Effects of Nutritional Factors on Fat Content, Fatty Acid Composition, and Sensorial Properties of Meat and Milk from Domesticated Ruminants: An Overview
Abstract
:Simple Summary
Abstract
1. Introduction
2. Nutritional Effects on the Meat of Sheep, Goats, and Cattle
2.1. Sheep and Lamb Meat
2.1.1. Sensory Properties and Types of Flavours
2.1.2. Polyunsaturated Fatty Acids and Flavour Properties
2.1.3. Odd- and Branched-Chain Fatty Acids and Flavour Properties
2.2. Chevon and Goat Meat
2.2.1. Production System Effects on Chevon
2.2.2. Effects of Feed Supplement Quantity, Quality, and Types on Chevon
2.3. Beef and Meat from Cattle
3. Nutritional Effects on the Meat from Alpacas and Llamas
4. Nutritional Effects on the Milk from Dairy Cows, Goats, and Buffalo
4.1. Bos Indicus—Milk Yield and Composition
4.2. Bos Taurus—Milk Yield and Composition
4.3. Sheep—Milk Yield and Composition
4.4. Goat—Milk Yield and Composition
4.5. Buffalo—Milk Yield and Composition
5. Conclusions and Future Opportunities
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leroy, F.; Smith, N.W.; Adesogan, A.T.; Beal, T.; Iannotti, L.; Moughan, P.J.; Mann, N. The role of meat in the human diet: Evolutionary aspects and nutritional value. Anim. Front. 2023, 13, 11–18. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Plozza, T.; Kerr, M.G.; Linden, N.; Mitchell, M.; Bekhit, A.E.D.A.; Jacobs, J.L.; Hopkins, D.L. Interaction of diet and long ageing period on lipid oxidation and colour stability of lamb meat. Meat Sci. 2017, 129, 43–49. [Google Scholar] [CrossRef]
- Elgersma, A. Grazing increases the unsaturated fatty acid concentration of milk from grass-fed cows: A review of the contributing factors, challenges and future perspectives. Eur. J. Lipid Sci. Technol. 2015, 117, 1345–1369. [Google Scholar] [CrossRef]
- Sretenović, L.Ž.; Novaković, Ž.S.; Petrović, M.M.; Aleksić, S.M.; Pantelić, V.T. Milk with functional food properties. In Proceedings of the 6th Central European Congress on Food, Novi Sad, Serbia, 23–26 May 2012; pp. 114–119. [Google Scholar]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Scollan, N.; Hocquette, J.F.; Nuernberg, K.; Dannenberger, D.; Richardson, I.; Moloney, A. Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 2006, 74, 17–33. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Holman, B.W.B. Sustainability II: Sustainable animal production and meat processing. In Lawrie’s Meat Science, 9th ed.; Toldra, F., Ed.; Woodhead Publishing: London, UK, 2023; pp. 727–798. [Google Scholar]
- Vasta, V.; Priolo, A. Ruminant fat volatiles as affected by diet. A review. Meat Sci. 2006, 73, 218–228. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Nguyen, O.C.; Malau-Aduli, A.E.O. Main regulatory factors of marbling level in beef cattle. Vet. Anim. Sci. 2021, 14, 100219. [Google Scholar] [CrossRef]
- Realini, C.E.; Pavan, E.; Purchas, R.W.; Agnew, M.; Johnson, P.L.; Bermingham, E.N.; Moon, C.D. Relationships between intramuscular fat percentage and fatty acid composition in M. longissimus lumborum of pasture-finished lambs in New Zealand. Meat Sci. 2021, 181, 108618. [Google Scholar] [CrossRef]
- Bonny, S.P.F.; Gardner, G.E.; Pethick, D.W.; Legrand, I.; Polkinghorne, R.J.; Hocquette, J.F. Biochemical measurements of beef are a good predictor of untrained consumer sensory scores across muscles. Animal 2015, 9, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Frank, D.; Kaczmarska, K.; Paterson, J.; Piyasiri, U.; Warner, R. Effect of marbling on volatile generation, oral breakdown and in mouth flavor release of grilled beef. Meat Sci. 2017, 133, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Daley, C.A.; Abbott, A.; Doyle, P.S.; Nader, G.A.; Larson, S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr. J. 2010, 9, 10. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Kiani, A.; Santhiravel, S.; Holman, B.W.B.; Lauridsen, C.; Dunshea, F.R. The Importance of Dietary Antioxidants on Oxidative Stress, Meat and Milk Production, and Their Preservative Aspects in Farm Animals: Antioxidant Action, Animal Health, and Product Quality—Invited Review. Animals 2022, 12, 3279. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Sinclair, A.J.; Egan, A.R.; Blakeley, S.J.; Leury, B.J. Effect of diets containing n-3 fatty acids on muscle long-chain n-3 fatty acid content in lambs fed low-and medium-quality roughage diets. J. Anim. Sci. 2001, 79, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Cooper, S.L.; Sinclair, L.A.; Wilkinson, R.G.; Hallett, K.G.; Enser, M.; Wood, J.D. Manipulation of the n-3 polyunsaturated fatty acid content of muscle and adipose tissue in lambs. J. Anim. Sci. 2004, 82, 1461–1470. [Google Scholar] [CrossRef]
- Holman, B.W.B.; Flakemore, A.R.; Kashani, A.; Malau-Aduli, A.E.O. Spirulina supplementation, sire breed, sex and basal diet effects on lamb intramuscular fat percentage and fat melting points. Int. J. Vet. Med. Res. Rep. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Kronberg, S.L.; Barceló-Coblijn, G.; Shin, J.; Lee, K.; Murphy, E.J. Bovine muscle n-3 fatty acid content is increased with flaxseed feeding. Lipids 2006, 41, 1059–1068. [Google Scholar] [CrossRef] [PubMed]
- Karami, M.; Ponnampalam, E.N.; Hopkins, D.L. The effect of palm oil or canola oil on feedlot performance, plasma and tissue fatty acid profile and meat quality in goats. Meat Sci. 2013, 94, 165–169. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Rajion, M.A.; Goh, Y.M. Effects of oils rich in linoleic and α-linolenic acids on fatty acid profile and gene expression in goat meat. Nutrients 2014, 6, 3913–3928. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Frutos, P.; Mantecón, A.R.; Juárez, M.; De La Fuente, M.A.; Hervás, G. Milk production, conjugated linoleic acid content, and in vitro ruminal fermentation in response to high levels of soybean oil in dairy ewe diet. J. Dairy Sci. 2008, 91, 1560–1569. [Google Scholar] [CrossRef]
- Mele, M. Designing milk fat to improve healthfulness and functional properties of dairy products: From feeding strategies to a genetic approach. Ital. J. Anim. Sci. 2009, 8, 365–373. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Bonnet, M.; Scollan, N.D. Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal 2013, 7, 132–162. [Google Scholar] [CrossRef]
- Kearns, M.; Ponnampalam, E.N.; Jacquier, J.C.; Grasso, S.; Boland, T.M.; Sheridan, H.; Monahan, F.J. Can botanically-diverse pastures positively impact the nutritional and antioxidant composition of ruminant meat?—Invited review. Meat Sci. 2023, 197, 109055. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Holman, B.W.B.; Scollan, N.D. Sheep: Meat. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldra, F., Eds.; Academic Press: Oxford, UK, 2015; pp. 750–757. [Google Scholar]
- FAO. World Livestock 2011—Livestock in Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; p. 115. [Google Scholar]
- MLA. Global Snapshot: Sheepmeat; Meat and Livestock Australia: North Sydney, Australia, 2020. [Google Scholar]
- Ponnampalam, E.N.; Hopkins, D.L.; Butler, K.L.; Dunshea, F.R.; Warner, R.D. Genotype and age effects on sheep meat production. 2. Carcass quality traits. Aust. J. Exp. Agric. 2007, 47, 1147–1154. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Hopkins, D.L.; Dunshea, F.R.; Pethick, D.W.; Butler, K.L.; Warner, R.D. Genotype and age effects on sheep meat production. 4. Carcass composition predicted by dual energy X-ray absorptiometry. Aust. J. Exp. Agric. 2007, 47, 1172–1179. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Hopkins, D.L.; Butler, K.L.; Dunshea, F.R.; Sinclair, A.J.; Warner, R.D. Polyunsaturated fats in meat from Merino, first- and second-cross sheep slaughtered as yearlings. Meat Sci. 2009, 83, 314–319. [Google Scholar] [CrossRef]
- McGrath, S.R.; Sandral, G.A.; Holman, B.W.B.; Friend, M.A. Lamb growth rates and carcass characteristics of White Dorper and crossbred lambs grazing traditional and novel pastures during spring in southern Australia. Anim. Prod. Sci. 2021, 61, 1160–1169. [Google Scholar] [CrossRef]
- Sañudo, C.; Alfonso, M.; San Julián, R.; Thorkelsson, G.; Valdimarsdottir, T.; Zygoyiannis, D.; Stamataris, C.; Piasentier, E.; Mills, C.; Berge, P.; et al. Regional variation in the hedonic evaluation of lamb meat from diverse production systems by consumers in six European countries. Meat Sci. 2007, 75, 610–621. [Google Scholar] [CrossRef]
- Carpenter, Z.L. What is Consumer-Preferred Lamb? J. Anim. Sci. 1966, 25, 1232–1235. [Google Scholar] [CrossRef]
- Jolley, P.D.; Richardson, R.I.; Taylor, A.A. Added value products from lamb. BSAP Occas. Publ. 1990, 14, 115–124. [Google Scholar] [CrossRef]
- Troost, C.; Kirsten, J.F. Producer prices, carcass classification and consumers’ willingness to pay for different sheep meat grades: An experimental auction approach. Agrekon 2022, 61, 121–137. [Google Scholar] [CrossRef]
- Kirton, A.H.; Carter, A.H.; Clarke, J.N.; Sinclair, D.P.; Mercer, G.J.K.; Duganzich, D.M. A comparison between 15 ram breeds for export lamb production 1. Liveweights, body components, carcass measurements, and composition. N. Z. J. Agric. Res. 1995, 38, 347–360. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Butler, K.L.; Hopkins, D.L.; Kerr, M.G.; Dunshea, F.R.; Warner, R.D. Genotype and age effects on sheep meat production. 5. Lean meat and fat content in the carcasses of Australian sheep genotypes at 20-, 30- and 40-kg carcass weights. Aust. J. Exp. Agric. 2008, 48, 893–897. [Google Scholar] [CrossRef]
- Realini, C.E.; Duckett, S.K.; Brito, G.W.; Dalla Rizza, M.; De Mattos, D. Effect of pasture vs. concentrate feeding with or without antioxidants on carcass characteristics, fatty acid composition, and quality of Uruguayan beef. Meat Sci. 2004, 66, 567–577. [Google Scholar] [CrossRef]
