Retroviral Insertion Polymorphism (RIP) of Porcine Endogenous Retroviruses (PERVs) in Pig Genomes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Fl-ERV Annotation of Pig Genome
2.3. Fl-ERV Polymorphism Identification
2.4. Genotyping Analysis
2.5. Association Analysis of Polymorphic Sites with Population Genetics
2.6. Expression Analysis of the ERV-D14 Insertion Targeted Genes
3. Results
3.1. ERV Re-Annotation in the Genomes of Pig
3.2. Fl-ERV Insertion Polymorphism Detection and Correlation Analysis with Economic Traits
3.3. Impact of Fl-ERV RIP on the Gene Expression Analysis in Sushan Pigs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tollis, M.; Boissinot, S. The evolutionary dynamics of transposable elements in eukaryote genomes. Repetitive DNA 2012, 7, 68–91. [Google Scholar]
- Lander, E.; Linton, L.; Birren, B. еще бoлее 300 автoрoв-International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar]
- Wicker, T.; Sabot, F.; Hua-Van, A.; Bennetzen, J.L.; Capy, P.; Chalhoub, B.; Flavell, A.; Leroy, P.; Morgante, M.; Panaud, O. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007, 8, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Levin, H.L.; Moran, J.V. Dynamic interactions between transposable elements and their hosts. Nat. Rev. Genet. 2011, 12, 615–627. [Google Scholar] [CrossRef]
- Denner, J. How active are porcine endogenous retroviruses (PERVs)? Viruses 2016, 8, 215. [Google Scholar] [CrossRef] [PubMed]
- Sypniewski, D.; Machnik, G.; Mazurek, U.; Wilczok, T.; Smorag, Z.; Jura, J.; Gajda, B. Distribution of porcine endogenous retroviruses (PERVs) DNA in organs of a domestic pig. Ann. Transplant. 2005, 10, 46–51. [Google Scholar] [PubMed]
- Mazurek, U.; Kimsa, M.C.; Strzalka-Mrozik, B.; Kimsa, M.W.; Adamska, J.; Lipinski, D.; Zeyland, J.; Szalata, M.; Slomski, R.; Jura, J. Quantitative analysis of porcine endogenous retroviruses in different organs of transgenic pigs generated for xenotransplantation. Curr. Microbiol. 2013, 67, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Fiebig, U.; Krüger, L.; Denner, J. Determination of the Copy Number of Porcine Endogenous Retroviruses (PERV) in Auckland Island Pigs Repeatedly Used for Clinical Xenotransplantation and Elimination of PERV-C. Microorganisms 2024, 12, 98. [Google Scholar] [CrossRef]
- Jungmann, A.; Dörrschuck, E.; Tönjes, R.R. Cellular interaction and retrotransposition of porcine endogenous retrovirus. Xenotransplantation 2007, 14, 372. [Google Scholar] [CrossRef]
- Chen, C.; Wang, W.; Wang, X.; Shen, D.; Wang, S.; Wang, Y.; Gao, B.; Wimmers, K.; Mao, J.; Li, K. Retrotransposons evolution and impact on lncRNA and protein coding genes in pigs. Mob. DNA 2019, 10, 19. [Google Scholar] [CrossRef]
- Polak, P.; Domany, E. Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes. BMC Genom. 2006, 7, 133. [Google Scholar] [CrossRef] [PubMed]
- Ueda, M.T.; Kryukov, K.; Mitsuhashi, S.; Mitsuhashi, H.; Imanishi, T.; Nakagawa, S. Comprehensive genomic analysis reveals dynamic evolution of endogenous retroviruses that code for retroviral-like protein domains. Mob. DNA 2020, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; D’Alessandro, E.; Asare, E.; Zheng, Y.; Wang, M.; Chen, C.; Wang, X.; Song, C. Retrotransposon Insertion Polymorphisms (RIPs) in Pig Reproductive Candidate Genes. Genes 2022, 13, 1359. