Effects of 1-Deoxynojirimycin Extracts of Mulberry Leaves on Oxidative Stress and the Function of the Intestinal Tract in Broilers Induced by H2O2
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Animals, and Sampling
2.1.1. Experimental Design and Animals
2.1.2. Sample Collection
2.2. Observation of Intestinal Morphology
2.2.1. Hematoxylin–Eosin Stain
2.2.2. Transmission Electron Microscopy
2.3. Antioxidative Enzymes and Inflammatory Cytokines Assays
2.4. Quantitative Reverse Transcription of PCR (qRT-PCR)
2.5. Statistical Analyses
3. Results
3.1. Effects of DNJ-E on Intestinal Morphology of Broilers Under Oxidative Stress Conditions
3.2. Effects of DNJ-E on Intestinal Oxidative Indices of Broilers Under Oxidative Stress State
3.3. Effects of DNJ-E on the Expression of Intestinal Tight Junction-Related Genes in Broilers Under Oxidative Stress State
3.4. Effects of DNJ-E on the Expression of Genes Related to Oxidation and Inflammation in the Intestinal Tract of Broilers Under Oxidative Stress State
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kpomasse, C.C.; Oke, O.E.; Houndonougbo, F.M.; Tona, K. Broilers production challenges in the tropics: A review. Vet. Med. Sci. 2021, 7, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Oke, O.E.; Akosile, O.A.; Oni, A.I.; Opowoye, I.O.; Ishola, C.A.; Adebiyi, J.O.; Odeyemi, A.J.; Adjei-Mensah, B.; Uyanga, V.A.; Abioja, M.O. Oxidative stress in poultry production. Poult. Sci. 2024, 103, 104003. [Google Scholar] [CrossRef] [PubMed]
- Aruwa, C.E.; Pillay, C.; Nyaga, M.M.; Sabiu, S. Poultry gut health–microbiome functions, environmental impacts, microbiome engineering and advancements in characterization technologies. J. Anim. Sci. Biotechnol. 2021, 12, 119. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.Y.; Wang, Y.B.; Yang, G.; Zhang, Q.H.; Meng, L.B.; Xin, Y.; Jiang, X. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol. Res. 2021, 165, 105420. [Google Scholar] [CrossRef]
- Wen, X.; Tang, L.; Zhong, R.; Liu, L.; Chen, L.; Zhang, H. Role of Mitophagy in Regulating Intestinal Oxidative Damage. Antioxidants 2023, 12, 480. [Google Scholar] [CrossRef]
- Akbar, A.; Walters, J.R.F.; Ghosh, S. Review article: Visceral hypersensitivity in irritable bowel syndrome: Molecular mechanisms and therapeutic agents. Aliment. Pharmacol. Ther. 2009, 30, 423–435. [Google Scholar] [CrossRef]
- Akbarian, A.; Michiels, J.; Degroote, J.; Majdeddin, M.; Golian, A.; De Smet, S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 2016, 7, 37. [Google Scholar] [CrossRef]
- Estevez, M. Oxidative damage to poultry: From farm to fork. Poult. Sci. 2015, 94, 1368–1378. [Google Scholar] [CrossRef]
- Ma, G.; Chai, X.; Hou, G.; Zhao, F.; Meng, Q. Phytochemistry, bioactivities and future prospects of mulberry leaves: A review. Food Chem. 2022, 372, 131335. [Google Scholar] [CrossRef]
- Kwon, H.J.; Chung, J.Y.; Kim, J.Y.; Kwon, O. Comparison of 1-Deoxynojirimycin and Aqueous Mulberry Leaf Extract with Emphasis on Postprandial Hypoglycemic Effects: In Vivo and in Vitro Studies. J. Agric. Food Chem. 2011, 59, 3014–3019. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, L.; Yang, J.; Shi, H.; Zhu, H.; Zhai, M.; Lu, L.; Wang, X.; Li, X.Y.; Yu, S.; et al. 1-Deoxynojirimycin attenuates septic cardiomyopathy by regulating oxidative stress, apoptosis, and inflammation via the JAK2/STAT6 signaling pathway. Biomed. Pharmacother. 2022, 155, 113648. [Google Scholar] [CrossRef] [PubMed]
