang, L.; Liu, T.; Zhang, T.; Xie, J.; Zhai, M.; Zhao, X.; Duan, Y.; Jin, Y. Effects of feeding patterns on production performance, lipo-nutritional quality and gut microbiota of Sunit sheep. Meat Sci. 2024, 218, 109642. [Google Scholar] [CrossRef] [PubMed]
- Khliji, S.; van de Ven, R.; Lamb, T.A.; Manza, M.; Hopkins, D.L. Relationship between consumer ranking of lamb colour and objective measures of colour. Meat Sci. 2010, 85, 224–229. [Google Scholar] [CrossRef]
- Maekawa, M.; Beauchemin, K.A.; Christensen, D.A. Effect of concentrate level and feeding management on chewing activities, saliva production, and ruminal pH of lactating dairy cows. J. Dairy Sci. 2002, 85, 1165–1175. [Google Scholar] [CrossRef]
- Nocek, J.E.; Tamminga, S. Site of digestion of starch in the gastrointestinal tract of dairy cows and its effect on milk yield and composition. J. Dairy Sci. 1991, 74, 3598–3629. [Google Scholar] [CrossRef]
- Cui, X.; Wang, Z.; Guo, P.; Li, F.; Chang, S.; Yan, T.; Zheng, H.; Hou, F. Shift of feeding strategies from grazing to different forage feeds reshapes the rumen microbiota to improve the ability of Tibetan sheep (Ovis aries) to adapt to the cold season. Microbiol. Spectr. 2023, 11, e0281622. [Google Scholar] [CrossRef]
- Zhang, C.M.; Zhou, L.; Gui, L.S.; Wang, Z.Y.; Yang, B.C.; Hou, S.Z. Effect of different concentrate to forage ratio total mixed rations on rumen fermentation parameters, antioxidant capacity and digestive enzyme activities of black Tibetan sheep. Feed Res. 2021, 44, 1–4. [Google Scholar]
- Zhang, X.; Jiao, T.; Ma, S.; Chen, X.; Wang, Z.; Zhao, S.; Ren, Y. Effects of different proportions of stevia stalk on nutrient utilization and rumen fermentation in ruminal fluid derived from sheep. PeerJ 2023, 11, e14689. [Google Scholar] [CrossRef]
- Fresno, R.A.; Griffith, J.E.; Kruse, C.; St-Pierre, B. Effects of grain-based diets on the rumen and fecal bacterial communities of the North American bison (Bison bison). Front. Microbiol. 2023, 14, 1163423. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Cui, K.; Qi, M.; Wang, S.; Diao, Q.; Zhang, N. Ruminal microbiota and fermentation in response to dietary protein and energy levels in weaned lambs. Animals 2020, 10, 109. [Google Scholar] [CrossRef] [PubMed]
- Pang, K.; Chai, S.; Yang, Y.; Wang, X.; Liu, S.; Wang, S. Dietary forage to concentrate ratios impact on yak ruminal microbiota and metabolites. Front. Microbiol. 2022, 13, 964564. [Google Scholar] [CrossRef] [PubMed]
- Li, J.W. Effect of Dietary Concentrate to Roughage Ratio on Digestive Tract Morphology and Microbial Diversity of Fattening Tibetan Sheep. Master’s Thesis, Qinghai University, Xining, China, 2022. [Google Scholar]
- Du, M.; Yang, C.; Liang, Z.; Zhang, J.; Yang, Y.; Ahmad, A.A.; Yan, P.; Ding, X. Dietary energy levels affect carbohydrate metabolism-related bacteria and improve meat quality in the longissimus thoracis muscle of yak (Bos grunniens). Front. Vet. Sci. 2021, 8, 718036. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, C.; Huasai, S.; Chen, A. Effects of dietary forage to concentrate ratio on nutrient digestibility, ruminal fermentation and rumen bacterial composition in Angus cows. Sci. Rep. 2021, 11, 17023. [Google Scholar] [CrossRef]
