Unveiling the Genetic Secrets of Chinese Indigenous Pigs from Guizhou Province: Diversity, Evolution and Candidate Genes Affecting Pig Coat Color
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and SNP Genotyping
2.2. Estimation of Population Genetic Differentiation
2.3. Genetic Differentiation Index between Breeds
2.4. Principal Component Analysis
2.5. Inferring Population Structure and ADMIXTURE
2.6. Analysis of Genetic Diversity Indices
2.7. Runs of Homozygosity Analysis
2.8. Selective Scan Analysis
3. Results
3.1. Phylogenetic Relationships and Genetic Differentiation
3.2. Genetic Diversity Index
3.3. Screening of Candidate Genes Affecting Pig Coat Color
4. Discussion
4.1. Historical Relatedness and ADMIXTURE Analysis
4.2. Genetic Diversity
4.3. Coat Color Candidate Gene Screening
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, H.; Ouyang, J.; Liu, S.; Xiong, Y.; Wu, Y.; Wang, L.; Wang, C.; Yan, X.; Shen, Y.; Chen, H. Population structure of 3907 worldwide pigs and the introgression of Chinese indigenous pigs by European pigs. Anim. Genet. 2022, 53, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, Z.; Wang, J.; Zeng, T.; Ai, X.; Wu, K. An Integrative ATAC-Seq and RNA-Seq Analysis of the Endometrial Tissues of Meishan and Duroc Pigs. Int. J. Mol. Sci. 2023, 24, 14812. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Huang, C.; Huang, Y.; Zou, X.; Zhou, R.; Ai, H.; Huang, L.; Ma, J. Genetic architecture for skeletal muscle glycolytic potential in Chinese Erhualian pigs revealed by a genome-wide association study using 1.4M SNP array. Front. Genet. 2023, 14, 1141411. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Huang, M.; Yang, B.; Wu, Z.; Deng, Z.; Hou, Y.; Ren, J.; Huang, L. Introgression of Eastern Chinese and Southern Chinese haplotypes contributes to the improvement of fertility and immunity in European modern pigs. Gigascience 2020, 9, giaa014. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Li, R.; Tian, S.; Xie, X.; Wang, Z.; Na, W.; Wang, Q.; Pan, Y.; Xiao, Q. Genome-wide scans for selection signatures in indigenous pigs revealed candidate genes relating to heat tolerance. Animal 2023, 17, 100882. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ma, S.; Wang, L.; Ma, H.; Wang, W.; Xia, J.; Liu, D. Min pig skeletal muscle response to cold stress. PLoS ONE 2022, 17, e0274184. [Google Scholar] [CrossRef]
- Yang, C.; Cao, C.; Liu, J.; Zhao, Y.; Pan, J.; Tao, C.; Wang, Y. Distinct Transcriptional Responses of Skeletal Muscle to Short-Term Cold Exposure in Tibetan Pigs and Bama Pigs. Int. J. Mol. Sci. 2023, 24, 7431. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Huang, M.; Tang, J.; Fan, Y.; Li, Y.; Li, X.; Ji, H.; Ren, J.; Ding, N. Genetic diversity, population structure and phylogenetic relationships of three indigenous pig breeds from Jiangxi Province, China, in a worldwide panel of pigs. Anim. Genet. 2018, 49, 275–283. [Google Scholar] [CrossRef]
- Huang, L.; Ren, J. Genetic diversity, linkage disequilibrium and selection signatures in chinese and Western pigs revealed by genome-wide SNP markers. PLoS ONE 2013, 8, e56001. [Google Scholar]
- Yang, S.; Tang, Z.; Li, K.; Rothschild, M.F.; Liu, B.; Fan, B. Genome-wide scans to detect positive selection in Large White and Tongcheng pigs. Anim. Genet. 2014, 45, 329–339. [Google Scholar]
- Pickrell, J.K.; Pritchard, J.K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012, 8, e1002967. [Google Scholar] [CrossRef] [PubMed]