- Najafi, M.H.; Zeinoaldini, S.; Ganjkhanlou, M.; Mohammadi, H.; Hopkins, D.L.; Ponnampalam, E.N. Performance, carcass traits, muscle fatty acid composition and meat sensory properties of male Mahabadi goat kids fed palm oil, soybean oil or fish oil. Meat Sci. 2012, 92, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Holman, B.W.B.; Fowler, S.M.; Refshauge, G.; Hayes, R.C.; Newell, M.T.; Clayton, E.H.; Bailes, K.L.; Hopkins, D.L. The effect of perennial and annual wheat forages, fed with or without lucerne, on the fatty acid profile and oxidative status of lamb meat. Vet. Anim. Sci. 2022, 15, 100230. [Google Scholar] [CrossRef] [PubMed]
- Nuernberg, K.; Nuernberg, G.; Ender, K.; Dannenberger, D.; Schabbel, W.; Grumbach, S.; Zupp, W.; Steinhart, H. Effect of grass vs. concentrate feeding on the fatty acid profile of different fat depots in lambs. Eur. J. Lipid Sci. Technol. 2005, 107, 737–745. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Lewandowski, P.A.; Fahri, F.T.; Burnett, V.F.; Dunshea, F.R.; Plozza, T.; Jacobs, J.L. Forms of n-3 (ALA, C18:3n-3 or DHA, C22:6n-3) Fatty Acids Affect Carcass Yield, Blood Lipids, Muscle n-3 Fatty Acids and Liver Gene Expression in Lambs. Lipids 2015, 50, 1133–1143. [Google Scholar] [CrossRef]
- Chikwanha, O.C.; Vahmani, P.; Muchenje, V.; Dugan, M.E.R.; Mapiye, C. Nutritional enhancement of sheep meat fatty acid profile for human health and wellbeing. Food Res. Int. 2018, 104, 25–38. [Google Scholar] [CrossRef]
- Lynch, E.E.M.; Clayton, E.H.; Holman, B.W.B.; Hopkins, D.L.; Polkinghorne, R.J.; Campbell, M.A. Canola meal as a supplement for grass-fed beef cattle: Effects on growth rates, carcase and meat quality, and consumer sensory evaluations. Meat Sci. 2024, 207, 109363. [Google Scholar] [CrossRef]
- Noci, F.; French, P.; Monahan, F.J.; Moloney, A.P. The fatty acid composition of muscle fat and subcutaneous adipose tissue of grazing heifers supplemented with plant oil-enriched concentrates. J. Anim. Sci. 2007, 85, 1062–1073. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Linden, N.P.; Mitchell, M.L.; Hopkins, D.L.; Jacobs, J.L. Production systems to deliver premium grade lambs to the growing international and Australian markets. Small Rumin. Res. 2017, 157, 32–39. [Google Scholar] [CrossRef]
- Font-i-Furnols, M.; Guerrero, L. Consumer preference, behavior and perception about meat and meat products: An overview. Meat Sci. 2014, 98, 361–371. [Google Scholar] [CrossRef]
- Frank, D.; Watkins, P.; Ball, A.; Krishnamurthy, R.; Piyasiri, U.; Sewell, J.; Ortuño, J.; Stark, J.; Warner, R. Impact of Brassica and Lucerne Finishing Feeds and Intramuscular Fat on Lamb Eating Quality and Flavor. A Cross-Cultural Study Using Chinese and Non-Chinese Australian Consumers. J. Agric. Food Chem. 2016, 64, 6856–6868. [Google Scholar] [CrossRef] [PubMed]
- Gravador, R.S.; Pace, E.; Mooney, B.R.; Jaeger, S.R.; Gkarane, V.; Fahey, A.G.; Brunton, N.P.; Claffey, N.A.; Allen, P.; Diskin, M.G.; et al. A consumer study of the effect of castration and slaughter age of lambs on the sensory quality of meat. Small Rumin. Res. 2018, 169, 148–153. [Google Scholar] [CrossRef]
- Flores, M. The eating quality of meat: III-Flavour. In Lawrie’s Meat Science, 8th ed.; Toldra, F., Ed.; Woodhead Publishing: London, UK, 2017; pp. 383–412. [Google Scholar]
- Miller, R. Drivers of consumer liking for beef, pork, and lamb: A review. Foods 2020, 9, 428. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, R.A.; Pannier, L.; Gardner, G.E.; Garmyn, A.J.; Luo, H.; Meng, Q.; Miller, M.F.; Pethick, D.W. Influence of demographic factors on sheepmeat sensory scores of American, Australian and Chinese consumers. Foods 2020, 9, 529. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.; Marais, J.; Strydom, P.E.; Hoffman, L.C. Effects of increasing internal end-point temperatures on physicochemical and sensory properties of meat: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2843–2872. [Google Scholar] [CrossRef]
- Yancey, J.W.S.; Wharton, M.D.; Apple, J.K. Cookery method and end-point temperature can affect the Warner-Bratzler shear force, cooking loss, and internal cooked color of beef longissimus steaks. Meat Sci. 2011, 88, 1–7. [Google Scholar] [CrossRef]
- Vatansever, L.; Kurt, E.; Enser, M.; Nute, G.R.; Scollan, N.D.; Wood, J.D.; Richardson, R.I. Shelf life and eating quality of beef from cattle of different breeds given diets differing in n-3 polyunsaturated fatty acid composition. Anim. Sci. 2000, 71, 471–482. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Malau-Aduli, B.S.; Cavalieri, J.; Nichols, P.D.; Malau-Aduli, A.E.O. Supplementation with plant-derived oils rich in omega-3 polyunsaturated fatty acids for lamb production. Vet. Anim. Sci. 2018, 6, 29–40. [Google Scholar] [CrossRef]
- Urrutia, O.; Mendizabal, J.A.; Insausti, K.; Soret, B.; Purroy, A.; Arana, A. Effects of addition of linseed and marine algae to the diet on adipose tissue development, fatty acid profile, lipogenic gene expression, and meat quality in lambs. PLoS ONE 2016, 11, e0156765. [Google Scholar] [CrossRef] [PubMed]
- Francisco, A.; Dentinho, M.T.; Alves, S.P.; Portugal, P.V.; Fernandes, F.; Sengo, S.; Jerónimo, E.; Oliveira, M.A.; Costa, P.; Sequeira, A.; et al. Growth performance, carcass and meat quality of lambs supplemented with increasing levels of a tanniferous bush (Cistus ladanifer L.) and vegetable oils. Meat Sci. 2015, 100, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Holman, B.W.B.; Fowler, S.M.; Bailes, K.L.; Meyer, R.G.; Hopkins, D.L.; Clayton, E.H. Internal endpoint temperature (level of cooking doneness) effects on the fatty acid and mineral profiles of grilled lamb m. longissimus lumborum. Meat Sci. 2023, 201, 109192. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Joo, S.T. Fatty acid profiles, meat quality, and sensory palatability of grain-fed and grass-fed beef from Hanwoo, American, and Australian crossbred cattle. Korean J. Food Sci. Anim. Resour. 2017, 37, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Baldi, G.; Chauhan, S.S.; Linden, N.; Dunshea, F.R.; Hopkins, D.L.; Sgoifo Rossi, C.A.; Dell’Orto, V.; Ponnampalam, E.N. Comparison of a grain-based diet supplemented with synthetic vitamin E versus a lucerne (alfalfa) hay-based diet fed to lambs in terms of carcass traits, muscle vitamin E, fatty acid content, lipid oxidation, and retail colour of meat. Meat Sci. 2019, 148, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Kashani, A.; Holman, B.W.B.; Nichols, P.D.; Malau-Aduli, A.E.O. Effect of level of Spirulina supplementation on the fatty acid compositions of adipose, muscle, heart, kidney and liver tissues in Australian dual-purpose lambs. Ann. Anim. Sci. 2015, 15, 945–960. [Google Scholar] [CrossRef]
- Nuernberg, K.; Dannenberger, D.; Nuernberg, G.; Ender, K.; Voigt, J.; Scollan, N.D.; Wood, J.D.; Nute, G.R.; Richardson, R.I. Effect of a grass-based and a concentrate feeding system on meat quality characteristics and fatty acid composition of longissimus muscle in different cattle breeds. Livest. Prod. Sci. 2005, 94, 137–147. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Sinclair, A.J.; Holman, B.W.B. The sources, synthesis and biological actions of omega-3 and omega-6 fatty acids in red meat: An overview. Foods 2021, 10, 1358. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Butler, K.L.; Muir, S.K.; Plozza, T.E.; Kerr, M.G.; Brown, W.G.; Jacobs, J.L.; Knight, M.I. Lipid oxidation and colour stability of lamb and yearling meat (Muscle longissimus lumborum) from sheep supplemented with camelina-based diets after short-,medium-, and long-term storage. Antioxidants 2021, 10, 166. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Sinclair, A.J.; Hosking, B.J.; Egan, A.R. Effects of dietary lipid type on muscle fatty acid composition, carcass leanness, and meat toughness in lambs. J. Anim. Sci. 2002, 80, 628–636. [Google Scholar] [CrossRef]
- Vahedi, V.; Towhidi, A.; Hedayat-Evrigh, N.; Vaseghi-Dodaran, H.; Khodaei Motlagh, M.; Ponnampalam, E.N. The effects of supplementation methods and length of feeding of zilpaterol hydrochloride on meat characteristics of fattening lambs. Small Rumin. Res. 2015, 131, 107–112. [Google Scholar] [CrossRef]
- Malau-Aduli, A.E.O.; Holman, B.W.B.; Kashani, A.; Nichols, P.D. Sire breed and sex effects on the fatty acid composition and content of heart, kidney, liver, adipose and muscle tissues of purebred and first-cross prime lambs. Anim. Prod. Sci. 2016, 56, 2122–2132. [Google Scholar] [CrossRef]
- Nute, G.R.; Richardson, R.I.; Wood, J.D.; Hughes, S.I.; Wilkinson, R.G.; Cooper, S.L.; Sinclair, L.A. Effect of dietary oil source on the flavour and the colour and lipid stability of lamb meat. Meat Sci. 2007, 77, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Choi, N.J.; Enser, M.; Wood, J.D.; Scollan, N.D. Effect of breed on the deposition in beef muscle and adipose tissue of dietary n-3 polyunsaturated fatty acids. Anim. Sci. 2000, 71, 509–519. [Google Scholar] [CrossRef]
- Sañudo, C.; Enser, M.E.; Campo, M.M.; Nute, G.R.; María, G.; Sierra, I.; Wood, J.D. Fatty acid composition and sensory characteristics of lamb carcasses from Britain and Spain. Meat Sci. 2000, 54, 339–346. [Google Scholar] [CrossRef]
- Fisher, A.V.; Enser, M.; Richardson, R.I.; Wood, J.D.; Nute, G.R.; Kurt, E.; Sinclair, L.A.; Wilkinson, R.G. Fatty acid composition and eating quality of lamb types derived from four diverse breed × production systems. Meat Sci. 2000, 55, 141–147. [Google Scholar] [CrossRef]
- Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Bermingham, E.N.; Watkins, P.J.; Proctor, S.D.; Dugan, M.E.R. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Sci. 2020, 165, 108114. [Google Scholar] [CrossRef]
- Jenkins, B.; West, J.A.; Koulman, A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) in health and disease. Molecules 2015, 20, 2425–2444. [Google Scholar] [CrossRef]
- Taormina, V.M.; Unger, A.L.; Schiksnis, M.R.; Torres-Gonzalez, M.; Kraft, J. Branched-chain fatty acids—An underexplored class of dairy-derived fatty acids. Nutrients 2020, 12, 2875. [Google Scholar] [CrossRef]
- Clayton, E.H. Long-Chain Omega-3 Polyunsaturated Fatty Acids in Ruminant Nutrition: Benefits to Humans; NSW Department of Primary Industries: Wagga Wagga, Australia, 2014; p. 99.
