Estimation of Protein and Amino Acid Requirements in Layer Chicks Depending on Dynamic Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds, Diets, and Sample Collection
2.2. Dynamic Model Construction
2.3. Protein, Amino Acid, and Creatinine Analyses
2.4. Statistical Analyses
3. Results
3.1. Fitting the Model of Growth in Jing Tint 6 Chicks by Gompertz Equation
3.2. Fitting the Model of Carcass and Feather Protein Deposition in Jing Tint 6 Chicks
3.3. Amino Acid Patterns in Carcasses and Feathers of Jing Tint 6 Chicks
3.4. Protein and Amino Acid Maintenance Requirements of Jing Tint 6 Chicks
3.5. Net Protein Utilization and Standard Ileal Terminal Digestibility of Amino Acids at Different Growth Stages
3.6. Dynamic Model of Protein and Amino Acid Requirements
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Caldas, J.V.; Boonsinchai, N.; Wang, J.R.; England, J.A.; Coon, C.N. The dynamics of body composition and body energy content in broilers. Poult. Sci. 2019, 98, 866–877. [Google Scholar] [CrossRef]
- Yang, J.C.; Huang, Y.X.; Sun, H.; Liu, M.; Zhao, L.; Sun, L.H. Selenium Deficiency Dysregulates One-Carbon Metabolism in Nutritional Muscular Dystrophy of Chicks. J. Nutr. 2023, 153, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Feng, Y.; Cui, J.; Hou, Q.; Li, T.; Jia, M.; Lv, Z.; Jiang, Q.; Wang, Y.; Zhang, M.; et al. The ionome and proteome landscape of aging in laying hens and relation to egg white quality. Sci. China Life Sci. 2023, 66, 2020–2040. [Google Scholar] [CrossRef]
- Tian, Y.D. Dynamie Model Construction of Energy and Amino Acid Requirements for Broilers. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2005. [Google Scholar]
- Abdallah, A.; Elemba, E.; Zhong, Q.Z.; Sun, Z.W. Gastrointestinal Interaction between Dietary Amino Acids and Gut Microbiota: With Special Emphasis on Host Nutrition. Curr. Protein Pept. Sci. 2020, 21, 785–798. [Google Scholar] [CrossRef]
- Fan, L.; Xia, Y.; Wang, Y.; Han, D.; Liu, Y.; Li, J.; Fu, J.; Wang, L.; Gan, Z.; Liu, B.; et al. Gut microbiota bridges dietary nutrients and host immunity. Sci. China Life Sci. 2023, 66, 2466–2514. [Google Scholar] [CrossRef]
- Bregendahl, K.; Sell, J.L.; Zimmerman, D.R. Effect of low-protein diets on growth performance and body composition of broiler chicks. Poult. Sci. 2002, 81, 1156–1167. [Google Scholar] [CrossRef] [PubMed]
- Gompertz, B. On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies. Proc. R. Soc. Lond 1815, 2, 252–253. [Google Scholar]
- Pearl, R. The biology of population growth. Z. Induk. Abstamm. Vererb. 1929, 49, 336–338. [Google Scholar] [CrossRef]
- Bridges, T.C.; Turner, L.W.; Stahly, T.S.; Usry, J.L.; Loewer, O.J. Modeling the Physiological Growth of Swine Part I: Model Logic and Growth Concepts. Trans. ASAE 1992, 35, 1019–1028. [Google Scholar] [CrossRef]
