Fish Responses to Alternative Feeding Ingredients under Abiotic Chronic Stress
Abstract
:Simple Summary
Abstract
1. Introduction
2. Abiotic Chronic Stress Response and Feeding Intervention
2.1. Somatic Growth
2.2. Metabolic and Cellular Markers
2.3. Oxidative Stress
2.4. Immune Response
Nutrient | Supplementation | Specie | Chronic Stress Factor | Observation | Reference |
---|---|---|---|---|---|
Tryptophan | Argyrosomus regius | Crowding and netting stress for four months | 0.25% Trp | No affects body weight, maintain glucose, lactate, and cortisol level ↓ Cortisol in mucus skin ↓ Plasma lactate | [38] |
Tryptophan | Oncorhynchus mykiss | High density for 70 days | 5 g Trp per kg diet | ↑ Lysozyme ↑ Bactericidal activity ↓ CAT and MDA | [33] |
Methionine, Lysine, Tryptophan, Threonine | Oncorhynchus mykiss | For six weeks, two times per week, handling stress 30 s of chasing, followed by capture in nets, removal from tanks, and 30 s of air exposure | 0.17% DL-Methionine 0.81% L-Lysine sulfate 0.22% L-Tryptophan 0.20% L-Threonine | ||
Phenylalanine | Sparus aurata | Confinement and netting/chasing stress 5 min 3 times a day | 5% Phe | ↓ Plasma lactate | [41] |
Magnesium and selenium nanoparticles | Lates calcarifer | Freshwater | 4 mg NanoSe/kg diet 500 mg NanoMg/kg diet | ↑ Final weight, weight gain, SGR, feed intake ↑ IgM and ACH50 ↑ ALT, AST ↓ Glucose | [48] |
Nucleotides | Hybrid stripe bass Morone chrysops × Morone saxatilis | Salinity of 15 g/L for four weeks | 0.5% de Adenosine 5′-monophosphate | ↓ Blood glucose ↑ Weight gain ↑ Lysozyme activity, anti-protease activity | [72] |
Vitamin E and NanoSe | Oncorhynchus mykiss | Dense stocking density (80 kg/m3) 60 days | 500 mg/kg Vit E and 1 mg/kg nano Se | Final Weight ↑ SGR ↑ FCR ↑ Cortisol ↓ Lactate ↓ ALT ↓ AST ↓ ALP ↓ | [73] |
NanoSe, Vitiamin C and E | Oncorhynchus mykiss | Sublethal concentration of ammonia exposure (0.024 mg/L) | 0.2 mg/kg NanoSe, 200 mg/kg Vitamin C and 60 mg/kg Vitamin E | ↑ final weight, ↓ FCR ↓ AST and ALP ↑ ALT, TAG, IMg Lysozyme | [52] |
DHA/EPA | Salmo sala | Three weeks with an unpredictable chronic stress (UCS) protocol | 25 g/kg EPA 14.2 g/kg total fatty acids | ↑ weight gain ↓ mucosal fold height, enterocyte height, and vacuolization Gene expression related to environmental information processing | [74] |
n-6/n-3 | Salmo salar | Hypoxia 3 times per week, during four weeks | Diet 6 46.7% LA 18:2n-6 0.1%ARA 20:4n-6 3.1%18:3n-3 2.0% EPA 20:5n-3 1.8% DHA 22:6n-3 3.8% EPA + DHA | Suppressed cortisol response. ↑ Level of eicosanoid PGD2 in liver ↑ level or leukotrienes LTB4 1 h after acute stress, LTB4 was the eicosanoid with the highest concentration before the acute stressor. ↓ IGF-1 was significantly lower | [75] |
S. cerevisiae | Nile tilapia (Oreochromis niloticus) | Heat and hypoxia, Dynamic heat stress 0.01 °C per min up to 40 °C Static heat stress from 40 °C to 28 °C for 90 min Exposure to glyphosate and/or malathion Hypoxia stress all consume of oxygen (0 mg/L) for 24 h | 50–70% S. cerevisiae | ↑ survival | [76] |
Selenium yeast supplementation | Nile tilapia (Oreochromis niloticus) | 60 days against the harmful effects of glyphosate and/or malathion chronic toxicity | Selenium yeast supplementation 3.3 mg/kg diet (2.36 mg/kg selenomethionine and 0.94 mg organic selenium) | ↑ survival ↑ growth ↑ SGR, ↓ FCR ↑ protection for free radicals | [77] |
Spent oleaginous yeast | Juvenile red sea bream (Pagrus major) | Low salinity water (0.2%) The test was terminated when all the fish died. | 2.5%, 25 g/kg supplement spent oleaginous yeast | ↑ FW, SGR ↓ FCR ↑ SOD, GPx, IgM, and Lysozyme activity Maintain values of MDA | [78] |
Dietary selenium yeast and tea-polyphenols | Juvenile Wuchang bream (Megalobrama amblycephala) | Ammonia stress 22.5 mg/L ammonia | Dietary selenium yeast and tea-polyphenols | ↓ Cortisol, TNFα, IL-1β, ↓ GPx ↑ CAT | [53] |
Bacillus circulans PB7 (BCPB7) and Fructoligosaccharide | Juveniles Labeo rohita | Low pH for 60 days | ↑ WG, SGR ↓FCR ↑ Lysozyme activity ↓ Cortisol ↓ HSP70 | [71] | |
B. coagulants | Common carp (Cyprinus carpio) | Long-term exposure to Cd2+ 30 and 60 days | 2.0 × 108 CFU/g of B. coagulants in diet | Activation of Nrf gene family for resistance to oxidative stress and immune response | [79] |
Clostridium autoethanogenum | Largemouth bass (Micropterus salmoides) | Clostridium autoethanogenum | [80] |
3. Discussion
3.1. Feeding Intervention with Alternative Ingredients in Fish
3.2. Animal By-Products Meal
3.3. Bacteria
3.4. Fungal (Yeast, Filamentous Fungi, and Mushroom)
3.4.1. Filamentous Fungus
3.4.2. Mushroom Meal
3.5. Insect
3.6. Non-Conventional Plant Meal
4. Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shoko, A.P.; Limbu, S.M.; Mrosso, H.D.J.; Mgaya, Y.D. A comparison of diurnal dynamics of water quality parameters in Nile tilapia (Oreochromis niloticus, Linnaeus, 1758) monoculture and polyculture with African sharp tooth catfish (Clarias gariepinus, Burchell, 1822) in earthen ponds. Int. Aquat. Res. 2014, 6, 56. [Google Scholar] [CrossRef]