- Schiller, K.F.; Preuss, S.; Kaffarnik, S.; Vetter, W.; Rodehutscord, M.; Bennewitz, J. Concentration of three branched-chain fatty acids in adipose tissue does not affect meat sensory traits in crossbred and purebred German “Merinolandschaf” lambs. Arch. Anim. Breed. 2015, 58, 159–163. [Google Scholar] [CrossRef]
- Young, O.A.; Lane, G.A.; Priolo, A.; Fraser, K. Pastoral and species flavour in lambs raised on pasture, lucerne or maize. J. Sci. Food Agric. 2003, 83, 93–104. [Google Scholar] [CrossRef]
- Johnson, D.D.; McGowan, C.H. Diet/management effects on carcass attributes and meat quality of young goats. Small Rumin. Res. 1998, 28, 93–98. [Google Scholar] [CrossRef]
- Bas, P.; Dahbi, E.; El Aich, A.; Morand-Fehr, P.; Araba, A. Effect of feeding on fatty acid composition of muscles and adipose tissues in young goats raised in the Argan tree forest of Morocco. Meat Sci. 2005, 71, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Dosky, K.N.S. Fattening and some carcass characteristics of Meriz and native goat male kids raised in either concentrate or pasture conditions. Mesop. J. Agric. 2010, 38, 2–10. [Google Scholar]
- Alkass, J.E.; Oray, K.A.D.; Abdullah, M.K. Studies on growth, carcass traits and body composition of goats raised either in intensive or pasture conditions. Adv. Life Sci. Technol. 2014, 19, 15–21. [Google Scholar]
- Yakan, A.; Ates, C.T.; Alasahan, S.; Odabasioglu, F.; Unal, N.; Ozturk, O.H.; Gungor, O.F.; Ozbeyaz, C. Damascus kids’ slaughter, carcass and meat quality traits in different production systems using antioxidant supplementation. Small Rumin. Res. 2016, 136, 43–53. [Google Scholar] [CrossRef]
- Ryan, S.M.; Unruh, J.A.; Corrigan, M.E.; Drouillard, J.S.; Seyfert, M. Effects of concentrate level on carcass traits of Boer crossbred goats. Small Rumin. Res. 2007, 73, 67–76. [Google Scholar] [CrossRef]
- Warner, R.D. The eating quality of meat: IV—Water holding capacity and juiciness. In Lawrie’s Meat Science, 9th ed.; Toldra, F., Ed.; Elsevier: London, UK, 2023; pp. 457–508. [Google Scholar]
- Maggiolino, A.; Faccia, M.; Holman, B.W.B.; Hopkins, D.L.; Bragaglio, A.; Natrella, G.; Mazzone, A.; De Palo, P. The effect of oral or respiratory exposure to limonene on goat kid performance and meat quality. Meat Sci. 2022, 191, 108865. [Google Scholar] [CrossRef]
- Goetsch, A.L.; Merkel, R.C.; Gipson, T.A. Factors affecting goat meat production and quality. Small Rumin. Res. 2011, 101, 173–181. [Google Scholar] [CrossRef]
- Safari, J.; Mushi, D.E.; Mtenga, L.A.; Kifaro, G.C.; Eik, L.O. Effects of concentrate supplementation on carcass and meat quality attributes of feedlot finished Small East African goats. Livest. Sci. 2009, 125, 266–274. [Google Scholar] [CrossRef]
- Ngwa, A.T.; Dawson, L.J.; Puchala, R.; Detweiler, G.D.; Merkel, R.C.; Wang, Z.; Tesfai, K.; Sahlu, T.; Ferrell, C.L.; Goetsch, A.L. Effects of breed and diet on growth and body composition of crossbred Boer and Spanish wether goats. J. Anim. Sci. 2009, 87, 2913–2923. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kouakou, B.; Kannan, G. Chemical composition and quality characteristics of chevon from goats fed three different post-weaning diets. Small Rumin. Res. 2008, 75, 177–184. [Google Scholar] [CrossRef]
- Mushi, D.E.; Thomassen, M.S.; Kifaro, G.C.; Eik, L.O. Fatty acid composition of minced meat, longissimus muscle and omental fat from Small East African goats finished on different levels of concentrate supplementation. Meat Sci. 2010, 86, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Vasta, V.; Priolo, A.; Scerra, M.; Hallett, K.G.; Wood, J.D.; Doran, O. Δ9 desaturase protein expression and fatty acid composition of longissimus dorsi muscle in lambs fed green herbage or concentrate with or without added tannins. Meat Sci. 2009, 82, 357–364. [Google Scholar] [CrossRef]
- Nudda, A.; Cannas, A.; Correddu, F.; Atzori, A.S.; Lunesu, M.F.; Battacone, G.; Pulina, G. Sheep and Goats Respond Differently to Feeding Strategies Directed to Improve the Fatty Acid Profile of Milk Fat. Animals 2020, 10, 1290. [Google Scholar] [CrossRef] [PubMed]
- Casey, N.H.; van Niekerk, W.A. Fatty acid composition of subcutaneous and kidney fat depots of Boer goats and the response to varying levels of maize meal. S. Afr. J. Anim. Sci. 1985, 15, 60–62. [Google Scholar]
- Madruga, M.S.; Torres, T.S.; Carvalho, F.F.; Queiroga, R.C.; Narain, N.; Garrutti, D.; Souza Neto, M.A.; Mattos, C.W.; Costa, R.G. Meat quality of Moxotó and Canindé goats as affected by two levels of feeding. Meat Sci. 2008, 80, 1019–1023. [Google Scholar] [CrossRef]
- Dashtizadeh, M.; Zamiri, M.J.; Kamalzadeha, A.; Kamali, A. Effect of feed restriction on compensatory growth response of young male goats. Iran. J. Vet. Res. 2008, 9, 109–120. [Google Scholar]
- Wang, D.; Zhou, L.; Zhou, H.; Hou, G.; Shi, L.; Li, M.; Huang, X.; Guan, S. Effects of nutritional level of concentrate-based diets on meat quality and expression levels of genes related to meat quality in Hainan black goats. Anim. Sci. J. 2015, 86, 166–173. [Google Scholar] [CrossRef]
- Saccà, E.; Corazzin, M.; Bovolenta, S.; Piasentier, E. Meat quality traits and the expression of tenderness-related genes in the loins of young goats at different ages. Animal 2019, 13, 2419–2428. [Google Scholar] [CrossRef]
- Abdullah, A.Y.; Musallam, H.S. Effect of different levels of energy on carcass composition and meat quality of male black goats kids. Livest. Sci. 2007, 107, 70–80. [Google Scholar] [CrossRef]
- Pormalekshahi, A.; Fatahnia, F.; Jafari, H.; Azarfar, A.; Varmaghany, S.; Taasoli, G. Interaction effect of ruminal undegradable protein level and rumen-protected conjugated linoleic acid (CLA) inclusion in the diet of growing goat kids on meat CLA content and quality traits. Br. J. Nutr. 2019, 122, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Marinova, P.; Banskalieva, V.; Alexandrov, S.; Tzvetkova, V.; Stanchev, H. Carcass composition and meat quality of kids fed sunflower oil supplemented diet. Small Rumin. Res. 2001, 42, 217–225. [Google Scholar] [CrossRef]
- Roy, A.; Mandal, G.P.; Patra, A.K. Evaluating the performance, carcass traits and conjugated linoleic acid content in muscle and adipose tissues of Black Bengal goats fed soybean oil and sunflower oil. Anim. Feed Sci. Technol. 2013, 185, 43–52. [Google Scholar] [CrossRef]
- Abubakr, A.; Alimon, A.R.; Yaakub, H.; Abdullah, N.; Ivan, M. Effect of feeding palm oil by-products based diets on muscle fatty acid composition in goats. PLoS ONE 2015, 10, e0119756. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, K.D.; Ebrahimi, M.; Samsudin, A.A.; Sabow, A.B.; Sazili, A.Q. Carcass traits, meat yield and fatty acid composition of adipose tissues and supraspinatus muscle in goats fed blend of canola oil and palm oil. J. Anim. Sci. Technol. 2015, 57, 42. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Rajion, M.A.; Jafari, S.; Jahromi, M.F.; Oskoueian, E.; Sazili, A.Q.; Goh, Y.M.; Ghaffari, M.H. Effects of dietary n-6: n-3 polyunsaturated fatty acid ratios on meat quality, carcass characteristics, tissue fatty acid profiles, and expression of lipogenic genes in growing goats. PLoS ONE 2019, 14, e0188369. [Google Scholar] [CrossRef] [PubMed]
- Abuelfatah, K.; Zuki, A.B.Z.; Goh, Y.M.; Sazili, A.Q. Effects of enriching goat meat with n-3 polyunsaturated fatty acids on meat quality and stability. Small Rumin. Res. 2016, 136, 36–42. [Google Scholar] [CrossRef]
- Wang, X.; Martin, G.B.; Wen, Q.; Liu, S.; Li, Y.; Shi, B.; Guo, X.; Zhao, Y.; Guo, Y.; Yan, S. Palm oil protects α-linolenic acid from rumen biohydrogenation and muscle oxidation in cashmere goat kids. J. Anim. Sci. Biotechnol. 2020, 11, 100. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Rajion, M.A.; Goh, Y.M.; Sazili, A.Q. Impact of different inclusion levels of oil palm (Elaeis guineensis Jacq.) fronds on fatty acid profiles of goat muscles. J. Anim. Physiol. Anim. Nutr. 2012, 96, 962–969. [Google Scholar] [CrossRef]