- Ahmas, A.A.; Yang, C.; Zhang, J.; Kalwar, Q.; Liang, Z.; Li, C.; Du, M.; Yan, P.; Long, R.; Han, J.; et al. Effects of dietary energy levels on rumen fermentation, microbial diversity, and feed efficiency of yaks (Bos grunniens). Front. Microbiol. 2020, 11, 625. [Google Scholar]
- Gharechahi, J.; Sarikhan, S.; Han, J.L. Functional and phylogenetic analyses of camel rumen microbiota associated with different lignocellulosic substrates. NPJ Biofilms Microbiomes 2022, 8, 46. [Google Scholar] [CrossRef]
- Gharechahi, J.; Vahidi, M.F.; Bahram, M.; Han, J.L.; Ding, X.Z.; Salekdeh, G.H. Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen. ISME J. 2021, 15, 1108–1120. [Google Scholar] [CrossRef]
- Petri, R.M.; Schwaiger, T.; Penner, G.B.; Beauchemin, K.A.; Forster, R.J.; McKinnon, J.J.; McAllister, T.A. Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis. Appl. Environ. Microbiol. 2013, 79, 3744–3755. [Google Scholar] [CrossRef]
- Liu, J.H.; Bian, G.R.; Zhu, W.Y.; Mao, S.Y. High-grain feeding causes strong shifts in ruminal epithelial bacterial community and expression of Toll-like receptor genes in goats. Front. Microbiol. 2015, 6, 167. [Google Scholar] [CrossRef]
- Li, C.; Wang, W.; Liu, T.; Zhang, Q.; Wang, G.; Li, F.; Li, F.; Yue, X.; Li, T. Effect of Early Weaning on the Intestinal Microbiota and Expression of Genes Related to Barrier Function in Lambs. Front. Microbiol. 2018, 9, 1431. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, T.; Ta, N.; Zhang, J.; Ding, H.; Zhang, X. Replacing dietary alfalfa hay with nettle benefits rumen ph balance and microbiota in rumen and feces with minimal effects on performance and digestibility in dairy cows. Anim. Feed Sci. Technol. 2024, 307, 115825. [Google Scholar] [CrossRef]
- Cui, Z.; Wu, S.; Li, J.; Yang, Q.E.; Chai, S.; Wang, L.; Wang, X.; Zhang, X.; Liu, S.; Yao, J. Effect of alfalfa hay and starter feeding intervention on gastrointestinal microbial community, growth and immune performance of Yak calves. Front. Microbiol. 2020, 11, 994. [Google Scholar] [CrossRef] [PubMed]
- Pinnell, L.J.; Reyes, A.A.; Wolfe, C.A.; Weinroth, M.D.; Metcalf, J.L.; Delmore, R.J.; Belk, K.E.; Morley, P.S.; Engle, T.E. Bacteroidetes and Firmicutes drive differing microbial diversity and community composition among micro-environments in the bovine rumen. Front. Vet. Sci. 2022, 9, 897996. [Google Scholar] [CrossRef] [PubMed]
- Pitta, D.W.; Indugu, N.; Kumar, S.; Vecchiarelli, B.; Sinha, R.; Baker, L.D.; Bhukya, B.; Ferguson, J.D. Metagenomic assessment of the functional potential of the rumen microbiome in Holstein dairy cows. Anaerobe 2016, 38, 50–60. [Google Scholar] [CrossRef]
- Han, X.; Li, B.; Wang, X.; Chen, Y.; Yang, Y. Effect of dietary concentrate to forage ratios on ruminal bacterial and anaerobic fungal populations of cashmere goats. Anaerobe 2019, 59, 118–125. [Google Scholar] [CrossRef]
- Lesniak, N.A.; Schubert, A.M.; Flynn, K.J.; Leslie, J.L.; Sinani, H.; Bergin, I.L.; Young, V.B.; Schloss, P.D. The gut bacterial community potentiates clostridioides difficile infection severity. MBio 2022, 13, e0118322. [Google Scholar] [CrossRef]