- Mateus, A.P.; Power, D.M.; Canário, A.V.M. Stress and Disease in Fish; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780128045640. [Google Scholar]
- Ahmed, I.; Reshi, Q.M.; Fazio, F. The influence of the endogenous and exogenous factors on hematological parameters in different fish species: A review. Aquac. Int. 2020, 28, 869–899. [Google Scholar] [CrossRef]
- Cossins, A.R.; Crawford, D.L. Fish as models for environmental genomics. Nat. Rev. Genet. 2005, 6, 324–333. [Google Scholar] [CrossRef]
- Chowdhury, S.; Saikia, S.K. Oxidative Stress in Fish: A Review. J. Sci. Res. 2020, 12, 145–160. [Google Scholar] [CrossRef]
- Guo, H.; Dixon, B. Understanding acute stress-mediated immunity in teleost fish. Fish Shellfish Immunol. Rep. 2021, 2, 100010. [Google Scholar] [CrossRef] [PubMed]
- Jerez, I. Bienestar Animal en el Cultivo de Dorada (Sparus aurata) Mecanismos de Atenuación del Estrés. Ph.D. Thesis, Universidad de Cádiz, Tesis para grado Doctor en Recursos Marinos (Acuicultura) de la Escuela Internacional de Doctorado en Estudios del Mar (EIDEMAR) de la Universidad de Cádiz, Cádiz, España, 2019. Volume 53. [Google Scholar]
- Hoem, K.S.; Tveten, A. Current approaches in decoding the molecular mechanisms of long-term stress in adult farmed Atlantic salmon (Salmo salar). Rev. Aquac. 2019, 12, 1708–1720. [Google Scholar] [CrossRef]
- Ugwemorubong, U.G.; Akinrotimi, O.A. Management of Stress in Fish for Sustainable Aquaculture Development; Researcher 2011; Marsland Press: New York, NY, USA, 2011; Volume 3, ISBN 1553-9865. [Google Scholar]
- Boonstra, R. Reality as the leading cause of stress: Rethinking the impact of chronic stress in nature. Funct. Ecol. 2013, 27, 11–23. [Google Scholar] [CrossRef]
- Abisha, R.; Krishnani, K.K.; Sukhdhane, K.; Verma, A.K.; Brahmane, M.; Chadha, N.K. Sustainable development of climate-resilient aquaculture and culture-based fisheries through adaptation of abiotic stresses: A review. J. Water Clim. Chang. 2022, 13, 2671–2689. [Google Scholar] [CrossRef]
- Pawlak, P.; Burren, A.; Seitz, A.; Glauser, G.; Pietsch, C. Differential effects of acute eustress and distress on gene regulation patterns in the carp (Cyprinus carpio L.) brain. Aquac. Res. 2022, 53, 5075–5096. [Google Scholar] [CrossRef]
- Ataallahi, M.; Nejad, J.G.; Park, K.-H. Selection of appropriate biomatrices for studies of chronic stress in animals: A review. J. Anim. Sci. Technol. 2022, 64, 621–639. [Google Scholar] [CrossRef]
- Schreck, C.B.; Tort, L. The concept of stress in fish. In Fish Physiology: Biology of Stress in Fish; Elsvier: Amsterdam, The Netherlands, 2016; Volume 2016. [Google Scholar]
- Balasch, J.C.; Tort, L. Netting the Stress Responses in Fish. Front. Endocrinol. 2019, 10, 62. [Google Scholar] [CrossRef]
- Hanke, I.; Hassenrück, C.; Ampe, B.; Kunzmann, A.; Gärdes, A.; Aerts, J. Chronic stress under commercial aquaculture conditions: Scale cortisol to identify and quantify potential stressors in milkfish (Chanos chanos) mariculture. Aquaculture 2020, 526, 735352. [Google Scholar] [CrossRef]
- Lee, C.S.; Lim, C.; Gatlin, D.M.; Webster, C.D. Dietary Nutrients, Additives, and Fish Health; Wiley-Blackwell: Chennai, India, 2015; ISBN 9781119005568. [Google Scholar]
- Gupta, A.; Gupta, S.K.; Priyam, M.; Siddik, M.A.B.; Kumar, N.; Mishra, P.K.; Gupta, K.K.; Sarkar, B.; Sharma, T.R.; Pattanayak, A. Immunomodulation by dietary supplements: A preventive health strategy for sustainable aquaculture of tropical freshwater fish, Labeo rohita (Hamilton, 1822). Rev. Aquac. 2021, 13, 2364–2394. [Google Scholar] [CrossRef]
- Yılmaz, S.; Ergün, S.; Yiğit, M.; Yılmaz, E. An Extensive Review on the Use of Feed Additives against Fish Diseases and Improvement of Health Status of Fish in Turkish Aquaculture Sector. Aquac. Stud. 2022, 22, AQUAST710. [Google Scholar] [CrossRef]
- Mugwanya, M.; Dawood, M.A.O.; Kimera, F.; Sewilam, H. Anthropogenic temperature fluctuations and their effect on aquaculture: A comprehensive review. Aquac. Fish. 2022, 7, 223–243. [Google Scholar] [CrossRef]
- Kumar, P.; Thirunavukkarasu, A.R.; Subburaj, R.; Thiagarajan, G. Concept of Stress and Its Mitigation in Aquaculture. In Advances in Marine and Brackishwater Aquaculture; Springer: New Delhi, India, 2015; pp. 95–100. [Google Scholar]
- Ciji, A.; Akhtar, M.S. Stress management in aquaculture: A review of dietary interventions. Rev. Aquac. 2021, 13, 2190–2247. [Google Scholar] [CrossRef]
- Eissa, N.; Wang, H. Transcriptional stress responses to environmental and husbandry stressors in aquaculture species. Rev. Aquac. 2014, 8, 61–88. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Noreldin, A.E.; Sewilam, H. Blood biochemical variables, antioxidative status, and histological features of intestinal, gill, and liver tissues of African catfish (Clarias gariepinus) exposed to high salinity and high-temperature stress. Environ. Sci. Pollut. Res. 2022, 29, 56357–56369. [Google Scholar] [CrossRef]
