Differences in the Impact of Left Ventricular Outflow Tract Obstruction on Intraventricular Pressure Gradient in Feline Hypertrophic Cardiomyopathy
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Study Protocol
2.2. Conventional Echocardiography
2.3. Analysis of Intraventricular Pressure Gradient (IVPG)
2.4. Inclusion and Exclusion Criteria
2.5. Treatment Protocol
2.6. Statistical Analysis
3. Results
3.1. Patient Data
3.2. Conventional Echocardiography Results
3.3. Color M-Mode Echocardiography for IVPG
4. Discussion
4.1. Significance of IVPG in Assessing Diastolic Function and Clinical Applications in Veterinary Cardiology
4.2. Characteristics of the Study Group and Differences in Echocardiographic Features Between HOCM and HNCM
4.3. Is Basal Congestion?
4.4. Differences in IVPG Between HNCM and HOCM
4.5. The Significance of IVPG in Diastolic Function in Cats
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nishimura, R.A.; Holmes, D.R., Jr. Clinical practice. Hypertrophic obstructive cardiomyopathy. N. Engl. J. Med. 2004, 350, 1320–1327. [Google Scholar] [CrossRef] [PubMed]
- Ferasin, L.; Sturgess, C.P.; Cannon, M.J.; Caney, S.M.; Gruffydd-Jones, T.J.; Wotton, P.R. Feline idiopathic cardiomyopathy: A retrospective study of 106 cats (1994–2001). J. Feline Med. Surg. 2003, 5, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Payne, J.R.; Brodbelt, D.C.; Luis Fuentes, V. Cardiomyopathy prevalence in 780 apparently healthy cats in rehoming centres (the CatScan study). J. Vet. Cardiol. 2015, 17 (Suppl. S1), S244–S257. [Google Scholar] [CrossRef]
- Takahashi, K.; Nii, M.; Takigiku, K.; Toyono, M.; Iwashima, S.; Inoue, N.; Tanaka, N.; Matsui, K.; Shigemitsu, S.; Yamada, M.; et al. Development of suction force during early diastole from the left atrium to the left ventricle in infants, children, and adolescents. Heart Vessel. 2019, 34, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, K.; Shiraishi, K.; Sato, K.; Shimada, K.; Goya, S.; Uemura, A.; Ifuku, M.; Iso, T.; Takahashi, K.; Tanaka, R. Left ventricular vortex and intraventricular pressure difference in dogs under various loading conditions. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H882–H888. [Google Scholar] [CrossRef]
- Notomi, Y.; Popovic, Z.B.; Yamada, H.; Wallick, D.W.; Martin, M.G.; Oryszak, S.J.; Shiota, T.; Greenberg, N.L.; Thomas, J.D. Ventricular untwisting: A temporal link between left ventricular relaxation and suction. Am. J. Physiol. Heart C 2008, 294, H505–H513. [Google Scholar] [CrossRef] [PubMed]
- Yairo, A.; Mandour, A.S.; Matsuura, K.; Yoshida, T.; Ma, D.; Kitpipatkun, P.; Kato, K.; Cheng, C.J.; El-Husseiny, H.M.; Tanaka, T.; et al. Effect of Loading Changes on the Intraventricular Pressure Measured by Color M-Mode Echocardiography in Rats. Diagnostics 2021, 11, 1403. [Google Scholar] [CrossRef] [PubMed]
- Egenvall, A.; Nodtvedt, A.; Haggstrom, J.; Strom Holst, B.; Moller, L.; Bonnett, B.N. Mortality of life-insured Swedish cats during 1999–2006: Age, breed, sex, and diagnosis. J. Vet. Intern. Med. 2009, 23, 1175–1183. [Google Scholar] [CrossRef]