- Cui, K.; Qi, M.L.; Wang, S.Q.; Diao, Q.Y.; Zhang, N.F. Dietary energy and protein levels influenced the growth performance, ruminal morphology and fermentation and microbial diversity of lambs. Sci. Rep. 2019, 9, 16612. [Google Scholar] [CrossRef]
- Chiquette, J.; Allison, M.J.; Rasmussen, M.A. Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: Effect on ruminal fermentation characteristics, milk production, and milk composition. J. Dairy Sci. 2008, 91, 3536–3543. [Google Scholar] [CrossRef]
- Mao, S.; Zhang, R.; Wang, D.; Zhu, W. The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows. BMC Vet. Res. 2012, 8, 237. [Google Scholar] [CrossRef]
- Xiang, J.; Zhong, L.; Luo, H.; Meng, L.; Dong, Y.; Qi, Z.; Wang, H. A comparative analysis of carcass and meat traits, and rumen bacteria between Chinese Mongolian sheep and Dorper × Chinese Mongolian crossbred sheep. Animal 2022, 16, 100503. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.L.; Zeng, S.Q.; Zhan, R.; Diao, Q.Y.; Tu, Y. Effects of dietary energy levels on rumen bacterial community composition in Holstein heifers under the same forage to concentrate ratio condition. BMC Microbiol. 2018, 18, 69. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.L.; Schneider, C.J.; Erickson, G.E.; MacDonald, J.C.; Fernando, S.C. Rumen bacterial communities can be acclimated faster to high concentrate diets than currently implemented feedlot programs. J. Appl. Microbiol. 2016, 120, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, C.; Statello, R.; Carnevali, L.; Mancabelli, L.; Milani, C.; Mangifesta, M.; Duranti, S.; Lugli, G.A.; Jimenez, B.; Lodge, S.; et al. How to feed the mammalian gut microbiota: Bacterial and metabolic modulation by dietary fibers. Front. Microbiol. 2017, 12, 1749. [Google Scholar] [CrossRef]
- Guo, X.; Li, S.; Zhang, J.; Wu, F.; Li, X.; Wu, D.; Zhang, M.; Ou, Z.; Jie, Z.; Yan, Q.; et al. Genome sequencing of 39 Akkermansia muciniphila isolates reveals its population structure, genomic and functional diverisity, and global distribution in mammalian gut microbiotas. BMC Genom. 2017, 18, 800. [Google Scholar] [CrossRef]
Index | Dietary Treatment 1 | ||
---|---|---|---|
C30 | C50 | C70 | |
Ingredients (%) | |||
Corn | 19.50 | 32.50 | 45.50 |
Soybean meal | 7.20 | 12.00 | 16.80 |
Wheat bran | 1.50 | 2.50 | 3.50 |
Rice straw | 31.50 | 22.50 | 13.50 |
Sweet sorghum silage | 38.50 | 27.50 | 16.50 |
Salt | 0.15 | 0.25 | 0.35 |
NaHCO3 | 0.45 | 0.75 | 1.05 |
Premix 2 | 1.20 | 2.00 | 2.80 |
Nutrient composition (%) | |||
Crude protein | 11.45 | 13.35 | 15.25 |
Ether extract | 2.40 | 2.56 | 2.72 |
Neutral detergent fiber | 50.81 | 40.16 | 29.50 |
Acid detergent fiber | 36.87 | 27.78 | 18.69 |
Calcium | 0.92 | 0.92 | 0.92 |
Phosphorus | 0.25 | 0.33 | 0.41 |
Metabolizable energy 3, MJ/kg | 12.92 | 13.01 | 13.09 |
Index | Dietary Treatment 1 | SEM | p-Value | ||
---|---|---|---|---|---|
C30 | C50 | C70 | |||
Slaughter live weight (kg) | 28.20 b | 32.48 a | 34.36 a | 0.81 | <0.001 |
Hot carcass weight (kg) | 10.59 c | 13.18 b | 15.21 a | 0.54 | <0.001 |
Dressing percentage (%) | 37.64 b | 40.76 ab | 44.23 a | 1.02 | 0.016 |
Eye muscle area (cm2) | 10.73 b | 13.36 b | 16.44 a | 0.80 | 0.004 |
Grade rule (cm) | 0.81 | 0.79 | 0.96 | 0.03 | 0.068 |
Average daily gain (kg/d) | 0.13 b | 0.20 a | 0.22 a | 0.01 | <0.001 |
Index | Dietary Treatment 1 | SEM | p-Value | ||