- Sadoul, B.; Alfonso, S.; Cousin, X.; Prunet, P.; Bégout, M.-L.; Leguen, I. Global assessment of the response to chronic stress in European sea bass. Aquaculture 2021, 544, 737072. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Qi, C.; Li, E.; Du, Z.; Qin, J.G.; Chen, L. Metabolic response of Nile tilapia (Oreochromis niloticus) to acute and chronic hypoxia stress. Aquaculture 2018, 495, 187–195. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Monier, M.N.; Hoseinifar, S.H.; Faggio, C. Fish response to hypoxia stress: Growth, physiological, and immunological biomarkers. Fish Physiol. Biochem. 2019, 45, 997–1013. [Google Scholar] [CrossRef]
- Islam, M.J.; Kunzmann, A.; Slater, M.J. Responses of aquaculture fish to climate change-induced extreme temperatures: A review. J. World Aquac. Soc. 2022, 53, 314–366. [Google Scholar] [CrossRef]
- Lemos, L.S.; Angarica, L.M.; Hauser-Davis, R.A.; Quinete, N. Cortisol as a Stress Indicator in Fish: Sampling Methods, Analytical Techniques, and Organic Pollutant Exposure Assessments. Int. J. Environ. Res. Public Health 2023, 20, 6237. [Google Scholar] [CrossRef]
- Sadoul, B.; Mathilakath, M. 5. Stress and Growth. In Biology of Stress in Fish; Elsevier Inc.: Amsterdam, The Netherlands, 2016; Volume 35, pp. 167–205. ISBN 9780128027288. [Google Scholar]
- Johnston, I.A.; Bower, N.I.; Macqueen, D.J. Growth and the regulation of myotomal muscle mass in teleost fish. J. Exp. Biol. 2011, 214, 1617–1628. [Google Scholar] [CrossRef]
- Fuentes, E.N.; Valdés, J.A.; Molina, A.; Björnsson, B.T. Regulation of skeletal muscle growth in fish by the growth hormone—Insulin-like growth factor system. Gen. Comp. Endocrinol. 2013, 192, 136–148. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Taheri Mirghaed, A.; Ghelichpour, M. Effects of dietary tryptophan levels and fish stocking density on immunological and antioxidant responses and bactericidal activity against Aeromonas hydrophila in rainbow trout (Oncorhynchus mykiss). Aquac. Res. 2020, 51, 1455–1463. [Google Scholar] [CrossRef]
- Tejpal, C.S.; Pal, A.K.; Sahu, N.P.; Ashish Kumar, J.; Muthappa, N.A.; Vidya, S.; Rajan, M.G. Dietary supplementation of l-tryptophan mitigates crowding stress and augments the growth in Cirrhinus mrigala fingerlings. Aquaculture 2009, 293, 272–277. [Google Scholar] [CrossRef]
- Yin, Y. Tryptophan metabolism in animals important roles in nutrition and health. Front. Biosci. 2011, S3, 152. [Google Scholar] [CrossRef] [PubMed]
- Lepage, O.; Tottmar, O.; Winberg, S. Elevated dietary intake of L-tryptophan counteracts the stress-induced elevation of plasma cortisol in rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 2002, 205, 3679–3687. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Pal, A.K.; Sahu, N.P.; Ciji, A.; Meena, D.K.; Das, P. Physiological responses of dietary tryptophan fed Labeo rohita to temperature and salinity stress. J. Anim. Physiol. Anim. Nutr. 2013, 97, 1075–1083. [Google Scholar] [CrossRef]
- Herrera, M.; Fernández-alacid, L.; Sanahuja, I.; Ibarz, A.; Salamanca, N.; Morales, E. Physiological and metabolic effects of a tryptophan-enriched diet to face up chronic stress in meagre (Argyrosomus regius). Aquaculture 2020, 522, 735102. [Google Scholar] [CrossRef]
- Salamanca, N.; Giráldez, I.; Morales, E.; de La Rosa, I.; Herrera, M. Phenylalanine and Tyrosine as Feed Additives for Reducing Stress and Enhancing Welfare in Gilthead Seabream and Meagre. Animals 2020, 11, 45. [Google Scholar] [CrossRef]
- Herrera, M.; Herves, M.A.; Giráldez, I.; Skar, K.; Mogren, H.; Mortensen, A.; Puvanendran, V. Effects of amino acid supplementations on metabolic and physiological parameters in Atlantic cod (Gadus morhua) under stress. Fish Physiol. Biochem. 2017, 43, 591–602. [Google Scholar] [CrossRef]
- Salamanca, N.; Moreno, O.; Giráldez, I.; Morales, E.; de la Rosa, I.; Herrera, M. Effects of Dietary Phenylalanine and Tyrosine Supplements on the Chronic Stress Response in the Seabream (Sparus aurata). Front. Physiol. 2022, 12, 775771. [Google Scholar] [CrossRef]
- Petitjean, Q.; Jean, S.; Gandar, A.; Côte, J.; Laffaille, P.; Jacquin, L. Stress responses in fish: From molecular to evolutionary processes. Sci. Total Environ. 2019, 684, 371–380. [Google Scholar] [CrossRef]
- Aedo, J.E.; Zuloaga, R.; Boltaña, S.; Molina, A.; Valdés, J.A. Membrane-initiated cortisol action modulates early pyruvate dehydrogenase kinase 2 (pdk2) expression in fish skeletal muscle. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2019, 233, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-Y.; Lee, T.-H.; Tseng, D.-Y. Glucocorticoid Receptor Mediates Cortisol Regulation of Glycogen Metabolism in Gills of the Euryhaline Tilapia (Oreochromis mossambicus). Fishes 2023, 8, 267. [Google Scholar] [CrossRef]