- Ribeiro, R.D.X.; Medeiros, A.N.; Oliveira, R.L.; de Araújo, G.G.L.; Queiroga, R.D.C.D.E.; Ribeiro, M.D.; Silva, T.M.; Bezerra, L.R.; Oliveira, R.L. Palm kernel cake from the biodiesel industry in goat kid diets. Part 2: Physicochemical composition, fatty acid profile and sensory attributes of meat. Small Rumin. Res. 2018, 165, 1–7. [Google Scholar] [CrossRef]
- Moreno-Indias, I.; Sánchez-Macías, D.; Martínez-de la Puente, J.; Morales-delaNuez, A.; Hernández-Castellano, L.E.; Castro, N.; Argüello, A. The effect of diet and DHA addition on the sensory quality of goat kid meat. Meat Sci. 2012, 90, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Emami, A.; Nasri, M.H.F.; Ganjkhanlou, M.; Zali, A.; Rashidi, L. Effects of dietary pomegranate seed pulp on oxidative stability of kid meat. Meat Sci. 2015, 104, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Ayeb, N.; Addis, M.; Fiori, M.; Atti, N.; Barmat, A.; Hammadi, M.; Boukhris, H.; Damergi, C.; Khorchani, T. Effect of local diets on nutritional and sensory quality of meat of indigenous goats in Tunisian arid regions. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1637–1645. [Google Scholar] [CrossRef]
- Jabalbarezi Hukerdi, Y.; Fathi Nasri, M.H.; Rashidi, L.; Ganjkhanlou, M.; Emami, A. Effects of dietary olive leaves on performance, carcass traits, meat stability and antioxidant status of fattening Mahabadi male kids. Meat Sci. 2019, 153, 2–8. [Google Scholar] [CrossRef]
- Jabalbarezi Hukerdi, Y.; Fathi Nasri, M.H.; Rashidi, L.; Ganjkhanlou, M.; Emami, A. Supplementing kids diet with olive leaves: Effect on meat quality. Small Rumin. Res. 2020, 193, 106258. [Google Scholar] [CrossRef]
- El Otmani, S.; Chebli, Y.; Hornick, J.L.; Cabaraux, J.F.; Chentouf, M. Growth performance, carcass characteristics and meat quality of male goat kids supplemented by alternative feed resources: Olive cake and cactus cladodes. Anim. Feed Sci. Technol. 2021, 272, 114746. [Google Scholar] [CrossRef]
- Pimentel, P.R.S.; Pellegrini, C.B.; Lanna, D.P.D.; Brant, L.M.S.; Ribeiro, C.V.D.M.; Silva, T.M.; Barbosa, A.M.; da Silva Júnior, J.M.; Bezerra, L.R.; Oliveira, R.L. Effects of Acacia mearnsii extract as a condensed-tannin source on animal performance, carcass yield and meat quality in goats. Anim. Feed Sci. Technol. 2021, 271, 114733. [Google Scholar] [CrossRef]
- Cimmino, R.; Barone, C.M.A.; Claps, S.; Varricchio, E.; Rufrano, D.; Caroprese, M.; Albenzio, M.; De Palo, P.; Campanile, G.; Neglia, G. Effects of dietary supplementation with polyphenols on meat quality in Saanen goat kids. BMC Vet. Res. 2018, 14, 181. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.T.; Lee, J.W.; Mun, H.S.; Yang, C.J. Effects of supplementation with green tea by-products on growth performance, meat quality, blood metabolites and immune cell proliferation in goats. J. Anim. Physiol. Anim. Nutr. 2015, 99, 1127–1137. [Google Scholar] [CrossRef] [PubMed]
- Malau-Aduli, A.E.O.; Holman, B.W.B. World beef production. In Beef Cattle Production and Trade; Cottle, D., Kahn, L., Eds.; CSIRO Press: Collingwood, Australia, 2014; pp. 65–80. [Google Scholar]
- Holman, B.W.B.; Bekhit, A.E.D.A.; Mao, Y.; Zhang, Y.; Hopkins, D.L. The effect of wet ageing duration (up to 14 weeks) on the quality and shelf-life of grass and grain-fed beef. Meat Sci. 2022, 193, 108928. [Google Scholar] [CrossRef]
- Pethick, D.W.; Hocquette, J.F.; Scollan, N.D.; Dunshea, F.R. Review: Improving the nutritional, sensory and market value of meat products from sheep and cattle. Animal 2021, 15, 100356. [Google Scholar] [CrossRef]
- Higgs, J.D. The changing nature of red meat: 20 years of improving nutritional quality. Trends Food Sci. Technol. 2000, 11, 85–95. [Google Scholar] [CrossRef]
- Reid, J.T. Urea as a Protein Replacement for Ruminants: A Review. J. Dairy Sci. 1953, 36, 955–996. [Google Scholar] [CrossRef]
- Thomson, K.L.; Gardner, G.E.; Simmons, N.; Thompson, J.M. Length of exposure to high post-rigor temperatures affects the tenderisation of the beef M. longissmus dorsi. Aust. J. Exp. Agric. 2008, 48, 1442–1450. [Google Scholar] [CrossRef]
- McGilchrist, P.; Greenwood, P.L.; Pethick, D.W.; Gardner, G.E. Selection for increased muscling in Angus cattle did not increase the glycolytic potential or negatively impact pH decline, retail colour stability or mineral content. Meat Sci. 2016, 114, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Holman, B.W.B.; Hopkins, D.L. Contrasting the quality traits of aged bolar blade, topside and striploin cuts sourced from dark cutting and control Australian beef carcasses. Meat Sci. 2019, 149, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Ponnampalam, E.N.; Hopkins, D.L.; Bruce, H.; Li, D.; Baldi, G.; Bekhit, A.E.D. Causes and Contributing Factors to “Dark Cutting” Meat: Current Trends and Future Directions: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 400–430. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Holman, B.W.B.; Mao, Y.; Chen, X.; Luo, X.; Hopkins, D.L.; Zhang, Y. Determination of a pH threshold for dark cutting beef based on visual evaluation by Asian consumers. Meat Sci. 2021, 172, 108347. [Google Scholar] [CrossRef] [PubMed]
- McGilchrist, P.; Polkinghorne, R.J.; Ball, A.J.; Thompson, J.M. The meat standards Australia index indicates beef carcass quality. Animal 2019, 13, 1750–1757. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.J.; Oksbjerg, N.; Young, J.F.; Therkildsen, M. Feeding and meat quality—A future approach. Meat Sci. 2005, 70, 543–554. [Google Scholar] [CrossRef]
- Greenwood, P.L.; Siddell, J.P.; Walmsley, B.J.; Geesink, G.H.; Pethick, D.W.; McPhee, M.J. Postweaning substitution of grazed forage with a high-energy concentrate has variable long-term effects on subcutaneous fat and marbling in Bos taurus genotypes. J. Anim. Sci. 2015, 93, 4132–4143. [Google Scholar] [CrossRef] [PubMed]
- Ponnampalam, E.N.; Holman, B.W.B.; Kerry, J.P. Impact of animal nutrition on muscle composition and meat quality. In Meat Quality: Genetic and Environmental Factors; Przybylski, W., Hopkins, D.L., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 101–146. [Google Scholar]
- Salami, S.A.; Luciano, G.; O’Grady, M.N.; Biondi, L.; Newbold, C.J.; Kerry, J.P.; Priolo, A. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Anim. Feed Sci. Technol. 2019, 251, 37–55. [Google Scholar] [CrossRef]
- Hausman, G.J.; Basu, U.; Du, M.; Fernyhough-Culver, M.; Dodson, M.V. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues. Adipocyte 2014, 3, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Knee, B.W.; Cummins, L.J.; Walker, P.J.; Kearney, G.A.; Warner, R.D. Reducing dark-cutting in pasture-fed beef steers by high-energy supplementation. Aust. J. Exp. Agric. 2007, 47, 1277–1283. [Google Scholar] [CrossRef]
- Loudon, K.M.W.; Lean, I.J.; Pethick, D.W.; Gardner, G.E.; Grubb, L.J.; Evans, A.C.; McGilchrist, P. On farm factors increasing dark cutting in pasture finished beef cattle. Meat Sci. 2018, 144, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Gagaoua, M.; Warner, R.D.; Purslow, P.; Ramanathan, R.; Mullen, A.M.; López-Pedrouso, M.; Franco, D.; Lorenzo, J.M.; Tomasevic, I.; Picard, B.; et al. Dark-cutting beef: A brief review and an integromics meta-analysis at the proteome level to decipher the underlying pathways. Meat Sci. 2021, 181, 108611. [Google Scholar] [CrossRef] [PubMed]
- Hastie, M.; Hepworth, G.; Hillman, A.; Cowled, B.; Pfeiffer, C.; Warner, R.D. Bushfire exposure is associated with increased pH and dark-cutting in beef longissimus thoracis at grading. Meat Sci. 2023, 197, 109056. [Google Scholar] [CrossRef]
- McGilchrist, P.; Perovic, J.L.; Gardner, G.E.; Pethick, D.W.; Jose, C.G. The incidence of dark cutting in southern Australian beef production systems fluctuates between months. Anim. Prod. Sci. 2014, 54, 1765–1769. [Google Scholar] [CrossRef]
- Pighin, D.G.; Brown, W.; Ferguson, D.M.; Fisher, A.D.; Warner, R.D. Relationship between changes in core body temperature in lambs and post-slaughter muscle glycogen content and dark-cutting. Anim. Prod. Sci. 2014, 54, 459–463. [Google Scholar] [CrossRef]