- Kavanagh, R.A.J. The Analysis of the Relative Growth Gradients and Changing Form of Growing Organisms: Illustrated by the Tobacco Leaf. Am. Nat. 1943, 77, 385–399. [Google Scholar]
- Yang, Z.G. The Study on Simulation Model of Amino Acid Requirements for Broilers. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2010. [Google Scholar]
- Nguyen Hoang, T.; Do, H.T.T.; Bui, D.H.; Pham, D.K.; Hoang, T.A.; Do, D.N. Evaluation of non-linear growth curve models in the Vietnamese indigenous Mia chicken. Anim. Sci. J. 2021, 92, e13483. [Google Scholar] [CrossRef] [PubMed]
- van der Klein, S.A.S.; Kwakkel, R.P.; Ducro, B.J.; Zuidhof, M.J. Multiphasic nonlinear mixed growth models for laying hens. Poult. Sci. 2020, 99, 5615–5624. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.L.; Deng, X.J.; Hu, Z.Z.; Chen, L.Y.; Jiang, W.J.; Xia, L.Z. Amino acid requirements of Wanxi white goose studied from 9 to 12 weeks of age based on Factorial Method. China Anim. Husb. Vet. Med. 2021, 48, 135–143. [Google Scholar] [CrossRef]
- Sakomura, N.K.; Silva, E.P.; Dorigam, J.C.P.; Gous, R.M.; St-Pierre, N. Modeling amino acid requirements of poultry. J. Appl. Poult. Res. 2015, 24, 267–282. [Google Scholar] [CrossRef]
- Hurwitz, S.; Frisch, Y.; Bar, A.; Eisner, U.; Bengal, I.; Pines, M. The amino acid requirements of growing turkeys: 1. Model construction and parameter estimation. Poult. Sci. 1983, 62, 2208–2217. [Google Scholar] [CrossRef] [PubMed]
- Hurwitz, S.; Bornstein, S. The protein and amino acid requirements of laying hens: Suggested models for calculation. Poult. Sci. 1973, 52, 1124–1134. [Google Scholar] [CrossRef]
- Hurwitz, S.; Plavnik, I.; Bartov, I.; Bornstein, S. The amino acid requirements of chicks: Experimental validation of model-calculated requirements. Poult. Sci. 1980, 59, 2470–2479. [Google Scholar] [CrossRef]
- Hurwitz, S.; Plavnik, I.; Bengal, I.; Talpaz, H.; Bartov, I. The amino acid requirements of growing turkeys: 2. Experimental validation of model-calculated requirements for sulfur amino acids and lysine. Poult. Sci. 1983, 62, 2387–2393. [Google Scholar] [CrossRef]
- Hewitt, D.; Lewis, D. The amino acid requirements of the growing chick. I. Determination of amino acid requirements. Br. Poult. Sci. 1972, 13, 449–463. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, M.; Sun, H.; Yang, J.C.; Huang, Y.X.; Huang, J.Q.; Lei, X.; Sun, L.H. Selenium deficiency-induced multiple tissue damage with dysregulation of immune and redox homeostasis in broiler chicks under heat stress. Sci. China Life Sci. 2023, 66, 2056–2069. [Google Scholar] [CrossRef]