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Zhao, P.; Si, J.; Fang, L.; Pairo-Castineira, E.; Hu, X.; Xu, Q.; Hou, Y.; Gong, Y.; Liang, Z. Genomic analysis revealed a convergent evolution of LINE-1 in coat color: A case study in water buffaloes (Bubalus bubalis). Mol. Biol. Evol. 2021, 38, 1122–1136. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.; Kim, M.; Manjula, P.; Cho, S.H.; Seo, D.; Lee, S.-S.; Lee, J.H. A retroviral insertion in the tyrosinase (TYR) gene is associated with the recessive white plumage color in the Yeonsan Ogye chicken. J. Anim. Sci. Technol. 2021, 63, 751. [Google Scholar] [CrossRef] [PubMed]
- Ashlock, W.C. Using Signal Processing, Evolutionary Computation, and Machine Learning to Identify Transposable Elements in Genomes; YorkSpace: Denver, CO, USA, 2013. [Google Scholar]
- McClure, M.A. The Retroid Agents: Disease, Function, and Evolution. Origin and Evolution of Viruses; Academic Press: London, UK, 1999; pp. 163–195. [Google Scholar]
- Konkel, M.K.; Walker, J.A.; Batzer, M.A. LINEs and SINEs of primate evolution. Evol. Anthropol. Issues News Rev. 2010, 19, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Kyriakou, E.; Magiorkinis, G. Interplay between endogenous and exogenous human retroviruses. Trends Microbiol. 2023, 31, 933–946. [Google Scholar] [CrossRef] [PubMed]
- Gozashti, L.; Feschotte, C.; Hoekstra, H.E. Transposable element interactions shape the ecology of the deer mouse genome. Mol. Biol. Evol. 2023, 40, msad069. [Google Scholar] [CrossRef]
- Mager, D.L.; Stoye, J.P. Mammalian endogenous retroviruses. In Mobile DNA III; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 1079–1100. [Google Scholar]
- Esposito, M. Transposons Acting as CeRNAs (TAC) Hypothesis: Initial Evidence from In-Silico Analyses of LINE1 Overexpression Contexts; Iris: Trieste, Italy, 2023. [Google Scholar]
- Janoušek, V.; Laukaitis, C.M.; Yanchukov, A.; Karn, R.C. The roles of LINEs, LTRs and SINEs in lineage-specific gene family expansions in the human and mouse genomes. Genome Biol. Evol. 2016, 8, 2632–2650. [Google Scholar] [CrossRef]
- Elbarbary, R.A.; Lucas, B.A.; Maquat, L.E. Retrotransposons as regulators of gene expression. Science 2016, 351, aac7247. [Google Scholar] [CrossRef]
- Chen, C.; D’Alessandro, E.; Murani, E.; Zheng, Y.; Giosa, D.; Yang, N.; Wang, X.; Gao, B.; Li, K.; Wimmers, K. SINE jumping contributes to large-scale polymorphisms in the pig genomes. Mob. DNA 2021, 12, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Han, C.; Zhao, L.; Zhang, Q.; Yan, B.; Cheng, R.; Wei, B.; Meng, P.; Mao, T.; Zhang, Y. Identification and characterization of ERV transcripts in goat embryos. Reproduction 2019, 157, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Deng, P.; Liu, S.; Nie, X.; Weining, S.; Wu, L. Conservation analysis of long non-coding RNAs in plants. Sci. China Life Sci. 2018, 61, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Kosinska-Selbi, B.; Mielczarek, M.; Szyda, J. Long non-coding RNA in livestock. Animal 2020, 14, 2003–2013. [Google Scholar] [CrossRef] [PubMed]
- Riva, P.; Ratti, A.; Venturin, M. The long non-coding RNAs in neurodegenerative diseases: Novel mechanisms of pathogenesis. Curr. Alzheimer Res. 2016, 13, 1219–1231. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, Z.; Murani, E.; D’Alessandro, E.; An, Y.; Chen, C.; Li, K.; Galeano, G.; Wimmers, K.; Song, C. A 192 bp ERV fragment insertion in the first intron of porcine TLR6 may act as an enhancer associated with the increased expressions of TLR6 and TLR1. Mob. DNA 2021, 12, 20. [Google Scholar] [CrossRef]