- Steel, C.C.; Lees, A.M.; Bowler, D.; Gonzalez-Rivas, P.A.; Tarr, G.; Warner, R.D.; Dunshea, F.R.; Cowley, F.C.; McGilchrist, P. Abattoir factors influencing the incidence of dark cutting in australian grain-fed beef. Animals 2021, 11, 474. [Google Scholar] [CrossRef]
- Holman, B.W.B.; Hopkins, D.L. The use of conventional laboratory-based methods to predict consumer acceptance of beef and sheep meat: A review. Meat Sci. 2021, 181, 108586. [Google Scholar] [CrossRef]
- Frank, D.; Ball, A.; Hughes, J.; Krishnamurthy, R.; Piyasiri, U.; Stark, J.; Watkins, P.; Warner, R. Sensory and flavor chemistry characteristics of Australian beef: Influence of intramuscular fat, feed, and breed. J. Agric. Food Chem. 2016, 64, 4299–4311. [Google Scholar] [CrossRef] [PubMed]
- Zinn, R.A.; Salinas-Chavira, J.; Lenin, J.; Montano, M.F.; Sanchez, U. A comparison of ground oyster shell and limestone as potential alkalizing agents when fed at extra-nutritional levels for enhancement of growth-performance and digestive function in feedlot cattle fed steam-flaked corn-based finishing diets. J. Anim. Vet. Adv. 2009, 8, 1116–1123. [Google Scholar]
- Bessa, R.J.B.; Alves, S.P.; Jerónimo, E.; Alfaia, C.M.; Prates, J.A.M.; Santos-Silva, J. Effect of lipid supplements on ruminal biohydrogenation intermediates and muscle fatty acids in lambs. Eur. J. Lipid Sci. Technol. 2007, 109, 868–878. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Richardson, R.I.; Sheard, P.R. Animal nutrition and metabolism group symposium on ‘improving meat production for future needs’. Manipulating meat quality and composition. Proc. Nutr. Soc. 1999, 58, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Malau-Aduli, A.E.O.; Holman, B.W.B. Molecular genetics-nutrition interactions in ruminant fatty acid metabolism and meat quality. In Molecular and Quantitative Animal Genetics; Khatib, H., Ed.; Wiley-Blackwell Publishing: Hoboken, NJ, USA, 2015; pp. 197–214. [Google Scholar]
- Simopoulos, A.P. New products from the agri-food industry: The return of n-3 fatty acids into the food supply. Lipids 1999, 34, S297–S301. [Google Scholar] [CrossRef] [PubMed]
- Hocquette, J.F.; Botreau, R.; Picard, B.; Jacquet, A.; Pethick, D.W.; Scollan, N.D. Opportunities for predicting and manipulating beef quality. Meat Sci. 2012, 92, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Kilgannon, A.K.; Holman, B.W.B.; Frank, D.C.; Mawson, A.J.; Collins, D.; Hopkins, D.L. Temperature-time combination effects on aged beef volatile profiles and their relationship to sensory attributes. Meat Sci. 2020, 168, 108193. [Google Scholar] [CrossRef]
- Alfaia, C.M.M.; Alves, S.P.; Lopes, A.F.; Fernandes, M.J.E.; Costa, A.S.H.; Fontes, C.M.G.A.; Castro, M.L.F.; Bessa, R.J.B.; Prates, J.A.M. Effect of cooking methods on fatty acids, conjugated isomers of linoleic acid and nutritional quality of beef intramuscular fat. Meat Sci. 2010, 84, 769–777. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Frank, D.; Oytam, Y.; Hughes, J. Sensory perceptions and new consumer attitudes to meat. In New Aspects of Meat Quality; Purslow, P.P., Ed.; Woodhead Publishing: Duxford, UK, 2017; pp. 667–685. [Google Scholar]
- Min, B.; Ahn, D.U. Mechanism of lipid peroxidation in meat and meat products—A review. Food Sci. Biotechnol. 2005, 14, 152–163. [Google Scholar]
- McDowell, L.R.; Williams, S.N.; Hidiroglou, N.; Njeru, C.A.; Hill, G.M.; Ochoa, L.; Wilkinson, N.S. Vitamin E supplementation for the ruminant. Anim. Feed Sci. Technol. 1996, 60, 273–296. [Google Scholar] [CrossRef]
- Arnold, R.N.; Arp, S.C.; Scheller, K.K.; Williams, S.N.; Schaefer, D.M. Tissue equilibration and subcellular distribution of vitamin E relative to myoglobin and lipid oxidation in displayed beef. J. Anim. Sci. 1993, 71, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Nassu, R.T.; Dugan, M.E.R.; Juárez, M.; Basarab, J.A.; Baron, V.S.; Aalhus, J.L. Effect of α-tocopherol tissue levels on beef quality. Animal 2011, 5, 2010–2018. [Google Scholar] [CrossRef] [PubMed]
- Richardson, R.I.; Nute, G.R.; Wood, J.D.; Scollan, N.D.; Warren, H.E. Effect of breed, diet and age on shelf-life, muscle vitamin E and eating quality of beef. In Proceedings of the 84th British Society of Animal Science Conference; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Rochfort, S.; Parker, A.J.; Dunshea, F.R. Plant bioactives for ruminant health and productivity. Phytochemistry 2008, 69, 299–322. [Google Scholar] [CrossRef] [PubMed]
- Larraín, R.E.; Schaefer, D.M.; Richards, M.P.; Reed, J.D. Finishing steers with diets based on corn, high-tannin sorghum or a mix of both: Color and lipid oxidation in beef. Meat Sci. 2008, 79, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Bush, R.D.; Thomson, P.C.; Hopkins, D.L. Carcass traits and saleable meat yield of alpacas (Vicugna pacos) in Australia. Meat Sci. 2015, 107, 1–11. [Google Scholar] [CrossRef]
- Smith, M.A.; Bush, R.D.; van de Ven, R.J.; Hopkins, D.L. Effect of electrical stimulation and ageing period on alpaca (Vicugna pacos) meat and eating quality. Meat Sci. 2016, 111, 38–46. [Google Scholar] [CrossRef]
- Biffin, T.E.; Hopkins, D.L.; Bush, R.D.; Hall, E.; Smith, M.A. The effects of season and post-transport rest on alpaca (Vicunga pacos) meat quality. Meat Sci. 2020, 159, 107935. [Google Scholar] [CrossRef]
- Biffin, T.E.; Smith, M.A.; Bush, R.D.; Morris, S.; Hopkins, D.L. The effect of whole carcase medium voltage electrical stimulation, tenderstretching and longissimus infusion with actinidin on alpaca meat quality. Meat Sci. 2020, 164, 108107. [Google Scholar] [CrossRef]
- Popova, T.; Tejeda, L.; Peñarrieta, J.M.; Smith, M.A.; Bush, R.D.; Hopkins, D.L. Meat of South American camelids—Sensory quality and nutritional composition. Meat Sci. 2021, 171, 108285. [Google Scholar] [CrossRef]
- Mamani-Linares, L.W.; Gallo, C.B. Meat quality, proximate composition and muscle fatty acid profile of young llamas (Lama glama) supplemented with hay or concentrate during the dry season. Meat Sci. 2014, 96, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Bush, R.D.; van de Ven, R.J.; Hopkins, D.L. The combined effects of grain supplementation and tenderstretching on alpaca (Vicugna pacos) meat quality. Meat Sci. 2017, 125, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Bush, R.D.; van de Ven, R.J.; Hopkins, D.L. The effect of grain supplementation on alpaca (Vicugna pacos) production and meat quality. Small Rumin. Res. 2017, 147, 25–31. [Google Scholar] [CrossRef]
- Smith, M.A.; Nelson, C.L.; Biffin, T.E.; Bush, R.D.; Hall, E.J.S.; Hopkins, D.L. Vitamin E concentration in alpaca meat and its impact on oxidative traits during retail display. Meat Sci. 2019, 151, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Walker, G.P.; Dunshea, F.R.; Doyle, P.T. Effects of nutrition and management on the production and composition of milk fat and protein: A review. Aust. J. Agric. Res. 2004, 55, 1009–1028. [Google Scholar] [CrossRef]
- Santiago, B.M.; da Silva, F.F.; Silva, R.R.; Costa, E.G.L.; Porto Junior, A.F.; Costa, E.N.; de Souza, D.D. Effect of different roughages sources on performance, milk composition, fatty acid profile, and milk cholesterol content of feedlot feed crossbred cows (Holstein × Zebu). Trop. Anim. Health Prod. 2019, 51, 599–604. [Google Scholar] [CrossRef]
- Gutierrez, G.S.; Lana, R.P.; Teixeira, C.R.V.; Veloso, C.M.; Rennó, L.N. Performance of crossbred lactating cows at grazing in response to nitrogen supplementation and different levels of concentrate feed. Arq. Bras. Med. Veterinária Zootec. 2019, 71, 1005–1014. [Google Scholar] [CrossRef]
- Peniche-González, I.N.; González-López, Z.U.; Aguilar-Pérez, C.F.; Ku-Vera, J.C.; Ayala-Burgos, A.J.; Solorio-Sánchez, F.J. Milk production and reproduction of dual-purpose cows with a restricted concentrate allowance and access to an association of Leucaena leucocephala and Cynodon nlemfuensis. J. Appl. Anim. Res. 2014, 42, 345–351. [Google Scholar] [CrossRef]