- Zhao, L.; Chu, X.H.; Liu, S.; Li, R.; Zhu, Y.F.; Li, F.N.; Jiang, J.; Zhou, J.C.; Lei, X.G.; Sun, L.H. Selenium-Enriched Cardamine violifolia Increases Selenium and Decreases Cholesterol Concentrations in Liver and Pectoral Muscle of Broilers. J. Nutr. 2022, 152, 2072–2079. [Google Scholar] [CrossRef]
- Cao, N.K.; Chen, B.J. Review on basic nitrogen metabolism and preparation nitrogen-free diets in livestock. China Feed 2018, 15, 16–18. [Google Scholar] [CrossRef]
- Huang, W.; Ma, T.; Liu, Y.; Kwok, L.Y.; Li, Y.; Jin, H.; Zhao, F.; Shen, X.; Shi, X.; Sun, Z.; et al. Spraying compound probiotics improves growth performance and immunity and modulates gut microbiota and blood metabolites of suckling piglets. Sci. China Life Sci. 2023, 66, 1092–1107. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.-C.; Wang, J.; Wang, J.; Yan, Y.-Q.; Huang, Y.-X.; Chen, C.-Q.; Sun, L.-H.; Liu, M. Tannic acid extracted from gallnut improves intestinal health with regulation of redox homeostasis and gut microbiota of weaned piglets. Anim. Res. One Health 2024, 2, 16–27. [Google Scholar] [CrossRef]
- Zhao, M.; Feng, Y.; Shi, Y.; Shen, H.; Hu, H.; Luo, Y.; Xu, L.; Kang, J.; Xing, A.; Wang, S.; et al. Yield and quality properties of silage maize and their influencing factors in China. Sci. China Life Sci. 2022, 65, 1655–1666. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Zheng, C.; Zheng, J.; Ma, L.; Ma, X.; Zhong, Y.; Zhao, X.; Li, F.; Guo, Q.; Yin, Y. Profiles of muscular amino acids, fatty acids, and metabolites in Shaziling pigs of different ages and relation to meat quality. Sci. China Life Sci. 2023, 66, 1323–1339. [Google Scholar] [CrossRef]
- Deng, X.J.; Liu, G.H.; Cai, H.Y.; Wang, Y.W.; Wang, F.H. Determination of titanium dioxide in poultry feed and surimi by spectrophotometry. Feed Ind. 2008, 29, 57–58. [Google Scholar]
- Wang, H.M.; Huo, Q.G.; Li, S.B.; Yu, H.Q.; Wang, J.X.; Yang, S.H.; Lin, J.H.; Feng, S.M.; Yin, R.M. Nutrient and maintenance requirements of yolk sac of broiler chicks under hunger strike conditions. Chin. J. Anim. Vet. Sci. 1994, 1, 13–19. [Google Scholar]
- Fisher, M.L.; Leeson, S.; Morrison, W.D. feather growth and feather composition of broiler chickens. Can. J. Anim. Sci 1981, 61, 769–773. [Google Scholar] [CrossRef]
- Hauschild, L.; Pomar, C.; Lovatto, P.A. Systematic comparison of the empirical and factorial methods used to estimate the nutrient requirements of growing pigs. Animal 2010, 4, 714–723. [Google Scholar] [CrossRef]
- Yan, Y.Q.; Liu, M.; Xu, Z.J.; Xu, Z.J.; Huang, Y.X.; Li, X.M.; Chen, C.J.; Zuo, G.; Yang, J.C.; Lei, X.G.; et al. Optimum Doses and Forms of Selenium Maintaining Reproductive Health via Regulating Homeostasis of Gut Microbiota and Testicular Redox, Inflammation, Cell Proliferation, and Apoptosis in Roosters. J. Nutr. 2024, 154, 369–380. [Google Scholar] [CrossRef]