- Nipu, N.; Antomagesh, F.; Faught, E.; Vijayan, M.M. Glucocorticoid receptor activation reduces food intake independent of hyperglycemia in zebrafish. Sci. Rep. 2022, 12, 15677. [Google Scholar] [CrossRef] [PubMed]
- Svendsen, E.; Føre, M.; Økland, F.; Gräns, A.; Hedger, R.D.; Alfredsen, J.A.; Uglem, I.; Rosten, C.M.; Frank, K.; Erikson, U.; et al. Heart rate and swimming activity as stress indicators for Atlantic salmon (Salmo salar). Aquaculture 2021, 531, 735804. [Google Scholar] [CrossRef]
- da Fonseca, L.A.; Fagundes, V.; Girardi, F.M.; Dornelas, L.R.S. Blood values of cortisol, glucose, and lactate in healthy green turtle (Chelonia mydas) and affected by fibropapillomatosis. Comp. Clin. Path. 2020, 29, 1099–1105. [Google Scholar] [CrossRef]
- Longbaf Dezfouli, M.; Ghaedtaheri, A.; Keyvanshokooh, S.; Salati, A.P.; Mousavi, S.M.; Pasha-Zanoosi, H. Combined or individual effects of dietary magnesium and selenium nanoparticles on growth performance, immunity, blood biochemistry and antioxidant status of Asian seabass (Lates calcarifer) reared in freshwater. Aquac. Nutr. 2019, 25, 1422–1430. [Google Scholar] [CrossRef]
- Nakano, T.; Kameda, M.; Shoji, Y.; Hayashi, S.; Yamaguchi, T.; Sato, M. Effect of severe environmental thermal stress on redox state in salmon. Redox Biol. 2014, 2, 772–776. [Google Scholar] [CrossRef]
- Menon, S.V.; Kumar, A.; Middha, S.K.; Paital, B.; Mathur, S.; Johnson, R.; Kademan, A.; Usha, T.; Hemavathi, K.N.; Dayal, S.; et al. Water physicochemical factors and oxidative stress physiology in fish, a review. Front. Environ. Sci. 2023, 11, 1240813. [Google Scholar] [CrossRef]
- Kulczykowska, E. Stress Response System in the Fish Skin—Welfare Measures Revisited. Front. Physiol. 2019, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Harsij, M.; Gholipour Kanani, H.; Adineh, H. Effects of antioxidant supplementation (nano-selenium, vitamin C and E) on growth performance, blood biochemistry, immune status and body composition of rainbow trout (Oncorhynchus mykiss) under sub-lethal ammonia exposure. Aquaculture 2020, 521, 734942. [Google Scholar] [CrossRef]
- Guo, H.; Lin, W.; Wang, L.; Zhang, D.; Wu, X.; Li, L.; Li, D.; Tang, R.; Yang, L.; Qiu, Y. The supplementation of dietary selenium yeast and green tea-derived polyphenols improves antioxidant capacity and immune response in juvenile Wuchang bream under ammonia stress. Aquac. Res. 2020, 51, 3790–3803. [Google Scholar] [CrossRef]
- Flores-Méndez, L.C.; Lizárraga-Velázquez, C.E.; Sánchez-Gutiérrez, E.Y.; Arrizon, J.; Leyva-López, N.; Hernández, C. Study of the Effect of Dietary Agavin Supplementation in Blood Parameters and Antioxidant Enzymes of Juvenile Nile Tilapia (Oreochromis niloticus) under Stress Conditions. Fishes 2022, 7, 340. [Google Scholar] [CrossRef]
- De La Cruz-Marín, E.; Martínez-García, R.; López-Hernández, J.F.; Méndez-Marín, O.; De la Rosa-García, S.C.; Peña-Marín, E.S.; Tovar-Ramírez, D.; Sepúlveda-Quiroz, C.A.; Pérez-Jiménez, G.M.; Jiménez-Martínez, L.D.; et al. Inulin Supplementation in Diets for Tropical Gar (Atractosteus tropicus) Larvae: Effects on Growth, Survival, and Digestive and Antioxidant Enzyme Activities. Aquac. J. 2023, 3, 43–55. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, J.; Yan, M.; Tang, S.; Wang, X.; Qin, J.G.; Chen, L.; Li, E. Inulin alleviates hypersaline-stress induced oxidative stress and dysbiosis of gut microbiota in Nile tilapia (Oreochromis niloticus). Aquaculture 2020, 529, 735681. [Google Scholar] [CrossRef]
- Caipang, C.M.A.; Lazado, C.C. Nutritional impacts on fish mucosa: Immunostimulants, pre- and probiotics. In Mucosal Health in Aquaculture; Elsevier: Amsterdam, The Netherlands, 2015; pp. 211–272. [Google Scholar]
- Su, M.; Zhang, R.; Liu, N.; Zhang, J. Modulation of inflammatory response by cortisol in the kidney of spotted scat (Scatophagus argus) in vitro under different osmotic stresses. Fish Shellfish Immunol. 2020, 104, 46–54. [Google Scholar] [CrossRef]
- Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 2011, 35, 1366–1375. [Google Scholar] [CrossRef] [PubMed]
- Yada, T.; Tort, L. Stress and Disease Resistance: Immune System and Immunoendocrine Interactions. Fish Physiol. 2016, 35, 365–403. [Google Scholar] [CrossRef]
- Tort Bardolet, L.; Balasch Alemany, J.C.; Mackenzie, S. Fish health challenge after stress: Indicators of immunocompetence. Contrib. Sci. 2004, 2, 443–454. [Google Scholar]
- Dai, C.; Zheng, J.; Qi, L.; Deng, P.; Wu, M.; Li, L.; Yuan, J. Chronic stress boosts systemic inflammation and compromises antiviral innate immunity in Carassius gibel. Front. Immunol. 2023, 14, 1105156. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, I.; Couto, A.; Machado, M.; Castro, C.; Pousão-Ferreira, P.; Oliva-Teles, A.; Enes, P. Prebiotics effect on immune and hepatic oxidative status and gut morphology of white sea bream (Diplodus sargus). Fish Shellfish Immunol. 2016, 50, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Youn, H.S.; Kim, J.-H.; Lee, J.S.; Yoon, Y.Y.; Choi, S.J.; Lee, J.Y.; Kim, W.; Hwang, K.W. Lactobacillus plantarum Reduces Low-Grade Inflammation and Glucose Levels in a Mouse Model of Chronic Stress and Diabetes. Infect. Immun. 2021, 89, e0061520. [Google Scholar] [CrossRef] [PubMed]