- Luis Fuentes, V.; Abbott, J.; Chetboul, V.; Cote, E.; Fox, P.R.; Haggstrom, J.; Kittleson, M.D.; Schober, K.; Stern, J.A. ACVIM consensus statement guidelines for the classification, diagnosis, and management of cardiomyopathies in cats. J. Vet. Intern. Med. 2020, 34, 1062–1077. [Google Scholar] [CrossRef]
- Maron, B.J.; Maron, M.S.; Wigle, E.D.; Braunwald, E. The 50-year history, controversy, and clinical implications of left ventricular outflow tract obstruction in hypertrophic cardiomyopathy from idiopathic hypertrophic subaortic stenosis to hypertrophic cardiomyopathy: From idiopathic hypertrophic subaortic stenosis to hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2009, 54, 191–200. [Google Scholar] [CrossRef]
- Yotti, R.; Bermejo, J.; Antoranz, J.C.; Desco, M.M.; Cortina, C.; Rojo-Alvarez, J.L.; Allue, C.; Martin, L.; Moreno, M.; Serrano, J.A.; et al. A noninvasive method for assessing impaired diastolic suction in patients with dilated cardiomyopathy. Circulation 2005, 112, 2921–2929. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.S.; Shrestha, S.; Kagiyama, N.; Hu, L.; Ghaffar, Y.A.; Casaclang-Verzosa, G.; Zeb, I.; Sengupta, P.P. A Network-Based “Phenomics” Approach for Discovering Patient Subtypes From High-Throughput Cardiac Imaging Data. JACC Cardiovasc. Imaging 2020, 13, 1655–1670. [Google Scholar] [CrossRef]
- Matsuura, K.; Sato, K.; Shimada, K.; Goya, S.; Uemura, A.; Iso, T.; Yazaki, K.; Yilmaz, Z.; Takahashi, K.; Tanaka, R. Changes in left ventricular blood flow during diastole due to differences in chamber size in healthy dogs. Sci. Rep. 2020, 10, 1106. [Google Scholar] [CrossRef] [PubMed]
- Hirose, M.; Mandour, A.S.; Goya, S.; Hamabe, L.; Matsuura, K.; Yoshida, T.; Watanabe, M.; Shimada, K.; Uemura, A.; Takahashi, K.; et al. Color M-Mode Echocardiography for Non-Invasive Assessment of the Intraventricular Pressure in Dogs Before and After Ductus Arteriosus Occlusion: A Retrospective Study. Front. Vet. Sci. 2022, 9, 908829. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, K.; Bach, M.B.T.; Takahashi, K.; Willesen, J.L.; Koch, J.; Tanaka, R. Non-invasive assessment of left ventricular relaxation property using color M-mode-derived intraventricular pressure gradients in cats. J. Vet. Cardiol. 2022, 41, 236–248. [Google Scholar] [CrossRef]
- Ommen, S.R.; Nishimura, R.A.; Appleton, C.P.; Miller, F.A.; Oh, J.K.; Redfield, M.M.; Tajik, A.J. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: A comparative simultaneous Doppler-catheterization study. Circulation 2000, 102, 1788–1794. [Google Scholar] [CrossRef]
- Schober, K.E.; Fuentes, V.L.; Bonagura, J.D. Comparison between invasive hemodynamic measurements and noninvasive assessment of left ventricular diastolic function by use of Doppler echocardiography in healthy anesthetized cats. Am. J. Vet. Res. 2003, 64, 93–103. [Google Scholar] [CrossRef]
- Garcia, M.J.; Palac, R.T.; Malenka, D.J.; Terrell, P.; Plehn, J.F. Color M-mode Doppler flow propagation velocity is a relatively preload-independent index of left ventricular filling. J. Am. Soc. Echocardiogr. 1999, 12, 129–137. [Google Scholar] [CrossRef]