- Zhang, X.; Li, W.; Wang, G.; Zhang, X.; Wang, Z.; Chu, L.; Wang, Y.; Chang, B. Effect of feed shape on the growth, gastrointestinal development and performance of Jing Brown. China Feed 2021, 13, 3–42. [Google Scholar] [CrossRef]
- Andrews, T.L.; Harms, R.H.; Wilson, H.R. Protein requirement of the Bobwhite chick. Poult. Sci. 1973, 52, 2199–2201. [Google Scholar] [CrossRef] [PubMed]
- Macelline, S.P.; Toghyani, M.; Chrystal, P.V.; Selle, P.H.; Liu, S.Y. Amino acid requirements for laying hens: A comprehensive. Poult. Sci. 2021, 100, 101036. [Google Scholar] [CrossRef]
- Azzam, M.M.; Alhotan, R.; Al-Abdullatif, A.; Al-Mufarrej, S.; Mabkhot, M.; Alhidary, I.A.; Zheng, C.T. Threonine Requirements in Dietary Low Crude Protein for Laying Hens under High-Temperature Environmental Climate. Animals 2019, 9, 586. [Google Scholar] [CrossRef] [PubMed]
- Cupertino, E.S.; Gomes, P.C.; Rostagno, H.S.; Donzele, J.L.; Schmidt, M.; Mello, H.H.D. Nutritional requirement of methionine plus cistine digestibles for laying hens during a period of 54 to 70 weeks of age. Rev. Bras. Zootec. 2009, 38, 1238–1246. [Google Scholar] [CrossRef]
- Saki, A.A.; Harsini, R.N.; Tabatabaei, M.M.; Zamani, P.; Haghight, M. Estimates of Methionine and Sulfur Amino Acid Requirements for Laying Hens using Different Models. Br. J. Poult. Sci. 2012, 14, 209–216. [Google Scholar] [CrossRef]
- Wu, S.G. Laying Hens Feed Preparation Processing and Formula Picks; China Agricultural Science and Technology Press: Beijing, China, 2013; pp. 134–145. [Google Scholar]
- Bregendahl, K.; Roberts, S.A.; Kerr, B.; Hoehler, D. Ideal ratios of isoleucine, methionine, methionine plus cystine, threonine, tryptophan, and valine relative to lysine for white leghorn-type laying hens of twenty-eight to thirty-four weeks of age. Poult. Sci. 2008, 87, 744–758. [Google Scholar] [CrossRef]
- Schutte, J.B.; Smink, W. Requirement of the laying hen for apparent fecal digestible lysine. Poult. Sci. 1998, 77, 697–701. [Google Scholar] [CrossRef]
- Ren, W.; Yu, B.; Yu, J.; Zheng, P.; Huang, Z.; Luo, J.; Mao, X.; He, J.; Yan, H.; Wu, J.; et al. Lower abundance of Bacteroides and metabolic dysfunction are highly associated with the post-weaning diarrhea in piglets. Sci. China Life Sci. 2022, 65, 2062–2075. [Google Scholar] [CrossRef]
- Guo, Y.M. Poultry Nutrition; China Agricultural University Press: Beijing, China, 2016; pp. 55–336. [Google Scholar]
- Khattak, F.; Helmbrecht, A. Effect of different levels of tryptophan on productive performance, egg quality, blood biochemistry, and caecal microbiota of hens housed in enriched colony cages under commercial stocking density. Poult. Sci. 2019, 98, 2094–2104. [Google Scholar] [CrossRef]
- Mousavi, S.N.; Afsar, A.; Khalaji, S.; Abbasi, M. Estimation of digestible tryptophan:lysine ratios for maximum performance, egg quality and welfare of white-egg-laying hens by fitting the different non-linear models. J. Appl. Anim. Res. 2018, 46, 411–416. [Google Scholar] [CrossRef]