- Hoseinifar, S.H.; Soleimani, N.; Ringø, E. Effects of dietary fructo-oligosaccharide supplementation on the growth performance, haemato-immunological parameters, gut microbiota and stress resistance of common carp (Cyprinus carpio) fry. Br. J. Nutr. 2014, 112, 1296–1302. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Qi, Q.; Yang, L.; Sun, P.; Yuan, X. Modulatory effect of fructooligosaccharide against triphenyltin-induced oxidative stress and immune suppression in goldfish (Carassius auratus). Ecotoxicol. Environ. Saf. 2021, 212, 111966. [Google Scholar] [CrossRef]
- Asencio-Alcudia, G.G.; Sepúlveda-Quiroz, C.A.; Pérez-Urbiola, J.C.; Rodríguez-Jaramillo, M.d.C.; Teles, A.; Salas-Leiva, J.S.; Martínez-García, R.; Jiménez-Martínez, L.D.; Galaviz, M.; Tovar-Ramírez, D.; et al. Stress-Protective Role of Dietary α-Tocopherol Supplementation in Longfin Yellowtail (Seriola rivoliana) Juveniles. Fishes 2023, 8, 526. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, P.; Xia, C.; Wu, Z.; Zhong, Z.; Xu, Y.; Zeng, Y.; Liu, H.; Liu, R.; Liao, M. Fructooligosaccharides supplementation mitigated chronic stress-induced intestinal barrier impairment and neuroinflammation in mice. J. Funct. Foods 2020, 72, 104060. [Google Scholar] [CrossRef]
- Zhang, C.-N.; Li, X.-F.; Tian, H.-Y.; Zhang, D.-D.; Jiang, G.-Z.; Lu, K.-L.; Liu, G.-X.; Liu, W.-B. Effects of fructooligosaccharide on immune response, antioxidant capability and HSP70 and HSP90 expressions of blunt snout bream (Megalobrama amblycephala) under high ammonia stress. Fish Physiol. Biochem. 2015, 41, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Pawar, N.A.; Prakash, C.; Kohli, M.P.S.; Jamwal, A.; Dalvi, R.S.; Devi, B.N.; Singh, S.K.; Gupta, S.; Lende, S.R.; Sontakke, S.D.; et al. Fructooligosaccharide and Bacillus subtilis synbiotic combination promoted disease resistance, but not growth performance, is additive in fish. Sci. Rep. 2023, 13, 11345. [Google Scholar] [CrossRef]
- Singh, S.K.; Tiwari, V.K.; Chadha, N.K.; Munilkumar, S.; Prakash, C.; Pawar, N.A. Effect of dietary synbiotic supplementation on growth, immune and physiological status of Labeo rohita juveniles exposed to low pH stress. Fish Shellfish Immunol. 2019, 91, 358–368. [Google Scholar] [CrossRef] [PubMed]
- de Cruz, C.R.; Yamamoto, F.Y.; Castillo, S.; Gatlin, D.M. Establishing the optimal adenosine 5′-monophosphate level for hybrid striped bass Morone chrysops × Morone saxatilis: Effects on growth performance, nutrient digestibility, and immune modulation during acute and chronic stress. Aquaculture 2020, 520, 734668. [Google Scholar] [CrossRef]
- Naderi, M.; Keyvanshokooh, S.; Salati, A.P.; Ghaedi, A. Effects of dietary vitamin E and selenium nanoparticles supplementation on acute stress responses in rainbow trout (Oncorhynchus mykiss) previously subjected to chronic stress. Aquaculture 2017, 473, 215–222. [Google Scholar] [CrossRef]
- Løvmo, S.D.; Sundh, H.; Whatmore, P.; Nordvi, M.F.; Sigholt, T.; Madaro, A.; Bardal, T.; Olsen, R.E. Intestinal health in Atlantic salmon post-smolt (Salmo salar) when fed low- and high HUFA diets. Aquaculture 2022, 557, 738318. [Google Scholar] [CrossRef]
- Hundal, B.K.; Liland, N.S.; Rosenlund, G.; Höglund, E.; Araujo, P.; Stubhaug, I.; Sissener, N.H. Increasing the dietary n-6/n-3 ratio alters the hepatic eicosanoid production after acute stress in Atlantic salmon (Salmo salar). Aquaculture 2021, 534, 736272. [Google Scholar] [CrossRef]
- Abass, D.A.; Obirikorang, K.A.; Campion, B.B.; Edziyie, R.E.; Skov, P.V. Dietary supplementation of yeast (Saccharomyces cerevisiae) improves growth, stress tolerance, and disease resistance in juvenile Nile tilapia (Oreochromis niloticus). Aquac. Int. 2018, 26, 843–855. [Google Scholar] [CrossRef]
- Hassan, M.A.; Hozien, S.T.; Abdel Wahab, M.M.; Hassan, A.M. Ameliorative effect of selenium yeast supplementation on the physio-pathological impacts ofchronic exposure to glyphosate and or malathion in Oreochromis niloticus. BMC Vet. Res. 2022, 18, 159. [Google Scholar] [CrossRef]
- Shadrack, R.S.; Manabu, I.; Koshio, S.; Waqalevu, V. Physiological condition, digestive enzyme, blood haemato-biochemistry, antioxidant, immune and stress response of juvenile red sea bream (Pagrus major) fed diets containing spent oleaginous yeast. Aquac. Rep. 2021, 21, 100913. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, X.; Dong, C. Effect of Feed Supplementation with Bacillus coagulans on Nrf Gene Family Expression in Common Carp (Cyprinus carpio) under Long-Term Exposure to Cd2+. Fishes 2022, 7, 48. [Google Scholar] [CrossRef]