- Bottini-Luzardo, M.B.; Aguilar-Pérez, C.F.; Centurión-Castro, F.G.; Solorio-Sánchez, F.J.; Ku-Vera, J.C. Milk yield and blood urea nitrogen in crossbred cows grazing Leucaena leucocephala in a silvopastoral system in the Mexican tropics. Trop. Grassl. Forrajes Trop. 2016, 4, 159–167. [Google Scholar] [CrossRef]
- Gebreyowhans, S.; Zegeye, T. Effect of dried Sesbania sesban leaves supplementation on milk yield, feed intake, and digestibility of Holstein Friesian X Zebu (Arado) crossbred dairy cows. Trop. Anim. Health Prod. 2019, 51, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Borges, L.D.A.; Rocha Júnior, V.R.; Monção, F.P.; Soares, C.; Ruas, J.R.M.; Silva, F.V.e.; Rigueira, J.P.S.; Costa, N.M.; Oliveira, L.L.S.; Rabelo, W.d.O. Nutritional and productive parameters of Holstein/Zebu cows fed diets containing cactus pear. Asian-Australas. J. Anim. Sci. 2019, 32, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Arjona-Alcocer, V.A.; Aguilar-Pérez, C.F.; Ku-Vera, J.C.; Ramírez-Avilés, L.; Solorio-Sánchez, F.J. Influence of energy supplementation on dietary nitrogen utilization and milk production in cows fed foliage of Leucaena leucocephala. Trop. Anim. Health Prod. 2020, 52, 2319–2325. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, Z.; Rashid, M.A.; Pasha, T.N.; Bhatti, J.A. Effect of wheat- or oat-straw inclusion with wheat bran or corn grain in prepartum diets on postpartum performance of transition dairy cows. Anim. Prod. Sci. 2020, 60, 1521–1530. [Google Scholar] [CrossRef]
- Pimentel, L.R.; Silva, F.F.d.; Silva, R.R.; Porto Junior, A.F.; Costa, E.G.L.; Schio, A.R.; Souza, D.D.d.; Rodrigues, E.S.d.O.; Silva, G.M.d.; Menezes, M.d.A. Desempenho produtivo de vacas leiteiras mestiças alimentadas com torta de dendê. Semin. Ciências Agrárias 2018, 39, 2103–2112. [Google Scholar] [CrossRef]
- do Carmo Araújo, S.A.; Bicalho, G.P.; da Silva Rocha, N.; Bento, C.B.P.; Ortêncio, M.O. Sorghum silage supplemented with crambe meal improves dry matter intake and milk production in crossbred Holstein cows. Trop. Anim. Health Prod. 2018, 50, 143–148. [Google Scholar] [CrossRef]
- Dias, C.A.S.; Bagaldo, A.R.; Cerutti, W.G.; Barbosa, A.M.; de Carvalho, G.G.P.; Costa, E.I.S.; Bezerra, L.R.; Oliveira, R.L. Peanut cake can replace soybean meal in supplements for lactating cows without affecting production. Trop. Anim. Health Prod. 2018, 50, 651–657. [Google Scholar] [CrossRef]
- Alves, A.F.; Zervoudakis, J.T.; Hatamoto-Zervoudakis, L.K.; Cabral, L.d.S.; Leonel, F.d.P.; Paula, N.F.d. Replacing soybean meal with high energy cottonseed meal in diets for dairy yielding cows: Intake, nutrient digestibility, nitrogen efficiency and milk yield. Rev. Bras. Zootec. 2010, 39, 532–540. [Google Scholar] [CrossRef]
- de Freitas, H.P.; Lage, C.F.A.; Malacco, V.M.R.; Moura, A.M.; Rodrigues, J.P.P.; Saturnino, H.M.; Coelho, S.G.; Reis, R.B. Partial substitution of soybean meal with a yeast-derived protein in the diet of dairy cows under a rotational grazing system. Livest. Sci. 2019, 225, 144–150. [Google Scholar] [CrossRef]
- Auldist, M.J.; Marett, L.C.; Greenwood, J.S.; Wright, M.M.; Hannah, M.; Jacobs, J.L.; Wales, W.J. Milk production responses to different strategies for feeding supplements to grazing dairy cows. J. Dairy Sci. 2016, 99, 657–671. [Google Scholar] [CrossRef] [PubMed]
- Vibart, R.E.; Tavendale, M.; Otter, D.; Schwendel, B.H.; Lowe, K.; Gregorini, P.; Pacheco, D. Milk production and composition, nitrogen utilization, and grazing behavior of late-lactation dairy cows as affected by time of allocation of a fresh strip of pasture. J. Dairy Sci. 2017, 100, 5305–5318. [Google Scholar] [CrossRef] [PubMed]
- Auldist, M.J.; Marett, L.C.; Greenwood, J.S.; Hannah, M.; Jacobs, J.L.; Wales, W.J. Effects of different strategies for feeding supplements on milk production responses in cows grazing a restricted pasture allowance. J. Dairy Sci. 2013, 96, 1218–1231. [Google Scholar] [CrossRef] [PubMed]
- Bovolenta, S.; Corazzin, M.; Saccà, E.; Gasperi, F.; Biasioli, F.; Ventura, W. Performance and cheese quality of Brown cows grazing on mountain pasture fed two different levels of supplementation. Livest. Sci. 2009, 124, 58–65. [Google Scholar] [CrossRef]
- Sturaro, E.; Marchiori, E.; Cocca, G.; Penasa, M.; Ramanzin, M.; Bittante, G. Dairy systems in mountainous areas: Farm animal biodiversity, milk production and destination, and land use. Livest. Sci. 2013, 158, 157–168. [Google Scholar] [CrossRef]
- Bergamaschi, M.; Cipolat-Gotet, C.; Stocco, G.; Valorz, C.; Bazzoli, I.; Sturaro, E.; Ramanzin, M.; Bittante, G. Cheesemaking in highland pastures: Milk technological properties, cream, cheese and ricotta yields, milk nutrients recovery, and products composition. J. Dairy Sci. 2016, 99, 9631–9646. [Google Scholar] [CrossRef] [PubMed]
- Koczura, M.; Martin, B.; Turille, G.; De Marchi, M.; Kreuzer, M.; Berard, J. Milk composition, but not cheese properties, are impaired the day after transhumance to alpine pastures. Int. Dairy J. 2019, 99, 104540. [Google Scholar] [CrossRef]
- Ferlay, A.; Martin, B.; Pradel, P.; Coulon, J.B.; Chilliard, Y. Influence of grass-based diets on milk fatty acid composition and milk lipolytic system in Tarentaise and Montbéliarde cow breeds. J. Dairy Sci. 2006, 89, 4026–4041. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Reynolds, C.K.; Lupoli, B.; Toivonen, V.; Yurawecz, M.P.; Delmonte, P.; Griinari, J.M.; Grandison, A.S.; Beever, D.E. Effect of forage type and proportion of concentrate in the diet on milk fatty acid composition in cows given sunflower oil and fish oil. Anim. Sci. 2005, 80, 225–238. [Google Scholar] [CrossRef]
- Isenberg, B.J.; Soder, K.J.; Pereira, A.B.D.; Standish, R.; Brito, A.F. Production, milk fatty acid profile, and nutrient utilization in grazing dairy cows supplemented with ground flaxseed. J. Dairy Sci. 2019, 102, 1294–1311. [Google Scholar] [CrossRef] [PubMed]
- McBeth, L.R.; St-Pierre, N.R.; Shoemaker, D.E.; Weiss, W.P. Effects of transient changes in silage dry matter concentration on lactating dairy cows. J. Dairy Sci. 2013, 96, 3924–3935. [Google Scholar] [CrossRef]
- Cipolat-Gotet, C.; Cecchinato, A.; Drake, M.A.; Marangon, A.; Martin, B.; Bittante, G. From cow to cheese: Novel phenotypes related to the sensory profile of model cheeses from individual cows. J. Dairy Sci. 2018, 101, 5865–5877. [Google Scholar] [CrossRef]
- Bittante, G.; Cipolat-Gotet, C.; Malchiodi, F.; Sturaro, E.; Tagliapietra, F.; Schiavon, S.; Cecchinato, A. Effect of dairy farming system, herd, season, parity, and days in milk on modeling of the coagulation, curd firming, and syneresis of bovine milk. J. Dairy Sci. 2015, 98, 2759–2774. [Google Scholar] [CrossRef]
- Boiani, M.; Sundekilde, U.; Bateman, L.M.; McCarthy, D.G.; Maguire, A.R.; Gulati, A.; Guinee, T.P.; Fenelon, M.; Hennessy, D.; FitzGerald, R.J.; et al. Integration of high and low field 1 H NMR to analyse the effects of bovine dietary regime on milk metabolomics and protein-bound moisture characterisation of the resulting mozzarella cheeses during ripening. Int. Dairy J. 2019, 91, 155–164. [Google Scholar] [CrossRef]
- Akkerman, M.; Larsen, L.B.; Sørensen, J.; Poulsen, N.A. Natural variations of citrate and calcium in milk and their effects on milk processing properties. J. Dairy Sci. 2019, 102, 6830–6841. [Google Scholar] [CrossRef]
- Chen, B.; Lewis, M.J.; Grandison, A.S. Effect of seasonal variation on the composition and properties of raw milk destined for processing in the UK. Food Chem. 2014, 158, 216–223. [Google Scholar] [CrossRef]
- Seifi, H.A.; Huzzey, J.M.; Khan, M.A.; Weary, D.M.; von Keyserlingk, M.A.G. Addition of straw to the early-lactation diet: Effects on feed intake, milk yield, and subclinical ketosis in Holstein cows. J. Dairy Sci. 2021, 104, 3008–3017. [Google Scholar] [CrossRef]