- Azzam, M.M.M.; Dong, X.Y.; Dai, L.; Zou, X.T. Effect of excess dietary L-valine on laying hen performance, egg quality, serum free amino acids, immune function and antioxidant enzyme activity. Br. Poult. Sci. 2015, 56, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Lelis, G.R.; Albino, L.F.T.; Tavernari, F.C.; Calderano, A.A.; Rostagno, H.S.; Barros, V.R.S.M.; Maia, R.C. Digestible valine-to-digestible lysine ratios in brown commercial layer diets. J. Appl. Poult. Res. 2014, 23, 683–690. [Google Scholar] [CrossRef]
- Lieboldt, M.A.; Halle, I.; Frahm, J.; Schrader, L.; Weigend, S.; Preisinger, R.; Breves, G.; Dänicke, S. Effects of Graded Dietary L-arginine Supply on Organ Growth in Four Genetically Diverse Layer Lines during Rearing Period. J. Poult. Sci. 2016, 53, 136–148. [Google Scholar] [CrossRef]
- Yuan, C.; Li, J.M.; Ding, Y.; He, Q.; Yan, H.X.; Lu, J.J.; Zou, X.T. Estimation of L-arginine requirement for Xinyang Black laying hens from 33 to 45 weeks of age. J. Appl. Poult. Res. 2015, 24, 463–469. [Google Scholar] [CrossRef]
- Shivazad, M.; Harms, R.H.; Russell, G.B.; Faria, D.E.; Antar, R.S. Re-evaluation of the isoleucine requirement of the commercial layer. Poult. Sci. 2002, 81, 1869–1872. [Google Scholar] [CrossRef]
- Peganova, S.; Eder, K. Studies on requirement and excess of isoleucine in laying hens. Poult. Sci. 2002, 81, 1714–1721. [Google Scholar] [CrossRef]
Ingredients | Equation Expression | Model Parameter | ||||
---|---|---|---|---|---|---|
b0 | b1 | b2 | R2 | SE | ||
carcass | Y = b0 + b1X | −1.283 | 0.169 | 0.998 | 0.689 | |
Y = b0 + b1X + b2X2 | −2.850 | 0.192 | −5.581 × 10−5 | 0.999 | 0.781 | |
Y = b0(Xb1) | 0.141 | 1.027 | 0.997 | 0.940 | ||
Y = b0exp(b1X) | 10.662 | 0.005 | 0.926 | 2.457 | ||
feather | Y = b0 + b1X | −2.568 | 0.053 | 0.895 | 1.752 | |
Y = b0 + b1X + b2X2 | 2.312 | −0.019 | 0.000 | 0.992 | 0.876 | |
Y = b0(Xb1) | 0.000 | 1.965 | 0.976 | 0.221 | ||
Y = b0exp(b1X) | 1.248 | 0.007 | 0.999 | 0.076 |
Amino Acid | Feather | Carcass | ||
---|---|---|---|---|
0–2 Weeks | 3–6 Weeks | 0–2 Weeks | 3–6 Weeks | |
Aspartic acid | 5.89 ± 0.20 | 5.70 ± 0.20 | 7.32 ± 0.20 | 6.08 ± 0.06 |
Threonine | 3.47 ± 0.12 | 3.59 ± 0.22 | 4.01 ± 0.11 | 3.52 ± 0.07 |
Serine | 7.64 ± 0.05 | 7.67 ± 0.47 | 4.31 ± 0.21 | 3.47 ± 0.05 |
Glutamic acid | 8.63 ± 0.02 | 8.85 ± 0.41 | 12.42 ± 0.24 | 11.29 ± 0.15 |
Glycine | 5.59 ± 0.18 | 5.25 ± 0.28 | 7.23 ± 0.12 | 6.84 ± 0.09 |
Alanine | 4.16 ± 0.01 | 4.40 ± 0.56 | 7.63 ± 0.11 | 6.78 ± 0.10 |
Valine | 5.43 ± 0.15 | 5.58 ± 0.37 | 4.17 ± 0.12 | 3.26 ± 0.30 |
Cystine | 6.82 ± 0.19 | 7.29 ± 0.25 | 2.01 ± 0.12 | 1.87 ± 0.12 |