- Zhu, S.; Gao, W.; Wen, Z.; Chi, S.; Shi, Y.; Hu, W.; Tan, B. Partial substitution of fish meal by Clostridium autoethanogenum protein in the diets of juvenile largemouth bass (Micropterus salmoides). Aquac. Rep. 2022, 22, 100938. [Google Scholar] [CrossRef]
- Karimi, S.; Ferreira, J.A.; Taherzadeh, M.J. Filamentous fungi as animal and fish feed ingredients. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 399–433. [Google Scholar]
- Lewis, M.J.; Francis, D.S.; Blyth, D.; Moyano, F.J.; Smullen, R.P.; Turchini, G.M.; Booth, M.A. A comparison of in-vivo and in-vitro methods for assessing the digestibility of poultry by-product meals using barramundi (lates calcarifer); impacts of cooking temperature and raw material freshness. Aquaculture 2019, 498, 187–200. [Google Scholar] [CrossRef]
- Leiva, A.; Granados-Chinchilla, F.; Redondo-Solano, M.; Arrieta-González, M.; Pineda-Salazar, E.; Molina, A. Characterization of the animal by-product meal industry in Costa Rica: Manufacturing practices through the production chain and food safety. Poult. Sci. 2018, 97, 2159–2169. [Google Scholar] [CrossRef]
- Rimoldi, S.; Terova, G.; Ascione, C.; Giannico, R.; Brambilla, F. Next generation sequencing for gut microbiome characterization in rainbow trout (Oncorhynchus mykiss) fed animal by-product meals as an alternative to fishmeal protein sources. PLoS ONE 2018, 13, e0193652. [Google Scholar] [CrossRef]
- Dawson, M.R.; Alam, M.S.; Watanabe, W.O.; Carroll, P.M.; Seaton, P.J. Evaluation of Poultry By-Product Meal as an Alternative to Fish Meal in the Diet of Juvenile Black Sea Bass Reared in a Recirculating Aquaculture System. N. Am. J. Aquac. 2018, 80, 74–87. [Google Scholar] [CrossRef]
- Gaylord, T.G.; Sealey, W.M.; Barrows, F.T.; Myrick, C.A.; Fornshell, G. Evaluation of ingredient combinations from differing origins (fishmeal, terrestrial animal and plants) and two different formulated nutrient targets on rainbow trout growth and production efficiency. Aquac. Nutr. 2017, 23, 1319–1328. [Google Scholar] [CrossRef]
- Zare, M.; Kazempour, M.; Hosseini, H.; Hosseini Choupani, S.M.; Akhavan, S.R.; Rombenso, A.; Esmaeili, N. Fish Meal Replacement and Early Mild Stress Improve Stress Responsiveness and Survival of Fish after Acute Stress. Animals 2023, 13, 1314. [Google Scholar] [CrossRef]
- Sharif, M.; Zafar, M.H.; Aqib, A.I.; Saeed, M.; Farag, M.R.; Alagawany, M. Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture 2021, 531, 735885. [Google Scholar] [CrossRef]
- Islam, F.; Salam, M.A.; Rahman, M.A.; Paul, S.I.; Das, T.R.; Rahman, M.M.; Shaha, D.C.; Gupta, D.R.; Alam, M.S.; Islam, T. Plant endophytic yeasts Pichia fermentans and Meyerozyma caribbica improve growth, biochemical composition, haematological parameters and morphology of internal organs of premature Barbonymus gonionotus. Aquac. Rep. 2021, 19, 100575. [Google Scholar] [CrossRef]
- Costabile, M. Measuring the 50% Haemolytic Complement (CH50) Activity of Serum. J. Vis. Exp. 2010, 29, 1923. [Google Scholar] [CrossRef]
- Tang, S.; Liu, S.; Zhang, J.; Zhou, L.; Wang, X.; Zhao, Q.; Weng, W.; Qin, J.G.; Chen, L.; Li, E. Relief of hypersaline stress in Nile tilapia Oreochromis niloticus by dietary supplementation of a host-derived Bacillus subtilis strain. Aquaculture 2020, 528, 735542. [Google Scholar] [CrossRef]
- Abou-El-Atta, M.E.; Abdel-Tawwab, M.; Abdel-Razek, N.; Abdelhakim, T.M.N. Effects of dietary probiotic Lactobacillus plantarum and whey protein concentrate on the productive parameters, immunity response and susceptibility of Nile tilapia, Oreochromis niloticus (L.), to Aeromonas sobria infection. Aquac. Nutr. 2019, 25, 1367–1377. [Google Scholar] [CrossRef]
- Taylor, J.W.; Ellison, C.E. Mushrooms: Morphological complexity in the fungi. Proc. Natl. Acad. Sci. USA 2010, 107, 11655–11656. [Google Scholar] [CrossRef] [PubMed]
- Agboola, J.O.; Øverland, M.; Skrede, A.; Hansen, J.Ø. Yeast as major protein-rich ingredient in aquafeeds: A review of the implications for aquaculture production. Rev. Aquac. 2021, 13, 949–970. [Google Scholar] [CrossRef]
- Jach, M.E.; Serefko, A.; Ziaja, M.; Kieliszek, M. Yeast Protein as an Easily Accessible Food Source. Metabolites 2022, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chi, S.; Tan, B.; Nie, Q.; Hu, J.; Dong, X.; Yang, Q.; Liu, H.; Zhang, S. Yeast hydrolysate helping the complex plant proteins to improve the growth performance and feed utilization of Litopenaeus vannamei. Aquac. Rep. 2020, 17, 100375. [Google Scholar] [CrossRef]
- Yuan, X.-Y.; Liu, W.-B.; Liang, C.; Sun, C.-X.; Xue, Y.-F.; Wan, Z.-D.; Jiang, G.-Z. Effects of partial replacement of fish meal by yeast hydrolysate on complement system and stress resistance in juvenile Jian carp (Cyprinus carpio var. Jian). Fish Shellfish Immunol. 2017, 67, 312–321. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Z.; Wang, C.; Li, E.; Qin, J.G.; Chen, L. Dietary supplementation of selenium yeast enhances the antioxidant capacity and immune response of juvenile Eriocheir Sinensis under nitrite stress. Fish Shellfish Immunol. 2019, 87, 22–31. [Google Scholar] [CrossRef]