- Perera, N.; Brun, J.; Alonzi, D.S.; Tyrrell, B.E.; Miller, J.L.; Zitzmann, N. Antiviral effects of deoxynojirimycin (DNJ)-based iminosugars in dengue virus-infected primary dendritic cells. Antivir. Res. 2022, 199, 105269. [Google Scholar] [CrossRef]
- Liu, Q.; Li, X.; Li, C.; Zheng, Y.; Wang, F.; Li, H.; Peng, G. 1-Deoxynojirimycin Alleviates Liver Injury and Improves Hepatic Glucose Metabolism in db/db Mice. Molecules 2016, 21, 279. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Feng, Y.; Li, T.; Zhao, C.; Barcenas, A.R.; Serrano, B.R.; Qu, L.; Shen, M.; Zhao, W. The Effects of 1-Deoxynojirimycin from Mulberry on Oxidative Stress and Inflammation in Laying Hens and the Direct Effects on Intestine Epithelium Cells In Vitro. Animals 2023, 13, 2830. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, J. 1-Deoxynojirimycin Attenuates High-Glucose-Induced Oxidative DNA Damage via Activating NRF2/OGG1 Signaling. Appl. Sci. 2024, 14, 3186. [Google Scholar] [CrossRef]
- Piao, X.; Li, S.; Sui, X.; Guo, L.; Liu, X.; Li, H.; Gao, L.; Cai, S.; Li, Y.; Wang, T.; et al. 1-Deoxynojirimycin (DNJ) Ameliorates Indomethacin-Induced Gastric Ulcer in Mice by Affecting NF-kappaB Signaling Pathway. Front. Pharmacol. 2018, 9, 372. [Google Scholar] [CrossRef]
- Ma, Y.; Lv, W.; Gu, Y.; Yu, S. 1-Deoxynojirimycin in Mulberry (Morus indica L.) Leaves Ameliorates Stable Angina Pectoris in Patients with Coronary Heart Disease by Improving Antioxidant and Anti-inflammatory Capacities. Front. Pharmacol. 2019, 10, 569. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Poultry. In Nutrient Requeriments of Domestic Animals, 9th ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Chen, X.; Zhang, L.; Li, J.; Gao, F.; Zhou, G. Hydrogen Peroxide-Induced Change in Meat Quality of the Breast Muscle of Broilers Is Mediated by ROS Generation, Apoptosis, and Autophagy in the NF-κB Signal Pathway. J. Agric. Food Chem. 2017, 65, 3986–3994. [Google Scholar] [CrossRef]
- NY/T33-2004; Feeding Standard of Chicken. Standardization Administration of China: Beijing, China, 2004.
- Zhang, S. From Challenge to Opportunity: Addressing Oxidative Stress in Animal Husbandry. Antioxidants 2023, 12, 1543. [Google Scholar] [CrossRef]
- Yin, L.; Yang, Q.; Zhang, Y.; Wan, D.; Yin, Y.; Wang, Q.; Huang, J.; Li, J.; Yang, H.; Yin, Y. Dietary Copper Improves Intestinal Morphology via Modulating Intestinal Stem Cell Activity in Pigs. Animals 2021, 11, 2513. [Google Scholar] [CrossRef]
- Sun, L.; Xu, G.; Dong, Y.; Li, M.; Yang, L.; Lu, W. Quercetin Protects against Lipopolysaccharide-Induced Intestinal Oxidative Stress in Broiler Chickens through Activation of Nrf2 Pathway. Molecules 2020, 25, 1053. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Zaneb, H.; Masood, S.; Yousaf, M.S.; Rehman, H.F.; Rehman, H. Effect of Moringa oleifera leaf powder supplementation on growth performance and intestinal morphology in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2017, 101, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Akib, M.G.; Rifat, A.; Bormon, C.; Dutta, A.; Ataher, M.S.; Azzam, M.; Farouk, M.H.; Das, R.; Azad, M.A.K.; Mahfuz, S. Effects of Moringa oleifera Leaf Powder on the Growth Performance, Meat Quality, Blood Parameters, and Cecal Bacteria of Broilers. Vet. Sci. 2024, 11, 374. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulos, E.C.; Brouklogiannis, I.P.; Griela, E.; Paraskeuas, V.V.; Mountzouris, K.C. Phytogenic Effects on Layer Production Performance and Cytoprotective Response in the Duodenum. Animals 2023, 13, 294. [Google Scholar] [CrossRef]