Methionine | 0.84 ± 0.03 | 0.81 ± 0.03 | 2.63 ± 0.04 | 2.60 ± 0.04 |
Isoleucine | 3.34 ± 0.04 | 3.57 ± 0.06 | 3.71 ± 0.09 | 3.46 ± 0.04 |
Leucine | 5.60 ± 0.03 | 5.73 ± 0.28 | 6.61 ± 0.16 | 6.01 ± 0.12 |
Tyrosine | 2.37 ± 0.38 | 2.19 ± 0.35 | 2.67 ± 0.10 | 2.14 ± 0.06 |
Phenylalanine | 3.69 ± 0.11 | 3.54 ± 0.11 | 3.80 ± 0.08 | 3.36 ± 0.06 |
Histidine | 0.93 ± 0.05 | 0.58 ± 0.05 | 2.23 ± 0.07 | 2.77 ± 0.08 |
Lysine | 1.55 ± 0.15 | 1.62 ± 0.15 | 5.32 ± 0.17 | 4.84 ± 0.09 |
Arginine | 5.42 ± 0.18 | 5.09 ± 0.37 | 5.42 ± 0.13 | 4.75 ± 0.10 |
Proline | 8.25 ± 0.08 | 8.27 ± 0.41 | 5.65 ± 0.04 | 4.38 ± 0.15 |
Tryptophan | 0.42 ± 0.09 | 0.27 ± 0.07 | 0.73 ± 0.04 | 0.63 ± 0.02 |
Item | Week 2–3 | Week 5–6 | ||
---|---|---|---|---|
Low-Nitrogen Group | Non-Nitrogen Group | Low-Nitrogen Group | Non-NitrogenGroup | |
Initial body weight, g | 105.48 ± 4.91 | 102.54 ± 7.38 | 377.08 ± 4.38 | 377.92 ± 3.80 |
Final body weight, g | 70.14 ± 5.17 | 83.55 ± 8.34 | 305.13 ± 6.56 | 284.83 ± 8.88 |
Feed intake, g/day | 7.96 ± 0.22 | 5.24 ± 0.39 | 17.7 ± 2.10 | 11.30 ± 1.50 |
N intake, mg/day | 75.22 ± 0.002 | 5.16 ± 0.0004 | 166.82 ± 0.019 | 11.12 ± 0.002 |
N excretion, mg/day | 26.33 ± 0.007 | 18.03 ± 0.002 | 98.28 ± 0.011 | 34.47 ± 0.004 |
N retention, mg/day | 48.89 ± 0.007 | 68.53 ± 0.03 | ||
Creatinine excretion, mg/day | 0.25 ± 0.04 | 0.42 ± 0.12 | ||
Parameter “c” | 14.58 | 10.52 |
Item | Endogenous Amino Acid Excretion | Loss of Feather Dander (mg/d) | Total Losses (mg/d) | Amino Acid Maintenance Mode (%) | ||
---|---|---|---|---|---|---|
Amino Acid Pattern (mg/d) | Non-Amino Acid Pattern (mg/d) | Creatinine Pattern (mg/d) | ||||
Nitrogen | 4.38 ± 1.12 | 13.56 ± 1.22 | 0.093 ± 0.02 | 48.89 ± 0.01 | 66.92 | |
Aspartic acid | 2.71 ± 0.62 | 6.20 ± 0.51 | 18.00 ± 2.86 | 26.91 | 6.43 | |
Threonine | 1.61 ± 0.42 | 3.40 ± 0.28 | 10.60 ± 1.68 | 15.61 | 3.73 | |
Serine | 2.13 ± 0.74 | 3.65 ± 0.29 | 23.35 ± 3.70 | 29.13 | 6.96 | |
Glutamic acid | 4.62 ± 1.20 | 10.52 ± 0.87 | 26.37 ± 4.18 | 41.51 | 9.93 | |
Glycine | 2.54 ± 0.71 | 6.13 ± 0.51 | 0.17 ± 0.03 | 17.08 ± 2.71 | 25.92 | 6.20 |
Alanine | 2.19 ± 0.71 | 6.47 ± 0.53 | 12.71 ± 2.02 | 21.36 | 5.11 | |
Valine | 1.69 ± 0.47 | 3.53 ± 0.29 | 16.59 ± 2.63 | 21.81 | 5.22 | |
Cystine | 2.54 ± 0.57 | 1.70 ± 0.14 | 20.84 ± 3.31 | 25.08 | 6.00 | |
Methionine | 0.88 ± 0.30 | 2.23 ± 0.18 | 0.33 ± 0.06 | 2.57 ± 0.41 | 6.00 | 1.44 |
Isoleucine | 1.22 ± 0.39 | 3.14 ± 0.26 | 10.21 ± 1.62 | 14.57 | 3.48 | |
Leucine | 2.10 ± 0.75 | 5.60 ± 0.46 | 17.11 ± 2.72 | 24.81 | 5.93 | |
Tyrosine | 0.55 ± 0.18 | 2.26 ± 0.19 | 7.24 ± 1.15 | 10.05 | 2.40 | |
Phenylalanine | 1.50 ± 0.36 | 3.22 ± 0.27 | 11.28 ± 1.79 | 16.00 | 3.83 | |
Histidine | 0.73 ± 0.13 | 1.89 ± 0.16 | 2.84 ± 0.45 | 5.46 | 1.31 | |
Lysine | 1.24 ± 0.10 | 4.51 ± 0.37 | 4.74 ± 0.75 | 10.48 | 2.51 | |