- Chen, M.; Chen, X.-Q.; Tian, L.-X.; Liu, Y.-J.; Niu, J. Enhanced intestinal health, immune responses and ammonia resistance in Pacific white shrimp (Litopenaeus vannamei) fed dietary hydrolyzed yeast (Rhodotorula mucilaginosa) and Bacillus licheniformis. Aquac. Rep. 2020, 17, 100385. [Google Scholar] [CrossRef]
- Jin, M.; Xiong, J.; Zhou, Q.-C.; Yuan, Y.; Wang, X.-X.; Sun, P. Dietary yeast hydrolysate and brewer’s yeast supplementation could enhance growth performance, innate immunity capacity and ammonia nitrogen stress resistance ability of Pacific white shrimp (Litopenaeus vannamei). Fish Shellfish Immunol. 2018, 82, 121–129. [Google Scholar] [CrossRef]
- Money, N.P. Fungal Cell Biology and Development. In The Fungi; Elsevier: Amsterdam, The Netherlands, 2016; pp. 37–66. [Google Scholar]
- Kües, U.; Khonsuntia, W.; Subba, S. Complex fungi. Fungal Biol. Rev. 2018, 32, 205–218. [Google Scholar] [CrossRef]
- Poirier, M.; Hugot, C.; Spatz, M.; Da Costa, G.; Lapiere, A.; Michaudel, C.; Danne, C.; Martin, V.; Langella, P.; Michel, M.-L.; et al. Effects of Five Filamentous Fungi Used in Food Processes on In Vitro and In Vivo Gut Inflammation. J. Fungi 2022, 8, 893. [Google Scholar] [CrossRef]
- Rulli, M.M.; Villegas, L.B.; Barcia, C.S.; Colin, V.L. Bioconversion of sugarcane vinasse into fungal biomass protein and its potential use in fish farming. J. Environ. Chem. Eng. 2021, 9, 106136. [Google Scholar] [CrossRef]
- Jannathulla, R.; Dayal, J.S. Beneficial effects, challenges and opportunities of the filamentous fungus, Aspergillus niger with special reference to the shrimp feed industry—A review. Rev. Aquac. 2023, 15, 1311–1334. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Eweedah, N.M.; Moustafa, E.M.; Farahat, E.M. Probiotic effects of Aspergillus oryzae on the oxidative status, heat shock protein, and immune related gene expression of Nile tilapia (Oreochromis niloticus) under hypoxia challenge. Aquaculture 2020, 520, 734669. [Google Scholar] [CrossRef]
- Strong, P.J.; Self, R.; Allikian, K.; Szewczyk, E.; Speight, R.; O’Hara, I.; Harrison, M.D. Filamentous fungi for future functional food and feed. Curr. Opin. Biotechnol. 2022, 76, 102729. [Google Scholar] [CrossRef] [PubMed]
- Amara, A.A.; El-Baky, N.A. Fungi as a Source of Edible Proteins and Animal Feed. J. Fungi 2023, 9, 73. [Google Scholar] [CrossRef] [PubMed]
- Mohan, K.; Ravichandran, S.; Muralisankar, T.; Uthayakumar, V.; Chandirasekar, R.; Seedevi, P.; Rajan, D.K. Potential uses of fungal polysaccharides as immunostimulants in fish and shrimp aquaculture: A review. Aquaculture 2019, 500, 250–263. [Google Scholar] [CrossRef]
- Prabawati, E.; Hu, S.-Y.; Chiu, S.-T.; Balantyne, R.; Risjani, Y.; Liu, C.-H. A synbiotic containing prebiotic prepared from a by-product of king oyster mushroom, Pleurotus eryngii and probiotic, Lactobacillus plantarum incorporated in diet to improve the growth performance and health status of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2022, 120, 155–165. [Google Scholar] [CrossRef]
- Shyamala, V.; UmaMaheswar, N. Immunostimulation of Dietary Prebiotic Mushroom and Disease Resistant of Oreochromis mossambicus against Septicemia; India Journal of Natural Sciences 2021; TamilNadu Scientific Research Organisation: Pudukkottai, Tamil Nadu, India, 2021; Volume 12. [Google Scholar]
- Lee, P.-T.; Wu, Y.-S.; Tseng, C.-C.; Lu, J.-Y.; Lee, M.-C. Dietary Agaricus blazei Spent Substrate Improves Disease Resistance of Nile Tilapia (Oreochromis niloticus) against Streptococcus agalactiae In Vivo. J. Mar. Sci. Eng. 2022, 10, 100. [Google Scholar] [CrossRef]
- Chang, C.-C.; Lu, Y.-C.; Wang, C.-C.; Ko, T.-L.; Chen, J.-R.; Wang, W.; Chen, Y.-L.; Wang, Y.-W.; Chang, T.-H.; Hsu, H.-F.; et al. Antrodia cinnamomea Extraction Waste Supplementation Promotes Thermal Stress Tolerance and Tissue Regeneration Ability of Zebrafish. Molecules 2020, 25, 4213. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Abdullah, N.; Shuib, A.S.; Abdul Razak, S. Influence of raw polysaccharide extract from mushroom stalk waste on growth and pH perturbation induced-stress in Nile tilapia, Oreochromis niloticus. Aquaculture 2017, 468, 60–70. [Google Scholar] [CrossRef]
- Rema, P.; Saravanan, S.; Armenjon, B.; Motte, C.; Dias, J. Graded Incorporation of Defatted Yellow Mealworm (Tenebrio molitor) in Rainbow Trout (Oncorhynchus mykiss) Diet Improves Growth Performance and Nutrient Retention. Animals 2019, 9, 187. [Google Scholar] [CrossRef] [PubMed]
- Alfiko, Y.; Xie, D.; Astuti, R.T.; Wong, J.; Wang, L. Insects as a feed ingredient for fish culture: Status and trends. Aquac. Fish. 2022, 7, 166–178. [Google Scholar] [CrossRef]