- Aguzey, H.A.; Gao, Z.; Wu, H.; Cheng, G.; Wu, Z.; Chen, J. The effects of deoxynivalenol (don) on the gut microbiota, morphology and immune system of chicken—A review. Ann. Anim. Sci. 2019, 19, 305–318. [Google Scholar] [CrossRef]
- Thakur, K.; Zhang, Y.Y.; Mocan, A.; Zhang, F.; Zhang, J.G.; Wei, Z.J. 1-Deoxynojirimycin, its potential for management of non-communicable metabolic diseases. Trends Food Sci. Technol. 2019, 89, 88–99. [Google Scholar] [CrossRef]
- Zheng, J.; Zhu, L.; Hu, B.; Zou, X.; Hu, H.; Zhang, Z.; Jiang, N.; Ma, J.; Yang, H.; Liu, H. 1-Deoxynojirimycin improves high fat diet-induced nonalcoholic steatohepatitis by restoring gut dysbiosis. J. Nutr. Biochem. 2019, 71, 16–26. [Google Scholar] [CrossRef]
- Liu, Q.; Li, X.; Li, C.; Zheng, Y.; Peng, G. 1-Deoxynojirimycin Alleviates Insulin Resistance via Activation of Insulin Signaling PI3K/AKT Pathway in Skeletal Muscle of db/db Mice. Molecules 2015, 20, 21700–21714. [Google Scholar] [CrossRef]
- Takasu, S.; Parida, I.S.; Ito, J.; Kojima, Y.; Eitsuka, T.; Kimura, T.; Nakagawa, K. Intestinal Absorption and Tissue Distribution of Aza-Sugars from Mulberry Leaves and Evaluation of Their Transport by Sugar Transporters. J. Agric. Food Chem. 2020, 68, 6656–6663. [Google Scholar] [CrossRef]
- Vichasilp, C.; Nakagawa, K.; Sookwong, P.; Higuchi, O.; Luemunkong, S.; Miyazawa, T. Development of high 1-deoxynojirimycin (DNJ) content mulberry tea and use of response surface methodology to optimize tea-making conditions for highest DNJ extraction. Lwt-Food Sci. Technol. 2012, 45, 226–232. [Google Scholar] [CrossRef]
- Suzuki, T. Regulation of the intestinal barrier by nutrients: The role of tight junctions. Anim. Sci. J. 2020, 91, e13357. [Google Scholar] [CrossRef] [PubMed]
- Jong, C.J.; Sandal, P.; Schaffer, S.W. The Role of Taurine in Mitochondria Health: More Than Just an Antioxidant. Molecules 2021, 26, 4913. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Q.; Guo, F.; Fu, L.; Dong, Y.; Xie, S.; Ding, X.; Hu, S.; Zhou, X.D.; Jiang, Y.; Zhou, H.; et al. 1-Deoxynojirimycin promotes cardiac function and rescues mitochondrial cristae in mitochondrial hypertrophic cardiomyopathy. J. Clin. Investig. 2023, 133, e164660. [Google Scholar] [CrossRef]
- Kuo, W.-T.; Odenwald, M.A.; Turner, J.R.; Zuo, L. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Ann. N. Y. Acad. Sci. 2022, 1514, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Villanacci, V.; Del Sordo, R.; Lanzarotto, F.; Ricci, C.; Sidoni, A.; Manenti, S.; Mino, S.; Bugatti, M.; Bassotti, G. Claudin-2: A marker for a better evaluation of histological mucosal healing in inflammatory bowel diseases. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2024. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Park, H.; Choe, B.H.; Kang, B. The Role and Function of Mucins and Its Relationship to Inflammatory Bowel Disease. Front. Med. 2022, 9, 848344. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, X.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. The role of MUC2 mucin in intestinal homeostasis and the impact of dietary components on MUC2 expression. Int. J. Biol. Macromol. 2020, 164, 884–891. [Google Scholar] [CrossRef]