Arginine | 1.49 ± 0.44 | 4.59 ± 0.38 | 0.39 ± 0.07 | 16.56 ± 2.63 | 23.04 | 5.51 |
Proline | 2.23 ± 0.75 | 4.79 ± 0.39 | 25.21 ± 4.00 | 32.22 | 7.70 | |
Tryptophan | 0.36 ± 0.04 | 0.62 ± 0.05 | 1.28 ± 0.20 | 2.26 | 0.54 |
Item | Endogenous Amino Acid Excretion | Loss of Feather Dander (mg/d) | Total Losses (mg/d) | Amino Acid Maintenance Mode (%) | ||
---|---|---|---|---|---|---|
Amino Acid Pattern (mg/d) | Non-Amino Acid Pattern (mg/d) | Creatinine Pattern (mg/d) | ||||
Nitrogen | 8.64 ± 1.34 | 25.67 ± 2.06 | 0.16 ± 0.04 | 68.53 ± 0.03 | 103.00 | |
Aspartic acid | 6.56 ± 0.71 | 9.75 ± 0.88 | 24.42 ± 1.95 | 40.73 | 6.33 | |
Threonine | 3.66 ± 0.35 | 5.65 ± 0.51 | 15.38 ± 1.23 | 24.69 | 3.84 | |
Serine | 4.05 ± 0.33 | 5.57 ± 0.50 | 32.85 ± 2.62 | 42.47 | 6.60 | |
Glutamic acid | 9.22 ± 1.13 | 18.11 ± 1.64 | 37.91 ± 3.03 | 65.24 | 10.13 | |
Glycine | 4.63 ± 0.59 | 10.97 ± 0.99 | 0.28 ± 0.08 | 22.49 ± 1.80 | 38.37 | 5.96 |
Alanine | 5.60 ± 0.69 | 10.88 ± 0.98 | 18.85 ± 1.51 | 35.32 | 5.49 | |
Valine | 4.18 ± 0.43 | 5.23 ± 0.47 | 23.90 ± 1.91 | 33.31 | 5.17 | |
Cystine | 4.81 ± 0.23 | 3.00 ± 0.27 | 31.23 ± 2.49 | 39.03 | 6.06 | |
Methionine | 1.62 ± 0.29 | 4.17 ± 0.38 | 0.56 ± 0.16 | 3.64 ± 0.25 | 9.82 | 1.53 |
Isoleucine | 2.90 ± 0.39 | 5.55 ± 0.50 | 15.29 ± 1.22 | 23.75 | 3.69 | |
Leucine | 4.38 ± 052 | 9.64 ± 0.87 | 24.54 ± 1.96 | 38.56 | 5.99 | |
Tyrosine | 1.46 ± 0.19 | 3.43 ± 0.31 | 9.38 ± 0.75 | 14.28 | 2.22 | |
Phenylalanine | 3.37 ± 0.22 | 5.39 ± 0.49 | 15.16 ± 1.21 | 23.93 | 3.72 | |
Histidine | 0.84 ± 0.08 | 4.44 ± 0.40 | 2.48 ± 0.20 | 7.77 | 1.21 | |
Lysine | 2.71 ± 0.22 | 7.76 ± 0.70 | 6.94 ± 0.55 | 17.41 | 2.70 | |
Arginine | 2.51 ± 0.19 | 7.62 ± 0.69 | 0.66 ± 0.19 | 22.46 ± 1.74 | 32.59 | 5.06 |
Proline | 5.91 ± 0.80 | 7.03 ± 0.63 | 35.42 ± 2.83 | 48.36 | 7.51 | |
Tryptophan | 0.70 ± 0.09 | 1.01 ± 0.09 | 1.16 ± 0.09 | 2.86 | 0.44 |
Item | Week 2 | Week 6 | ||
---|---|---|---|---|
Standard Diet Group 1 | Non-Nitrogen Diet Group 1 | Standard Diet Group 2 | Non-Nitrogen Diet Group 2 | |
Initial body weight, g | 100.80 ± 2.91 | 99.78 ± 2.36 | 275.85 ± 3.10 | 273.82 ± 5.14 |
Feed intake, g/day | 11.57 ± 0.76 | 5.82 ± 0.31 | 19.33 ± 0.84 | 9.96 ± 0.42 |
Feces and urine excretion, g/day | 2.38 ± 0.17 | 0.21 ± 0.01 | 3.98 ± 0.10 | 0.44 ± 0.03 |
Protein intake, g/day | 2.22 ± 0.15 | - | 3.74 ± 0.16 | - |
Protein excretion, g/day | 0.60 ± 0.06 | 0.065 ± 0.01 | 0.96 ± 0.05 | 0.17 ± 0.02 |
Net protein availability, % | 76.13 ± 1.99 | 78.99 ± 0.70 |
Amino Acid | 14 Days Old | 42 Days Old |
---|---|---|
Aspartic acid | 85.91 ± 1.70 | 87.22 ± 0.86 |
Threonine | 80.56 ± 2.11 | 81.62 ± 2.20 |
Serine | 84.18 ± 2.34 | 86.12 ± 2.50 |
Glutamic acid | 89.08 ± 1.76 | 90.60 ± 1.47 |
Glycine | 76.66 ± 2.45 | 78.61 ± 1.97 |