- Cardinaletti, G.; Di Marco, P.; Daniso, E.; Messina, M.; Donadelli, V.; Finoia, M.G.; Petochi, T.; Fava, F.; Faccenda, F.; Contò, M.; et al. Growth and Welfare of Rainbow Trout (Oncorhynchus mykiss) in Response to Graded Levels of Insect and Poultry By-Product Meals in Fishmeal-Free Diets. Animals 2022, 12, 1698. [Google Scholar] [CrossRef] [PubMed]
- Motte, C.; Rios, A.; Lefebvre, T.; Do, H.; Henry, M.; Jintasataporn, O. Replacing Fish Meal with Defatted Insect Meal (Yellow Mealworm Tenebrio molitor) Improves the Growth and Immunity of Pacific White Shrimp (Litopenaeus vannamei). Animals 2019, 9, 258. [Google Scholar] [CrossRef]
- Sankian, Z.; Khosravi, S.; Kim, Y.-O.; Lee, S.-M. Effects of dietary inclusion of yellow mealworm (Tenebrio molitor) meal on growth performance, feed utilization, body composition, plasma biochemical indices, selected immune parameters and antioxidant enzyme activities of mandarin fish (Siniperca scherze). Aquaculture 2018, 496, 79–87. [Google Scholar] [CrossRef]
- Belghit, I.; Waagbø, R.; Lock, E.-J.; Liland, N.S. Insect-based diets high in lauric acid reduce liver lipids in freshwater Atlantic salmon. Aquac. Nutr. 2019, 25, 343–357. [Google Scholar] [CrossRef]
- Tippayadara, N.; Dawood, M.A.O.; Krutmuang, P.; Hoseinifar, S.H.; Doan, H.V.; Paolucci, M. Replacement of Fish Meal by Black Soldier Fly (Hermetia illucens) Larvae Meal: Effects on Growth, Haematology, and Skin Mucus Immunity of Nile Tilapia, Oreochromis niloticus. Animals 2021, 11, 193. [Google Scholar] [CrossRef]
- Taufek, N.M.; Simarani, K.; Muin, H.; Aspani, F.; Raji, A.A.; Alias, Z.; Razak, S.A. Inclusion of cricket (Gryllus bimaculatus) meal in African catfish (Clarias gariepinus) feed influences disease resistance. J. Fish. 2018, 6, 623–631. [Google Scholar] [CrossRef]
- Li, Y.; Kortner, T.M.; Chikwati, E.M.; Belghit, I.; Lock, E.-J.; Krogdahl, Å. Total replacement of fish meal with black soldier fly (Hermetia illucens) larvae meal does not compromise the gut health of Atlantic salmon (Salmo salar). Aquaculture 2020, 520, 734967. [Google Scholar] [CrossRef]
- Cho, J.-H.; Bae, J.; Hwang, I.J. Effects of black soldier fly (Hermetia illucens) pre-pupae meal on the growth, stress, and immune responses of juvenile rainbow trout (Oncorhynchus mykiss) reared at different stocking densities. Aquac. Rep. 2022, 25, 101202. [Google Scholar] [CrossRef]
- Martinez-Soberanes, E.E.; Mustafa, R.; Reaney, M.J.T.; Zhang, W.J. Seed Hull Utilization. In Food Wastes and By-Products; Wiley: Hoboken, NJ, USA, 2020; pp. 291–326. [Google Scholar]
- Galeana-López, J.A.; Hernández, C.; Leyva-López, N.; Lizárraga-Velázquez, C.; Sánchez-Gutiérrez, E.; Basilio Heredia, J. Corn husk extracts as an antioxidant additive in diets for Nile tilapia (Oreochormis niloticus) fingerlings: Effect on growth performance, feed intake and toxicity. Biotecnia 2020, 22, 147–154. [Google Scholar] [CrossRef]
- Galeana-López, J.A.; Lizárraga-Velázquez, C.E.; Hernández, C.; Leyva-López, N.; Heredia, J.B. Corn Husk Phenolics Modulate Hepatic Antioxidant Response in Nile Tilapia (Oreochromis niloticus) Exposed to Hypoxia. Molecules 2021, 26, 6161. [Google Scholar] [CrossRef]
- Amaral, D.; Filipe, D.M.; Cavalheri, T.F.; Vieira, L.; Magalhães, R.P.; Belo, I.; Peres, H.; Ozório, R.O.d.A. Solid-State Fermentation of Plant Feedstuff Mixture Affected the Physiological Responses of European Seabass (Dicentrarchus labrax) Reared at Different Temperatures and Subjected to Salinity Oscillation. Animals 2023, 13, 393. [Google Scholar] [CrossRef]
Stressors | Terminology | Reference |
---|---|---|
Netting, confinement, and flashlight | Chronic stress protocol | [25] |
Temperature, pH, turbidity, toxicants, pathogens, predators, handing | Environmental factors | [14] |
Temperature | Water quality variables | [27] |
Cold current, high temperature, low precipitation, ammonia, harmful algal blooms, warming | Abiotic factor | [28] |
Chemicals (insecticides, pesticides), dissolved oxygen, pH, temperature | Abiotic factor | [11] |
Temperature, chemical contamination, photoperiod, salinity | Abiotic factor | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Velázquez, J.; Peña-Herrejón, G.A.; Aguirre-Becerra, H. Fish Responses to Alternative Feeding Ingredients under Abiotic Chronic Stress. Animals 2024, 14, 765. https://doi.org/10.3390/ani14050765
Sánchez-Velázquez J, Peña-Herrejón GA, Aguirre-Becerra H. Fish Responses to Alternative Feeding Ingredients under Abiotic Chronic Stress. Animals. 2024; 14(5):765. https://doi.org/10.3390/ani14050765
Chicago/Turabian StyleSánchez-Velázquez, Julieta, Guillermo Abraham Peña-Herrejón, and Humberto Aguirre-Becerra. 2024. "Fish Responses to Alternative Feeding Ingredients under Abiotic Chronic Stress" Animals 14, no. 5: 765. https://doi.org/10.3390/ani14050765
APA StyleSánchez-Velázquez, J., Peña-Herrejón, G. A., & Aguirre-Becerra, H. (2024). Fish Responses to Alternative Feeding Ingredients under Abiotic Chronic Stress. Animals, 14(5), 765. https://doi.org/10.3390/ani14050765