- Sohn, D.W.; Chai, I.H.; Lee, D.J.; Kim, H.C.; Kim, H.S.; Oh, B.H.; Lee, M.M.; Park, Y.B.; Choi, Y.S.; Seo, J.D.; et al. Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J. Am. Coll. Cardiol. 1997, 30, 474–480. [Google Scholar] [CrossRef]
- Oyamada, J.; Toyono, M.; Shimada, S.; Aoki-Okazaki, M.; Tamura, M.; Takahashi, T.; Harada, K. Noninvasive estimation of left ventricular end-diastolic pressure using tissue Doppler imaging combined with pulsed-wave Doppler echocardiography in patients with ventricular septal defects: A comparison with the plasma levels of the B-type natriuretic Peptide. Echocardiography 2008, 25, 270–277. [Google Scholar] [CrossRef]
- Masutani, S.; Saiki, H.; Kurishima, C.; Kuwata, S.; Tamura, M.; Senzaki, H. Assessment of ventricular relaxation and stiffness using early diastolic mitral annular and inflow velocities in pediatric patients with heart disease. Heart Vessel. 2014, 29, 825–833. [Google Scholar] [CrossRef]
- Kizilbash, A.M.; Heinle, S.K.; Grayburn, P.A. Spontaneous variability of left ventricular outflow tract gradient in hypertrophic obstructive cardiomyopathy. Circulation 1998, 97, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.L.; Kussin, E.Z.; Tropf, M.A.; Tou, S.P.; DeFrancesco, T.C.; Keene, B.W. Retrospective evaluation of the safety and tolerability of pimobendan in cats with obstructive vs nonobstructive cardiomyopathy. J. Vet. Intern. Med. 2020, 34, 2211–2222. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.G.; Saunders, A.B.; Roland, R.M.; Winter, R.L.; Drourr, L.; Achen, S.E.; Hariu, C.D.; Fries, R.C.; Boggess, M.M.; Miller, M.W. Effect of oral administration of pimobendan in cats with heart failure. J. Am. Vet. Med. Assoc. 2012, 241, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Iwano, H.; Kamimura, D.; Fox, E.; Hall, M.; Vlachos, P.; Little, W.C. Altered spatial distribution of the diastolic left ventricular pressure difference in heart failure. J. Am. Soc. Echocardiogr. 2015, 28, 597–605.e1. [Google Scholar] [CrossRef]
- Maron, M.S.; Olivotto, I.; Betocchi, S.; Casey, S.A.; Lesser, J.R.; Losi, M.A.; Cecchi, F.; Maron, B.J. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N. Engl. J. Med. 2003, 348, 295–303. [Google Scholar] [CrossRef]
- Spirito, P.; Seidman, C.E.; McKenna, W.J.; Maron, B.J. The management of hypertrophic cardiomyopathy. N. Engl. J. Med. 1997, 336, 775–785. [Google Scholar] [CrossRef]
- Ohara, T.; Niebel, C.L.; Stewart, K.C.; Charonko, J.J.; Pu, M.; Vlachos, P.P.; Little, W.C. Loss of adrenergic augmentation of diastolic intra-LV pressure difference in patients with diastolic dysfunction: Evaluation by color M-mode echocardiography. JACC Cardiovasc. Imaging 2012, 5, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F. Heart failure with preserved ejection fraction: Insights into diagnosis and pathophysiology. Cardiovasc. Res. 2021, 117, 999–1014. [Google Scholar] [CrossRef]
p Value | ||||||
---|---|---|---|---|---|---|