Alanine | 81.69 ± 2.52 | 81.54 ± 2.57 |
Valine | 78.45 ± 2.68 | 81.07 ± 3.40 |
Cystine | 87.96 ± 1.78 | 87.85 ± 3.27 |
Methionine | 85.43 ± 3.48 | 85.25 ± 2.67 |
Isoleucine | 83.05 ± 2.29 | 83.44 ± 2.25 |
Leucine | 84.90 ± 2.40 | 87.33 ± 2.45 |
Tyrosine | 72.35 ± 3.66 | 73.54 ± 2.77 |
Phenylalanine | 86.02 ± 1.61 | 83.96 ± 2.60 |
Histidine | 83.29 ± 2.61 | 79.75 ± 2.94 |
Lysine | 72.96 ± 4.90 | 81.09 ± 2.48 |
Arginine | 86.73 ± 3.06 | 87.80 ± 2.08 |
Proline | 87.92 ± 2.98 | 90.74 ± 1.57 |
Tryptophan | 87.26 ± 0.45 | 77.88 ± 2.30 |
Item | Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 |
---|---|---|---|---|---|---|
Protein | 21.15 | 20.54 | 18.26 | 18.77 | 17.79 | 16.51 |
Aspartic acid | 1.284 | 1.251 | 1.103 | 1.111 | 1.059 | 0.992 |
Threonine | 0.750 | 0.730 | 0.684 | 0.686 | 0.650 | 0.601 |
Serine | 1.542 | 1.489 | 1.333 | 1.301 | 1.171 | 0.984 |
Glutamic acid | 1.925 | 1.880 | 1.755 | 1.782 | 1.726 | 1.661 |
Glycine | 1.227 | 1.196 | 1.041 | 1.059 | 1.028 | 0.992 |
Alanine | 0.961 | 0.943 | 0.909 | 0.933 | 0.921 | 0.912 |
Valine | 1.121 | 1.086 | 0.996 | 0.980 | 0.894 | 0.773 |
Cystine | 1.347 | 1.296 | 1.235 | 1.193 | 1.050 | 0.843 |
Methionine | 0.226 | 0.225 | 0.210 | 0.226 | 0.241 | 0.267 |
Isoleucine | 0.715 | 0.695 | 0.675 | 0.676 | 0.639 | 0.590 |
Leucine | 1.208 | 1.176 | 1.093 | 1.099 | 1.046 | 0.977 |
Tyrosine | 0.504 | 0.490 | 0.412 | 0.413 | 0.391 | 0.362 |
Phenylalanine | 0.786 | 0.764 | 0.670 | 0.671 | 0.634 | 0.584 |
Histidine | 0.229 | 0.226 | 0.169 | 0.189 | 0.212 | 0.250 |
Lysine | 0.414 | 0.412 | 0.399 | 0.429 | 0.455 | 0.500 |
Arginine | 1.147 | 1.114 | 0.951 | 0.951 | 0.896 | 0.824 |
Proline | 1.684 | 1.629 | 1.463 | 1.435 | 1.302 | 1.114 |
Tryptophan | 0.098 | 0.096 | 0.063 | 0.067 | 0.069 | 0.072 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Xia, Z.-Y.; Li, H.-L.; Huang, Y.-X.; Refaie, A.; Deng, Z.-C.; Sun, L.-H. Estimation of Protein and Amino Acid Requirements in Layer Chicks Depending on Dynamic Model. Animals 2024, 14, 764. https://doi.org/10.3390/ani14050764
Liu M, Xia Z-Y, Li H-L, Huang Y-X, Refaie A, Deng Z-C, Sun L-H. Estimation of Protein and Amino Acid Requirements in Layer Chicks Depending on Dynamic Model. Animals. 2024; 14(5):764. https://doi.org/10.3390/ani14050764
Chicago/Turabian StyleLiu, Miao, Zhi-Yuan Xia, Hong-Lin Li, Yu-Xuan Huang, Alainaa Refaie, Zhang-Chao Deng, and Lv-Hui Sun. 2024. "Estimation of Protein and Amino Acid Requirements in Layer Chicks Depending on Dynamic Model" Animals 14, no. 5: 764. https://doi.org/10.3390/ani14050764
APA StyleLiu, M., Xia, Z. -Y., Li, H. -L., Huang, Y. -X., Refaie, A., Deng, Z. -C., & Sun, L. -H. (2024). Estimation of Protein and Amino Acid Requirements in Layer Chicks Depending on Dynamic Model. Animals, 14(5), 764. https://doi.org/10.3390/ani14050764