- Ogun, O.J.; Thaller, G.; Becker, D. An Overview of the Importance and Value of Porcine Species in Sialic Acid Research. Biology 2022, 11, 903. [Google Scholar] [CrossRef]
- Bode, G.; Clausing, P.; Gervais, F.; Loegsted, J.; Luft, J.; Nogues, V.; Sims, J. The utility of the minipig as an animal model in regulatory toxicology. J. Pharmacol. Toxicol. Methods 2010, 62, 196–220. [Google Scholar] [CrossRef]
- Denner, J.; Tönjes, R.R. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin. Microbiol. Rev. 2012, 25, 318–343. [Google Scholar] [CrossRef]
- Klymiuk, N.; Aigner, B.; Brem, G.; Wolf, E. Genetic modification of pigs as organ donors for xenotransplantation. Mol. Reprod. Dev. Inc. Gamete Res. 2010, 77, 209–221. [Google Scholar] [CrossRef]
- Blusch, J.H.; Patience, C.; Martin, U. Pig endogenous retroviruses and xenotransplantation. Xenotransplantation 2002, 9, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, Y.; Patience, C.; Magre, S.; Weiss, R.; Banerjee, P.; LeTissier, P.; Stoye, J. Host range and interference studies of three classes of pig endogenous retrovirus. JAIDS J. Acquir. Immune Defic. Syndr. 1999, 20, A8. [Google Scholar] [CrossRef]
- Hancks, D.C.; Kazazian Jr, H.H. Active human retrotransposons: Variation and disease. Curr. Opin. Genet. Dev. 2012, 22, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Giuffra, E.; Törnsten, A.; Marklund, S.; Bongcam-Rudloff, E.; Chardon, P.; Kijas, J.M.; Anderson, S.I.; Archibald, A.L.; Andersson, L. A large duplication associated with dominant white color in pigs originated by homologous recombination between LINE elements flanking KIT. Mamm. Genome 2002, 13, 569–577. [Google Scholar] [CrossRef]
- Sironen, A.; Thomsen, B.; Andersson, M.; Ahola, V.; Vilkki, J. An intronic insertion in KPL2 results in aberrant splicing and causes the immotile short-tail sperm defect in the pig. Proc. Natl. Acad. Sci. USA 2006, 103, 5006–5011. [Google Scholar] [CrossRef]
- Denner, J. Recombinant porcine endogenous retroviruses (PERV-A/C): A new risk for xenotransplantation? Xenotransplantation 2010, 17, 120. [Google Scholar] [CrossRef]
- Lee, J.; Mun, S.; Kim, D.H.; Cho, C.-S.; Oh, D.-Y.; Han, K. Chicken (Gallus gallus) endogenous retrovirus generates genomic variations in the chicken genome. Mob. DNA 2017, 8, 2. [Google Scholar] [CrossRef]
- Halo, J.V.; Pendleton, A.L.; Jarosz, A.S.; Gifford, R.J.; Day, M.L.; Kidd, J.M. Origin and recent expansion of an endogenous gammaretroviral lineage in domestic and wild canids. Retrovirology 2019, 16, 6. [Google Scholar] [CrossRef]
- Ngo, M.H.; Arnal, M.; Sumi, R.; Kawasaki, J.; Miyake, A.; Grant, C.K.; Otoi, T.; Fernández de Luco, D.; Nishigaki, K. Tracking the fate of endogenous retrovirus segregation in wild and domestic cats. J. Virol. 2019, 93, 01324-19. [Google Scholar] [CrossRef]
- Kayashima, Y.; Makhanova, N.A.; Matsuki, K.; Tomita, H.; Bennett, B.J.; Maeda, N. Identification of aortic arch-specific quantitative trait loci for atherosclerosis by an intercross of DBA/2J and 129S6 apolipoprotein E-deficient mice. PLoS ONE 2015, 10, e0117478. [Google Scholar] [CrossRef] [PubMed]
- Swystun, L.L.; Lai, J.D.; Notley, C.; Georgescu, I.; Paine, A.S.; Mewburn, J.; Nesbitt, K.; Schledzewski, K.; Géraud, C.; Kzhyshkowska, J. The endothelial cell receptor stabilin-2 regulates VWF-FVIII complex half-life and immunogenicity. J. Clin. Investig. 2018, 128, 4057–4073. [Google Scholar] [CrossRef] [PubMed]