Control (n = 10) | HNCM (n = 7) | HOCM (n = 11) | Control vs. HNCM | Control vs. HOCM | HNCM vs. HOCM | |
IVSd (mm) | 4.4 (2.7–5.7) | 6.0 (4.5–8) | 6.2 (4.9–7.5) | 0.0082 * | 0.0013 * | >0.9999 |
LVPWd (mm) | 3.7 (2.6–4.6) | 6.1 (4.2–7.4) | 6.2 (4.3–6.8) | 0.0024 * | 0.001 * | >0.9999 |
HR (bpm) | 184.5 (121–198) | 171 (151–210.7) | 155.7 (122–180) | >0.9999 | 0.1474 | 0.2133 |
FS (%) | 47.2 (36.2–61.1) | 53.8 (43.5–81.5) | 53.8 (44.3–75.4) | 0.966 | 0.3115 | >0.9999 |
LA/Ao | 1.3 (1.2–1.6) | 1.4 (1.2–1.9) | 1.45 (1.2–1.8) | 0.3993 | 0.0402 * | >0.9999 |
LAD (mm) | 11.3 (10–13.3) | 13.7 (10.6–14.3) | 12.4 (8.7–13.9) | 0.027 * | 0.3813 | 0.5978 |
LVOTv (cm/s) | 80.0 (64.6–114.8) | 108.0 (66.4–157.6) | 446.5 (221.4–593.6) | >0.9999 | <0.0001 | 0.0076 * |
Ev (cm/s) | 86.2 (53.5–113.7) | 83.1 (59.2–108.6) | 95.3 (50.1–141.0) | >0.9999 | 0.3541 | 0.5613 |
s’ FW (cm/s) | 5.9 (4.4–8.8) | 5.7 (3.4–6.5) | 6.2 (3.6–13) | 0.7984 | >0.9999 | 0.79 |
e’ FW (cm/s) | 9.3 (5.3–14.4) | 6.1 (4.4–8.7) | 5.8 (4.3–10.6) | 0.045 * | 0.0243 * | >0.9999 |
E/e’ FW | 7.7 (2.8–12.2) | 12.8 (6.9–18.9) | 12.8 (6.9–18.9) | 0.0385 * | 0.0021 * | >0.9999 |
p Value | ||||||
---|---|---|---|---|---|---|
Control (n = 10) | HNCM (n = 7) | HOCM (n = 11) | Control vs. HNCM | Control vs. HOCM | HNCM vs. HOCM | |
Total IVPG (mmHg/cm) | 0.94 ± 0.21 | 0.93 ± 0.41 | 1.25 ± 0.68 | >0.9999 | 0.0214 * | 0.0592 |
Basal IVPG (mmHg/cm) | 0.52 ± 0.11 | 0.50 ± 0.20 | 0.68 ± 0.31 | >0.9999 | 0.0376 * | 0.0294 * |
Mid-to-apical IVPG (mmHg/cm) | 0.42 ± 0.13 | 0.46 ± 0.26 | 0.66 ± 0.40 | >0.9999 | 0.0703 | 0.7593 |
Mid IVPG (mmHg/cm) | 0.32 ± 0.08 | 0.33 ± 0.21 | 0.52 ± 0.30 | >0.9999 | 0.3879 | 0.7135 |
Apical IVPG (mmHg/cm) | 0.10 ± 0.06 | 0.08 ± 0.11 | 0.15 ± 0.13 | >0.9999 | 0.8258 | >0.9999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirose, M.; Watanabe, M.; Takeuchi, A.; Yokoi, A.; Terai, K.; Matsuura, K.; Takahashi, K.; Tanaka, R. Differences in the Impact of Left Ventricular Outflow Tract Obstruction on Intraventricular Pressure Gradient in Feline Hypertrophic Cardiomyopathy. Animals 2024, 14, 3320. https://doi.org/10.3390/ani14223320
Hirose M, Watanabe M, Takeuchi A, Yokoi A, Terai K, Matsuura K, Takahashi K, Tanaka R. Differences in the Impact of Left Ventricular Outflow Tract Obstruction on Intraventricular Pressure Gradient in Feline Hypertrophic Cardiomyopathy. Animals. 2024; 14(22):3320. https://doi.org/10.3390/ani14223320
Chicago/Turabian StyleHirose, Miki, Momoko Watanabe, Aki Takeuchi, Aimi Yokoi, Kazuyuki Terai, Katsuhiro Matsuura, Ken Takahashi, and Ryou Tanaka. 2024. "Differences in the Impact of Left Ventricular Outflow Tract Obstruction on Intraventricular Pressure Gradient in Feline Hypertrophic Cardiomyopathy" Animals 14, no. 22: 3320. https://doi.org/10.3390/ani14223320
APA StyleHirose, M., Watanabe, M., Takeuchi, A., Yokoi, A., Terai, K., Matsuura, K., Takahashi, K., & Tanaka, R. (2024). Differences in the Impact of Left Ventricular Outflow Tract Obstruction on Intraventricular Pressure Gradient in Feline Hypertrophic Cardiomyopathy. Animals, 14(22), 3320. https://doi.org/10.3390/ani14223320