---|---|---|---|---|---|
C30 | C50 | C70 | |||
pH45min | 6.40 | 6.48 | 6.34 | 0.06 | 0.634 |
pH24h | 5.46 | 5.52 | 5.52 | 0.02 | 0.414 |
Shear force (N) | 47.91 a | 42.50 b | 26.88 c | 2.56 | <0.001 |
Cooking loss (%) | 40.64 a | 38.88 b | 35.67 c | 0.61 | <0.001 |
Drip loss (%) | 10.74 a | 9.77 a | 4.03 b | 0.86 | <0.001 |
Lightness | 34.57 | 34.40 | 32.74 | 0.51 | 0.280 |
Redness | 9.27 | 9.61 | 10.44 | 0.23 | 0.101 |
Yellowness | 6.50 a | 5.61 b | 4.61 c | 0.22 | <0.001 |
Items | Dietary Treatment 1 | SEM | p-Value | ||
---|---|---|---|---|---|
C30 | C50 | C70 | |||
Total volatile fatty acids, mmol/L | 64.25 b | 65.00 b | 70.23 a | 1.06 | 0.027 |
Acetate (% molar) | 49.98 a | 36.91 b | 24.01 c | 2.95 | <0.001 |
Propionate (% molar) | 24.12 c | 36.42 b | 48.69 a | 2.89 | <0.001 |
Butyrate (% molar) | 10.08 | 10.78 | 11.50 | 0.83 | 0.809 |
Isobutyrate (% molar) | 4.80 ab | 5.03 a | 4.06 b | 0.17 | 0.049 |
Valerate (% molar) | 3.78 | 3.58 | 4.49 | 0.18 | 0.074 |
Isovalerate (% molar) | 7.24 | 7.30 | 7.25 | 0.22 | 0.995 |
Acetate:propionate | 2.15 a | 1.01 b | 0.51 c | 0.20 | <0.001 |
Index | Dietary Treatment 1 | SEM | p-Value | ||
---|---|---|---|---|---|
C30 | C50 | C70 | |||
Rumen samples | |||||
Chao1 | 1579.27 a | 1602.15 ab | 1182.70 b | 79.27 | 0.026 |
Simpson | 0.99 | 0.99 | 0.98 | 0.002 | 0.076 |
Shannon | 8.82 a | 8.78 ab | 7.92 b | 0.14 | 0.025 |
PD_whole_tree | 18.83 | 20.06 | 17.72 | 0.46 | 0.208 |
Coverage | 99.98 | 99.98 | 99.99 | 0.002 | 0.131 |
Fecal samples | |||||
Chao1 | 1456.99 | 1078.07 | 798.75 | 118.22 | 0.054 |
Simpson | 0.99 | 0.98 | 0.98 | 0.004 | 0.222 |
Shannon | 8.67 a | 8.01 ab | 7.47 b | 0.20 | 0.039 |
PD_whole_tree | 15.88 ab | 20.51 a | 11.23 b | 1.65 | 0.007 |
Coverage | 99.98 | 99.99 | 99.99 | 0.002 | 0.096 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Tang, W.; Jiang, T.; Wang, R.; Zhang, R.; Ou, J.; Wang, Q.; Cheng, X.; Ren, C.; Chen, J.; et al. Effect of Dietary Concentrate-to-Forage Ratios During the Cold Season on Slaughter Performance, Meat Quality, Rumen Fermentation and Gut Microbiota of Tibetan Sheep. Animals 2024, 14, 3305. https://doi.org/10.3390/ani14223305
Wang S, Tang W, Jiang T, Wang R, Zhang R, Ou J, Wang Q, Cheng X, Ren C, Chen J, et al. Effect of Dietary Concentrate-to-Forage Ratios During the Cold Season on Slaughter Performance, Meat Quality, Rumen Fermentation and Gut Microbiota of Tibetan Sheep. Animals. 2024; 14(22):3305. https://doi.org/10.3390/ani14223305
Chicago/Turabian StyleWang, Shijia, Wenhui Tang, Ting Jiang, Ru Wang, Ruoxi Zhang, Jingyu Ou, Qiangjun Wang, Xiao Cheng, Chunhuan Ren, Jiahong Chen, and et al. 2024. "Effect of Dietary Concentrate-to-Forage Ratios During the Cold Season on Slaughter Performance, Meat Quality, Rumen Fermentation and Gut Microbiota of Tibetan Sheep" Animals 14, no. 22: 3305. https://doi.org/10.3390/ani14223305
APA StyleWang, S., Tang, W., Jiang, T., Wang, R., Zhang, R., Ou, J., Wang, Q., Cheng, X., Ren, C., Chen, J., Huang, Y., & Zhang, Z. (2024). Effect of Dietary Concentrate-to-Forage Ratios During the Cold Season on Slaughter Performance, Meat Quality, Rumen Fermentation and Gut Microbiota of Tibetan Sheep. Animals, 14(22), 3305. https://doi.org/10.3390/ani14223305