- Daneshmand, A.; Kermanshahi, H.; Sekhavati, M.H.; Javadmanesh, A.; Ahmadian, M. Antimicrobial peptide, cLF36, affects performance and intestinal morphology, microflora, junctional proteins, and immune cells in broilers challenged with E. coli. Sci. Rep. 2019, 9, 14176. [Google Scholar] [CrossRef]
- Jing, M.; Han, G.; Wan, J.; Zhang, S.; Yang, J.; Zong, W.; Niu, Q.; Liu, R. Catalase and superoxide dismutase response and the underlying molecular mechanism for naphthalene. Sci. Total Environ. 2020, 736, 139567. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Li, L.; Zhong, C.; Zhang, Y.; Yang, X.; Li, M.; Yang, C. The role of gut microbiota in intestinal disease: From an oxidative stress perspective. Front. Microbiol. 2024, 15, 1328324. [Google Scholar] [CrossRef]
- Hou, Q.; Qian, Z.; Wu, P.; Shen, M.; Li, L.; Zhao, W. 1-Deoxynojirimycin from mulberry leaves changes gut digestion and microbiota composition in geese. Poult. Sci. 2020, 99, 5858–5866. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.D. The Nrf2-Keap1-ARE Signaling Pathway: The Regulation and Dual Function of Nrf2 in Cancer. Antioxid. Redox Signal. 2010, 13, 1623–1626. [Google Scholar] [CrossRef] [PubMed]
- Thiruvengadam, M.; Venkidasamy, B.; Subramanian, U.; Samynathan, R.; Ali Shariati, M.; Rebezov, M.; Girish, S.; Thangavel, S.; Dhanapal, A.R.; Fedoseeva, N.; et al. Bioactive Compounds in Oxidative Stress-Mediated Diseases: Targeting the NRF2/ARE Signaling Pathway and Epigenetic Regulation. Antioxidants 2021, 10, 1859. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Takahashi, J.; Yamamoto, M. Molecular Basis of the KEAP1-NRF2 Signaling Pathway. Mol. Cells 2023, 46, 133–141. [Google Scholar] [CrossRef]
- Rex, J.; Lutz, A.; Faletti, L.E.; Albrecht, U.; Thomas, M.; Bode, J.G.; Borner, C.; Sawodny, O.; Merfort, I. IL-1β and TNFα Differentially Influence NF-κB Activity and FasL-Induced Apoptosis in Primary Murine Hepatocytes During LPS-Induced Inflammation. Front. Physiol. 2019, 10, 117. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Zhang, X.; Lu, Y.; Chen, H. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J. Funct. Foods 2020, 75, 104248. [Google Scholar] [CrossRef]
- Tang, L.; Xu, Y.; He, J.; Huang, G.; Jiang, X.; Li, Y.; Li, H.; Zhang, R.; Gui, Z. 1-Deoxynojirimycin Derivative Containing Tegafur Induced HCT-116 Cell Apoptosis through Mitochondrial Dysfunction and Oxidative Stress Pathway. ACS Med. Chem. Lett. 2024, 15, 1947–1952. [Google Scholar] [CrossRef]
Items | 1–21 Days | 22–24 Days |
---|---|---|
Ingredients (%) | ||
Maize | 59.00 | 59.70 |
Soybean Meal 2 | 35.10 | 33.01 |
Soybean Oil | 2.00 | 4.00 |
Limestone | 1.48 | 1.59 |
Dicalcium Phosphate | 1.66 | 1.27 |
Methionine | 0.20 | 0.10 |
Lysine | 0.13 | 0.03 |
Cysteine | 0.30 | 0.33 |
Salt | 0.30 | 0.30 |
Premix 3 | 0.60 | 0.60 |
Total | 100.00 | 100.00 |
Nutrient Levels (%) 1 | ||
Metabolisable Energy (MJ/kg) | 12.56 | 12.52 |
Crude Protein | 21.10 | 19.60 |
Cysteine | 0.85 | 0.76 |
Methionine | 0.50 | 0.42 |
Lysine | 1.20 | 1.05 |
Available Phosphorus | 0.46 | 0.39 |
Total Calcium | 1.00 | 0.95 |
Gene Name | Primer Sequence (5′-3′) | Product Length (bp) | Accession No. |