- Fitak, R.R. OptM: Estimating the optimal number of migration edges on population trees using Treemix. Biol. Methods Protoc. 2021, 6, bpab017. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, P.; Zhou, W.; Ma, X.; Wang, X.; Xu, Y.; Jiang, N.; Zhao, M.; Zhou, T.; Yin, Y.; et al. Genome Data Uncover Conservation Status, Historical Relatedness and Candidate Genes Under Selection in Chinese Indigenous Pigs in the Taihu Lake Region. Front. Genet. 2020, 11, 591. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Peripolli, E.; Munari, D.P.; Silva, M.; Lima, A.L.F.; Irgang, R.; Baldi, F. Runs of homozygosity: Current knowledge and applications in livestock. Anim. Genet. 2017, 48, 255–271. [Google Scholar] [CrossRef]
- Meyermans, R.; Gorssen, W.; Buys, N.; Janssens, S. How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genom. 2020, 21, 94. [Google Scholar]
- Zhang, Q.; Calus, M.P.; Guldbrandtsen, B.; Lund, M.S.; Sahana, G. Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genet. 2015, 16, 88. [Google Scholar] [CrossRef]
- Yuan, J.; Zhou, X.; Xu, G.; Xu, S.; Liu, B. Genetic diversity and population structure of Tongcheng pigs in China using whole-genome SNP chip. Front. Genet. 2022, 13, 910521. [Google Scholar] [CrossRef]
- Ai, H.; Fang, X.; Yang, B.; Huang, Z.; Chen, H.; Mao, L.; Zhang, F.; Zhang, L.; Cui, L.; He, W.; et al. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat. Genet. 2015, 47, 217–225. [Google Scholar] [CrossRef]
- Peng, Y.; Derks, M.F.; Groenen, M.A.; Zhao, Y.; Bosse, M. Distinct traces of mixed ancestry in western commercial pig genomes following gene flow from Chinese indigenous breeds. Front. Genet. 2022, 13, 1070783. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, H.; Zhang, Y.; Tang, Z.; Li, K.; Liu, B. Genome-wide analysis reveals artificial selection on coat colour and reproductive traits in Chinese domestic pigs. Mol. Ecol. Resour. 2015, 15, 414–424. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Q.; Xiao, Q.; Sun, H.; Gao, H.; Yang, Y.; Chen, J.; Li, Z.; Xue, M.; Yang, H.; et al. Distribution of runs of homozygosity in Chinese and Western pig breeds evaluated by reduced-representation sequencing data. Anim. Genet. 2018, 49, 579–591. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, R.; Li, X.; Cui, C.; Yu, G. Analysis of the Genetic Diversity and Family Structure of the Licha Black Pig Population on Jiaodong Peninsula, Shandong Province, China. Animals 2022, 12, 1045. [Google Scholar] [CrossRef]
- Liu, B.; Shen, L.; Guo, Z.; Gan, M.; Chen, Y.; Yang, R.; Niu, L.; Jiang, D.; Zhong, Z.; Li, X.; et al. Single nucleotide polymorphism-based analysis of the genetic structure of Liangshan pig population. Anim. Biosci. 2021, 34, 1105–1115. [Google Scholar] [CrossRef]
- Wang, Y.; Viennet, C.; Robin, S.; Berthon, J.Y.; He, L.; Humbert, P. Precise role of dermal fibroblasts on melanocyte pigmentation. J. Dermatol. Sci. 2017, 88, 159–166. [Google Scholar] [CrossRef]
- Zhou, Y.; Zeng, H.L.; Wen, X.Y.; Jiang, L.; Fu, C.H.; Hu, Y.B.; Lei, X.X.; Zhang, L.; Yu, X.; Yang, S.Y.; et al. Selaginellin Inhibits Melanogenesis via the MAPK Signaling Pathway. J. Nat. Prod. 2022, 85, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ling, J.; Song, J.; Wang, Y.; Feng, B.; Ping, F. Interleukin 10 protects primary melanocyte by activation of Stat-3 and PI3K/Akt/NF-κB signaling pathways. Cytokine 2016, 83, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Gajos-Michniewicz, A.; Czyz, M. WNT Signaling in Melanoma. Int. J. Mol. Sci. 2020, 21, 4852. [Google Scholar] [CrossRef] [PubMed]