Name | Insertion/Deletion | Strand | Chr | ERV_start | ERV_end | gag_aa Length | pol_aa Length | env_aa Length |
---|---|---|---|---|---|---|---|---|
D2 | NS_3_D;CB_2_D | + | chr8 | 51,570,546 | 51,579,460 | 471 | 690 | 220 |
D3 | + | chr5 | 92,185,134 | 92,194,051 | 417 | 881 | 220 | |
D5 | NS_2_D | + | chr1 | 132,020,281 | 132,028,360 | 271 | 767 | 141 |
D9 | BM_3_D; MSBJ_7_D; NS_10_D; NX_6_D; CB_4_D | + | chr17 | 3,793,914 | 3,802,815 | 430 | 1088 | 468 |
D10 | + | chrUn_NW_018085136v1 | 563,793 | 572,725 | 275 | 911 | 394 | |
D12 | NS_8_D | + | chr3 | 51,108,602 | 51,117,361 | 492 | 901 | 121 |
D14 | + | chrUn_NW_018085331v1 | 13,836 | 22,597 | 492 | 979 | 192 | |
D15 | KY_3_D; NH_2_D | + | chr14 | 119,667,621 | 119,676,299 | 457 | 706 | 135 |
D17 | NS_7_D | + | chr8 | 15,319,428 | 15,328,187 | 492 | 559 | 122 |
D18 | + | chr16 | 59,571,885 | 59,580,646 | 492 | 876 | 192 | |
D21 | NS_5_D;CB_7_D | + | chr9 | 138,895,584 | 138,904,340 | 492 | 979 | 192 |
BM_2_D | Deletion | + | Chrx | 66,738,746 | 66,744,246 | 492 | 743 | 156 |
MSBJ_1_D | Deletion | + | chr7 | 126,674,088 | 126,679,601 | 417 | 1032 | 141 |
MSBJ_8_D | Deletion | C | chr9 | 62,631,695 | 62,637,198 | 492 | 979 | 192 |
MSBJ_3_D | Deletion | C | chr1 | 250,447,148 | 250,452,649 | 492 | 889 | 121 |
RC_1_D | Deletion | C | LUXR01088996.1 | 1,997,965 | 2,007,394 | 515 | 960 | 631 |
NX_2_D | Deletion | + | chr2 | 151,052,074 | 151,053,575 | 492 | 979 | 192 |
NX_5_D | Deletion | C | chr9 | 24,240,887 | 24,242,393 | 497 | 1004 | 198 |
RIP Name | Genotype | 30 kg/Days | 100 kg/Days | BTW |
---|---|---|---|---|
ERV-D14 | ERV−/− (N = 74) | 76.89 ± 7.68 A | 164.46 ± 7.08 a | 10.62 ± 2.58 |
ERV+/+ (N = 133) | 73.59 ± 9.47 B | 161.19 ± 6.48 b | 11.11 ± 2.59 | |
ERV+/− (N = 272) | 74.11 ± 8.35 B | 160.97 ± 6.94 b | 11.47 ± 9.24 |
Breeds | Count | Genotype Frequency (%) | Allele Frequency (%) | Hardy–Weinberg | Equilibrium | PIC | |||
---|---|---|---|---|---|---|---|---|---|
+/− | −/− | +/+ | + | − | X2 | p | |||
Large White | 24 | 62.50 | 0.00 | 37.50 | 68.75 | 31.25 | 4.96 | 0.06 | 0.34 |
Duroc | 24 | 37.50 | 0.00 | 62.50 | 81.25 | 18.75 | 1.28 | 0.26 | 0.26 |
Mi | 24 | 45.83 | 54.17 | 0.00 | 22.92 | 77.08 | 2.12 | 0.15 | 0.29 |
Sujiang | 24 | 41.67 | 58.33 | 0.00 | 20.83 | 79.17 | 1.66 | 0.20 | 0.28 |
Sushan | 24 | 54.17 | 45.83 | 0.00 | 27.08 | 72.92 | 3.31 | 0.07 | 0.32 |
Landrace | 24 | 25.00 | 41.67 | 33.33 | 45.83 | 54.17 | 5.92 | 0.02 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Z.; Chen, C.; Zheng, Y.; Wang, X.; Song, C. Retroviral Insertion Polymorphism (RIP) of Porcine Endogenous Retroviruses (PERVs) in Pig Genomes. Animals 2024, 14, 621. https://doi.org/10.3390/ani14040621
Du Z, Chen C, Zheng Y, Wang X, Song C. Retroviral Insertion Polymorphism (RIP) of Porcine Endogenous Retroviruses (PERVs) in Pig Genomes. Animals. 2024; 14(4):621. https://doi.org/10.3390/ani14040621
Chicago/Turabian StyleDu, Zhanyu, Cai Chen, Yao Zheng, Xiaoyan Wang, and Chengyi Song. 2024. "Retroviral Insertion Polymorphism (RIP) of Porcine Endogenous Retroviruses (PERVs) in Pig Genomes" Animals 14, no. 4: 621. https://doi.org/10.3390/ani14040621
APA StyleDu, Z., Chen, C., Zheng, Y., Wang, X., & Song, C. (2024). Retroviral Insertion Polymorphism (RIP) of Porcine Endogenous Retroviruses (PERVs) in Pig Genomes. Animals, 14(4), 621. https://doi.org/10.3390/ani14040621