---|---|---|---|
ACTB | F: CAGCCATCTTTCTTGGGTAT R: CTGTGATCTCCTTCTGCATCC | 167 | NM_205518.1 |
ZO-1 | F: TGACTCTTCACAGGGCTCCT R: GGCCTCCTTTCAGCACATCA | 120 | XM_046925214.1 |
CLDN1 | F: CTGGGTCTGGTTGGTGTGTT R: GGTGTTAACAGGTGTGAAAGGG | 204 | NM_001013611.2 |
MUC2 | F: GACATGTGGTCTCTGTGGGG R: GCAGAGCCCGAGTTTCATCA | 155 | XM_040673077.2 |
JAM2 | F: GGCTATTCTTAGTTGCAAGCACA R: CTCTTCGCTCTTCGCACTGA | 223 | XM_046907882.1 |
SOD1 | F: TTGTCTGATGGAGATCATGGCTTC R: TGCTTGCCTTCAGGATTAAAGTGAG | 98 | NM_205064 |
SOD2 | F: AGAGGAGAAATACAAAGAGGCG R: AGCCTGATCCTTGAACACCA | 245 | NM_204211.2 |
CAT | F: TGCAAGGCGAAAGTGTTTGA R: CCCACAAGATCCCAGTTACCT | 158 | NM_001031215.2 |
Nrf2 | F: TGACCCAGTCTTCATTTCTGC R: GGGCTCGTGATTGTGCTTAC | 186 | XM_046921130.1 |
IL-1β | F: CCTCCAGCCAGAAAGTGAGG R: TTGTAGCCCTTGATGCCCAG | 109 | NM_204524.2 |
TNF-α | F: ATCCTCACCCCTACCCTGTC R: TGTTGGCATAGGCTGTCCTG | 92 | XM_046927265.1 |
Organs | Items (μm) | Control | H2O2 | DNJ-E Addition Level (mg/kg) | Standard Error | p-Value | |||
---|---|---|---|---|---|---|---|---|---|
40 | 80 | 120 | 160 | ||||||
Duodenum | Villus Height | 1450.3 b | 1291.5 c | 1780.6 a | 1425.4 bc | 1446.4 b | 1418.9 bc | 25.123 | <0.001 |
Crypt Depth | 109.2 b | 133.0 a | 86.50 c | 80.20 c | 81.00 c | 84.2 c | 3.510 | <0.001 | |
Villus-to-Crypt Ratio | 14.9 b | 9.9 c | 21.0 a | 16.6 b | 17.8 b | 17.5 b | 0.590 | <0.001 | |
Jejunum | Villus Height | 1250.3 cd | 1093.0 e | 1403.0 b | 1366.2 bc | 1540.1 a | 1195.1 de | 23.620 | <0.001 |
Crypt Depth | 82.4 ab | 93.8 a | 80.9 b | 85.4 ab | 87.0 ab | 80.7 b | 1.457 | 0.084 | |
Villus-to-Crypt Ratio | 15.61 ab | 11.8 c | 16.8 ab | 16.2 ab | 18.0 a | 15.0 b | 0.401 | <0.001 | |
Ileum | Villus Height | 879.7 c | 705.8 c | 1455.9 a | 1060.7 b | 1112.8 b | 1081.4 b | 33.212 | <0.001 |
Crypt Depth | 78.7 ab | 79.2 ab | 72.8 bc | 78.1 ab | 66.3 c | 82.3 a | 1.285 | 0.001 | |
Villus-to-Crypt Ratio | 11.3 de | 9.3 e | 20.3 a | 13.6 cd | 16.7 b | 14.1 c | 0.590 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Wang, M.; Li, T.; Li, D.; Feng, Y.; Wang, Y.; Qu, L.; Barcenas, A.R.; Serrano, B.R.; Shen, M.; et al. Effects of 1-Deoxynojirimycin Extracts of Mulberry Leaves on Oxidative Stress and the Function of the Intestinal Tract in Broilers Induced by H2O2. Animals 2024, 14, 3319. https://doi.org/10.3390/ani14223319
Zhao C, Wang M, Li T, Li D, Feng Y, Wang Y, Qu L, Barcenas AR, Serrano BR, Shen M, et al. Effects of 1-Deoxynojirimycin Extracts of Mulberry Leaves on Oxidative Stress and the Function of the Intestinal Tract in Broilers Induced by H2O2. Animals. 2024; 14(22):3319. https://doi.org/10.3390/ani14223319
Chicago/Turabian StyleZhao, Chengfeng, Mingzhu Wang, Tao Li, Dehui Li, Yuan Feng, Yuhua Wang, Liang Qu, Adileidys Ruiz Barcenas, Boris Ramos Serrano, Manman Shen, and et al. 2024. "Effects of 1-Deoxynojirimycin Extracts of Mulberry Leaves on Oxidative Stress and the Function of the Intestinal Tract in Broilers Induced by H2O2" Animals 14, no. 22: 3319. https://doi.org/10.3390/ani14223319
APA StyleZhao, C., Wang, M., Li, T., Li, D., Feng, Y., Wang, Y., Qu, L., Barcenas, A. R., Serrano, B. R., Shen, M., & Zhao, W. (2024). Effects of 1-Deoxynojirimycin Extracts of Mulberry Leaves on Oxidative Stress and the Function of the Intestinal Tract in Broilers Induced by H2O2. Animals, 14(22), 3319. https://doi.org/10.3390/ani14223319