- Bellei, B.; Pitisci, A.; Catricalà, C.; Larue, L.; Picardo, M. Wnt/β-catenin signaling is stimulated by α-melanocyte-stimulating hormone in melanoma and melanocyte cells: Implication in cell differentiation. Pigment Cell Melanoma Res. 2011, 24, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Liang, X.; Qin, K.; Qin, Y.; Shi, X.; Cong, P.; Mo, D.; Liu, X.; Chen, Y.; He, Z. Functional Analysis of KIT Gene Structural Mutations Causing the Porcine Dominant White Phenotype Using Genome Edited Mouse Models. Front. Genet. 2020, 11, 138. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, S.; Ji, K.; Liu, X.; Zhang, J.; Fan, R.; Dong, C. The effects of IGF1 on the melanogenesis in alpaca melanocytes in vitro. In Vitro Cell Dev. Biol. Anim. 2016, 52, 806–811. [Google Scholar]
- Infarinato, N.R.; Stewart, K.S.; Yang, Y.; Gomez, N.C.; Pasolli, H.A.; Hidalgo, L.; Polak, L.; Carroll, T.S.; Fuchs, E. BMP signaling: At the gate between activated melanocyte stem cells and differentiation. Genes Dev. 2020, 34, 1713–1734. [Google Scholar] [CrossRef] [PubMed]
- Sastry, K.S.; Ibrahim, W.N.; Chouchane, A.I. Multiple signaling pathways converge on proapoptotic protein BAD to promote survival of melanocytes. Faseb. J. 2020, 34, 14602–14614. [Google Scholar] [CrossRef] [PubMed]
Breed | Abbreviation | Number of Individuals | Ho | He | Maf | FROH | Fis |
---|---|---|---|---|---|---|---|
Baixi | BX | 30 | 0.31 | 0.31 | 0.23 | 0.019 | −0.02 |
Congjiang Xiang | CJX | 25 | 0.23 | 0.21 | 0.15 | 0.015 | −0.09 |
Duroc | DRC | 30 | 0.31 | 0.29 | 0.22 | 0.023 | −0.07 |
Guanling | GL | 30 | 0.28 | 0.27 | 0.19 | 0.009 | −0.06 |
Jianhe White Xiang | JHBX | 40 | 0.15 | 0.13 | 0.10 | 0.038 | −0.12 |
Jiangkou Luobo | JKLB | 16 | 0.39 | 0.31 | 0.24 | 0.009 | −0.26 |
Kele | KL | 22 | 0.36 | 0.35 | 0.26 | 0.008 | −0.05 |
Landrace | LR | 30 | 0.36 | 0.32 | 0.25 | 0.016 | −0.12 |
Large White | LW | 30 | 0.34 | 0.34 | 0.26 | 0.021 | −0.01 |
Qiandong Hua | QDH | 30 | 0.21 | 0.21 | 0.15 | 0.016 | −0.01 |
CJX | DRC | GL | JHBX | JKLB | KL | LR | LW | QDH | |
---|---|---|---|---|---|---|---|---|---|
BX | 0.19 | 0.32 | 0.14 | 0.31 | 0.17 | 0.10 | 0.32 | 0.31 | 0.20 |
CJX | 0.47 | 0.13 | 0.29 | 0.27 | 0.16 | 0.44 | 0.42 | 0.13 | |
DRC | 0.41 | 0.58 | 0.30 | 0.29 | 0.30 | 0.29 | 0.48 | ||
GL | 0.25 | 0.21 | 0.10 | 0.38 | 0.35 | 0.12 | |||
JHBX | 0.41 | 0.29 | 0.54 | 0.53 | 0.25 | ||||
JKLB | 0.14 | 0.31 | 0.29 | 0.28 | |||||
KL | 0.27 | 0.26 | 0.16 | ||||||
LR | 0.24 | 0.45 | |||||||
LW | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Su, Y.; Zong, W.; Niu, N.; Zhao, R.; Liang, R.; Wang, L.; Zhang, Y.; Zhang, L. Unveiling the Genetic Secrets of Chinese Indigenous Pigs from Guizhou Province: Diversity, Evolution and Candidate Genes Affecting Pig Coat Color. Animals 2024, 14, 699. https://doi.org/10.3390/ani14050699
Hu Z, Su Y, Zong W, Niu N, Zhao R, Liang R, Wang L, Zhang Y, Zhang L. Unveiling the Genetic Secrets of Chinese Indigenous Pigs from Guizhou Province: Diversity, Evolution and Candidate Genes Affecting Pig Coat Color. Animals. 2024; 14(5):699. https://doi.org/10.3390/ani14050699
Chicago/Turabian StyleHu, Ziping, Yanfang Su, Wencheng Zong, Naiqi Niu, Runze Zhao, Ruiping Liang, Lixian Wang, Yiyu Zhang, and Longchao Zhang. 2024. "Unveiling the Genetic Secrets of Chinese Indigenous Pigs from Guizhou Province: Diversity, Evolution and Candidate Genes Affecting Pig Coat Color" Animals 14, no. 5: 699. https://doi.org/10.3390/ani14050699
APA StyleHu, Z., Su, Y., Zong, W., Niu, N., Zhao, R., Liang, R., Wang, L., Zhang, Y., & Zhang, L. (2024). Unveiling the Genetic Secrets of Chinese Indigenous Pigs from Guizhou Province: Diversity, Evolution and Candidate Genes Affecting Pig Coat Color. Animals, 14(5), 699. https://doi.org/10.3390/ani14050699