- Karlsson, J.; Lindberg, M.; Åkerlind, M.; Holtenius, K. Feed intake, milk yield and metabolic status of early-lactation Swedish Holstein and Swedish Red dairy cows of different parities fed grass silage and two levels of byproduct-based concentrate. Livest. Sci. 2020, 242, 104304. [Google Scholar] [CrossRef]
- Wachirapakorn, C.; Pilachai, K.; Wanapat, M.; Pakdee, P.; Cherdthong, A. Effect of ground corn cobs as a fiber source in total mixed ration on feed intake, milk yield and milk composition in tropical lactating crossbred Holstein cows. Anim. Nutr. 2016, 2, 334–338. [Google Scholar] [CrossRef]
- Castellani, F.; Vitali, A.; Bernardi, N.; Marone, E.; Palazzo, F.; Grotta, L.; Martino, G. Dietary supplementation with dried olive pomace in dairy cows modifies the composition of fatty acids and the aromatic profile in milk and related cheese. J. Dairy Sci. 2017, 100, 8658–8669. [Google Scholar] [CrossRef]
- Ianni, A.; Martino, G. Dietary grape pomace supplementation in dairy cows: Effect on nutritional quality of milk and its derived dairy products. Foods 2020, 9, 168. [Google Scholar] [CrossRef]
- Fehlberg, L.K.; Guadagnin, A.R.; Thomas, B.L.; Sugimoto, Y.; Shinzato, I.; Cardoso, F.C. Feeding rumen-protected lysine prepartum increases energy-corrected milk and milk component yields in Holstein cows during early lactation. J. Dairy Sci. 2020, 103, 11386–11400. [Google Scholar] [CrossRef]
- Elcoso, G.; Zweifel, B.; Bach, A. Effects of a blend of essential oils on milk yield and feed efficiency of lactating dairy cows. J. Anim. Sci. 2019, 35, 304–311. [Google Scholar] [CrossRef]
- Polowsky, P.; Coudé, B.; Jiménez-Maroto, L.A.; Johnson, M.; Park, Y.W. Flavor and sensory characteristics of non-bovine species milk and their dairy products. In Handbook of Milk of Non-Bovine Mammals, 2nd ed.; Wiley Blackwell: Hoboken, NJ, USA, 2017; pp. 595–623. [Google Scholar]
- Mohapatra, A.; Shinde, A.K.; Singh, R. Sheep milk: A pertinent functional food. Small Rumin. Res. 2019, 181, 6–11. [Google Scholar] [CrossRef]
- Flis, Z.; Molik, E. Importance of bioactive substances in sheep’s milk in human health. Int. J. Mol. Sci. 2021, 22, 4364. [Google Scholar] [CrossRef]
- Molik, E.; Murawski, M.; Bonczar, G.; Wierzchoś, E. Effect of genotype on yield and chemical composition of sheep milk. Anim. Sci. Pap. Rep. 2008, 26, 211–218. [Google Scholar]
- Inostroza, K.; Bravo, S.; Larama, G.; Saenz, C.; Sepúlveda, N. Variation in milk composition and fatty acid profile during the lactation of araucana creole ewes in a pasture-based system. Animals 2020, 10, 92. [Google Scholar] [CrossRef]
- Soják, L.; Blaško, J.; Kubinec, R.; Górová, R.; Addová, G.; Ostrovský, I.; Margetín, M. Variation among individuals, breeds, parities and milk fatty acid profile and milk yield of ewes grazed on pasture. Small Rumin. Res. 2013, 109, 173–181. [Google Scholar] [CrossRef]
- Zhang, R.H.; Mustafa, A.F.; Zhao, X. Effects of feeding oilseeds rich in linoleic and linolenic fatty acids to lactating ewes on cheese yield and on fatty acid composition of milk and cheese. Anim. Feed Sci. Technol. 2006, 127, 220–233. [Google Scholar] [CrossRef]
- Osoro, K.; Ferreira, L.M.M.; García, U.; Jáuregui, B.M.; Martínez, A.; Rosa García, R.; Celaya, R. Diet selection and performance of sheep and goats grazing on different heathland vegetation types. Small Rumin. Res. 2013, 109, 119–127. [Google Scholar] [CrossRef]
- De Rancourt, M.; Fois, N.; Lavín, M.P.; Tchakérian, E.; Vallerand, F. Mediterranean sheep and goats production: An uncertain future. Small Rumin. Res. 2006, 62, 167–179. [Google Scholar] [CrossRef]
- Pulina, G.; Nudda, A.; Battacone, G.; Cannas, A. Effects of nutrition on the contents of fat, protein, somatic cells, aromatic compounds, and undesirable substances in sheep milk. Anim. Feed Sci. Technol. 2006, 131, 255–291. [Google Scholar] [CrossRef]
- Hilali, M.; Rischkowsky, B.; Iñiguez, L.; Mayer, H.; Schreiner, M. Changes in the milk fatty acid profile of Awassi sheep in response to supplementation with agro-industrial by-products. Small Rumin. Res. 2018, 166, 93–100. [Google Scholar] [CrossRef]
- Symeou, S.; Tsiafoulis, C.G.; Gerothanassis, I.P.; Miltiadou, D.; Tzamaloukas, O. Nuclear magnetic resonance screening of changes in fatty acid and cholesterol content of ovine milk induced by ensiled olive cake inclusion in Chios sheep diets. Small Rumin. Res. 2019, 177, 111–116. [Google Scholar] [CrossRef]
- Cabiddu, A.; Addis, M.; Fiori, M.; Spada, S.; Decandia, M.; Molle, G. Pros and cons of the supplementation with oilseed enriched concentrates on milk fatty acid profile of dairy sheep grazing Mediterranean pastures. Small Rumin. Res. 2017, 147, 63–72. [Google Scholar] [CrossRef]
- Nudda, A.; Atzori, A.S.; Correddu, F.; Battacone, G.; Lunesu, M.F.; Cannas, A.; Pulina, G. Effects of nutrition on main components of sheep milk. Small Rumin. Res. 2020, 184, 106015. [Google Scholar] [CrossRef]
- Peana, I.; Francesconi, A.H.D.; Dimauro, C.; Cannas, A.; Sitzia, M. Effect of winter and spring meteorological conditions on milk production of grazing dairy sheep in the Mediterranean environment. Small Rumin. Res. 2017, 153, 194–208. [Google Scholar] [CrossRef]
- Altomonte, I.; Conte, G.; Serra, A.; Mele, M.; Cannizzo, L.; Salari, F.; Martini, M. Nutritional characteristics and volatile components of sheep milk products during two grazing seasons. Small Rumin. Res. 2019, 180, 41–49. [Google Scholar] [CrossRef]
- Silanikove, N. Interrelationships Between Feed Quality, Digestibility, Feed Consumption, and Energy Requirements in Desert (Bedouin) and Temperate (Saanen) Goats. J. Dairy Sci. 1986, 69, 2157–2162. [Google Scholar] [CrossRef]
- Mkhize, N.R.; Heitkönig, I.M.A.; Scogings, P.F.; Hattas, D.; Dziba, L.E.; Prins, H.H.T.; De Boer, W.F. Seasonal regulation of condensed tannin consumption by free-ranging goats in a semiarid savanna. PLoS ONE 2018, 13, e0189626. [Google Scholar] [CrossRef]
- Chávez-Servín, J.L.; Andrade-Montemayor, H.M.; Velázquez Vázquez, C.; Aguilera Barreyro, A.; García-Gasca, T.; Ferríz Martínez, R.A.; Olvera Ramírez, A.M.; de la Torre-Carbot, K. Effects of feeding system, heat treatment and season on phenolic compounds and antioxidant capacity in goat milk, whey and cheese. Small Rumin. Res. 2018, 160, 54–58. [Google Scholar] [CrossRef]
- Mellado, M.; Rodríguez, A.; Olvera, A.; Villarreal, J.A.; Lopez, R. Diets of Nubian and Granadina goats grazing on arid rangeland. J. Range Manag. 2004, 57, 630–634. [Google Scholar] [CrossRef]
- Mellado, M. Dietary selection by goats and the implications for range management in the Chihuahuan Desert: A review. Rangel. J. 2016, 38, 331–341. [Google Scholar] [CrossRef]
- Park, Y.W.; Haenlein, G.F. Section XIV. Milk and Milk Products: Goat Milk, Its Products and Nutrition. In Handbook of Food Products Manufacturing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; Volume 2, pp. 449–488. [Google Scholar]
- Giger-Reverdin, S.; Rigalma, K.; Desnoyers, M.; Sauvant, D.; Duvaux-Ponter, C. Effect of concentrate level on feeding behavior and rumen and blood parameters in dairy goats: Relationships between behavioral and physiological parameters and effect of between-animal variability. J. Dairy Sci. 2014, 97, 4367–4378. [Google Scholar] [CrossRef]
- Verma, M.; Dige, M.S.; Gautam, D.; De, S.; Rout, P.K. Functional milk proteome analysis of genetically diverse goats from different agro climatic regions. J. Proteom. 2020, 227, 103916. [Google Scholar] [CrossRef]
- Savoini, G.; Farina, G.; Dell’Orto, V.; Cattaneo, D. Through ruminant nutrition to human health: Role of fatty acids. Adv. Anim. Biosci. 2016, 7, 200–207. [Google Scholar] [CrossRef]
- Sanz Sampelayo, M.R.; Pérez, L.; Martín Alonso, J.J.; Amigo, L.; Boza, J. Effects of concentrates with different contents of protected fat rich in PUFAs on the performance lactating Granadina goats. Part II. Milk production and composition. Small Rumin. Res. 2002, 43, 141–148. [Google Scholar] [CrossRef]
- Hadaya, O.; Landau, S.Y.; Glasser, T.; Muklada, H.; Deutch, T.; Shemesh, M.; Argov-Argaman, N. Producing pasture-like milk from goats in confinement. Livest. Sci. 2020, 236, 104056. [Google Scholar] [CrossRef]
- Minihane, A.M.; Lovegrove, J.A. Health benefits of polyunsaturated fatty acids (PUFAs). In Improving the Fat Content of Foods; Elsevier Ltd.: Cambridge, MA, USA, 2006; pp. 107–140. [Google Scholar]
- Bonanno, A.; Di Grigoli, A.; Montalbano, M.; Bellina, V.; Mazza, F.; Todaro, M. Effects of diet on casein and fatty acid profiles of milk from goats differing in genotype for αS1-casein synthesis. Eur. Food Res. Technol. 2013, 237, 951–963. [Google Scholar] [CrossRef]
- Piluzza, G.; Bullitta, S. The dynamics of phenolic concentration in some pasture species and implications for animal husbandry. J. Sci. Food Agric. 2010, 90, 1452–1459. [Google Scholar] [CrossRef]
- Di Trana, A.; Bonanno, A.; Cecchini, S.; Giorgio, D.; Di Grigoli, A.; Claps, S. Effects of Sulla forage (Sulla coronarium L.) on the oxidative status and milk polyphenol content in goats. J. Dairy Sci. 2015, 98, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Tsiplakou, E.; Mountzouris, K.C.; Zervas, G. Concentration of conjugated linoleic acid in grazing sheep and goat milk fat. Livest. Sci. 2006, 103, 74–84. [Google Scholar] [CrossRef]
- Giorgio, D.; Di Trana, A.; Di Napoli, M.A.; Sepe, L.; Cecchini, S.; Rossi, R.; Claps, S. Comparison of cheeses from goats fed 7 forages based on a new health index. J. Dairy Sci. 2019, 102, 6790–6801. [Google Scholar] [CrossRef]
- Hilario, M.C.; Puga, C.D.; Ocaña, A.N.; Romo, F.P.G. Antioxidant activity, bioactive polyphenols in Mexican goats’ milk cheeses on summer grazing. J. Diary Res. 2010, 77, 20–26. [Google Scholar] [CrossRef]
- De Feo, V.; Quaranta, E.; Fedele, V.; Claps, S.; Rubino, R.; Pizza, C. Flavonoids and terpenoids in goat milk in relation to forage intake. Ital. J. Food Sci. 2006, 18, 85–92. [Google Scholar]
- Leparmarai, P.T.; Sinz, S.; Kunz, C.; Liesegang, A.; Ortmann, S.; Kreuzer, M.; Marquardt, S. Transfer of total phenols from a grapeseed-supplemented diet to dairy sheep and goat milk, and effects on performance and milk quality. J. Anim. Sci. 2019, 97, 1840–1851. [Google Scholar] [CrossRef]
- Schmitt, M.H.; Ward, D.; Shrader, A.M. Salivary tannin-binding proteins: A foraging advantage for goats? Livest. Sci. 2020, 234, 103974. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin. Res. 2003, 49, 241–256. [Google Scholar] [CrossRef]
- Hadaya, O.; Landau, S.Y.; Glasser, T.; Muklada, H.; Dvash, L.; Mesilati-Stahy, R.; Argov-Argaman, N. Milk composition in Damascus, Mamber and F1 Alpine crossbred goats under grazing or confinement management. Small Rumin. Res. 2017, 153, 31–40. [Google Scholar] [CrossRef]
- Woodward, A.; Reed, J.D. Intake and digestibility for sheep and goats consuming supplementary Acacia brevispica and Sesbania sesban. Anim. Feed Sci. Technol. 1995, 56, 207–216. [Google Scholar] [CrossRef]
- Decandia, M.; Sitzia, M.; Cabiddu, A.; Kababya, D.; Molle, G. The use of polyethylene glycol to reduce the anti-nutritional effects of tannins in goats fed woody species. Small Rumin. Res. 2000, 38, 157–164. [Google Scholar] [CrossRef]
- Cabiddu, A.; Molle, G.; Decandia, M.; Spada, S.; Fiori, M.; Piredda, G.; Addis, M. Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep. Part 2: Effects on milk fatty acid profile. Livest. Sci. 2009, 123, 230–240. [Google Scholar] [CrossRef]
- Giorgio, D.; Di Trana, A.; Di Gregorio, P.; Rando, A.; Avondo, M.; Bonanno, A.; Valenti, B.; Di Grigoli, A. Oxidative status of goats with different CSN1S1 genotypes fed ad Libitum with fresh and dry forages. Antioxidants 2020, 9, 224. [Google Scholar] [CrossRef]
- Pagano, R.I.; Pennisi, P.; Valenti, B.; Lanza, M.; Di Trana, A.; Di Gregorio, P.; De Angelis, A.; Avondo, M. Effect of CSN1S1 genotype and its interaction with diet energy level on milk production and quality in Girgentana goats fed ad libitum. J. Diary Res. 2010, 77, 245–251. [Google Scholar] [CrossRef]
- Ramírez, R.G.; Haenlein, G.F.W.; García-Castillo, C.G.; Núñez-González, M.A. Protein, lignin and mineral contents and in situ dry matter digestibility of native Mexican grasses consumed by range goats. Small Rumin. Res. 2004, 52, 261–269. [Google Scholar] [CrossRef]
- Gihad, E.A.; El-Bedawy, T.M.; Mehrez, A.Z. Fiber Digestibility by Goats and Sheep. J. Dairy Sci. 1980, 63, 1701–1706. [Google Scholar] [CrossRef]
- Abesinghe, A.M.N.L.; Priyashantha, H.; Prasanna, P.H.P.; Kurukulasuriya, M.S.; Ranadheera, C.S.; Vidanarachchi, J.K. Inclusion of Probiotics into Fermented Buffalo (Bubalus bubalis) Milk: An Overview of Challenges and Opportunities. Fermentation 2020, 6, 121. [Google Scholar] [CrossRef]
- Yadav, A.K.; Jain, R.K.; Thakur, D.; Mehta, M.K. Survey of existing rural feeding practices and nutrient status of lactating buffaloes in Indore District of Madhya Pradesh. Buffalo Bull. 2020, 39, 299–310. [Google Scholar]
- Thakur, D.; Jain, R.K.; Aich, R. Effect of strategic nutrient supplementation on health, reproductive and productive status of buffaloes in the Malwa region of Madhya Pradesh. Buffalo Bull. 2016, 35, 225–235. [Google Scholar]
- Reddy, P.R.K.; Kumar, D.S.; Rao, E.R.; Seshiah, C.V.; Sateesh, K.; Rao, K.A.; Reddy, Y.P.K.; Hyder, I. Environmental sustainability assessment of tropical dairy buffalo farming vis-a-vis sustainable feed replacement strategy. Sci. Rep. 2019, 9, 16745. [Google Scholar] [CrossRef] [PubMed]
- Uzun, P.; Masucci, F.; Serrapica, F.; Napolitano, F.; Braghieri, A.; Romano, R.; Manzo, N.; Esposito, G.; Di Francia, A. The inclusion of fresh forage in the lactating buffalo diet affects fatty acid and sensory profile of mozzarella cheese. J. Dairy Sci. 2018, 101, 6752–6761. [Google Scholar] [CrossRef]
- Tyagi, A.K.; Kewalramani, N.; Dhiman, T.R.; Kaur, H.; Singhal, K.K.; Kanwajia, S.K. Enhancement of the conjugated linoleic acid content of buffalo milk and milk products through green fodder feeding. Anim. Feed Sci. Technol. 2007, 133, 351–358. [Google Scholar] [CrossRef]
- Habib, G.; Hameed, A.; Saleem, M. Effect of dietary levels of protein on milk production, milk-urea and nitrogen use effeciency in Peri-urban milking buffaloes. J. Anim. Plant Sci. 2019, 29, 1558–1567. [Google Scholar]
- Tadeo, N.; Abellera, V.; Vega, R.; Sulabo, R.; Rayos, A.; Baconguis, R.; Saludes, T.; Tadeo, F. Yield and composition of milk and detection of plasma ghrelin and IGF-1 in dairy buffalo fed with Moringa oleifera leaf leal (MoLM) supplement. IOP Conf. Ser. Earth Environ. Sci. 2019, 230, 012039. [Google Scholar] [CrossRef]
- Singh, H.P.; Jain, R.K.; Tiwari, D.; Mehta, M.K.; Mudgal, V. Strategic Supplementation of Antioxidant Micronutrients in Peri-parturient Murrah Buffaloes Helps Augment the Udder Health and Milk Production. Biol. Trace Elem. Res. 2021, 199, 2182–2190. [Google Scholar] [CrossRef]
- Somagond, Y.M.; Singh, S.V.; Deshpande, A.; Sheoran, P.; Chahal, V.P. Physiological responses, energy metabolites and prolactin levels of buffaloes supplemented with dietary astaxanthin, prill fat and their combination during heat stress. Indian J. Anim. Sci. 2020, 90, 55–60. [Google Scholar] [CrossRef]
- Seerapu, S.R.; Kancharana, A.R.; Chappidi, V.S.; Bandi, E.R. Effect of microclimate alteration on milk production and composition in Murrah buffaloes. Vet. World 2015, 8, 1444–1452. [Google Scholar] [CrossRef]
Age, Months | M × M | BL × M | PD × M | PDg × (BL × M) | SED | p-Values | |||
---|---|---|---|---|---|---|---|---|---|
PDg × M | PDm × M | PDg × M vs. PDg × (BL × M) | Other | Breed Combination | PDg × M vs. PDm × (BL × M) | ||||
4 | 15.2 | 17.7 | 16.4 | 16.6 | 19.4 | 0.86 | 1.01–1.09 | 0.001 | 0.86 |
8 | 19.7 | 22.8 | 21.7 | 21.1 | 25.0 | 0.55 | 1.01–1.07 | 0.001 | 0.55 |
14 | 22.9 | 29.7 | 26.9 | 26.0 | 29.6 | 0.68 | 1.31–1.36 | 0.001 | 0.51 |
22 | 29.1 | 37.1 | 32.4 | 32.3 | 36.2 | 0.75 | 1.08–1.17 | 0.001 | 0.92 |
Feed Source | DM | OM | CP | NDF | ADF |
---|---|---|---|---|---|
Alfalfa | 85.5 | n/a | 15.0 | 54.2 | 36.8 |
Banana peel (sun dried) | 87.8 | n/a | 8.3 | 47.9 | 29.8 |
Briquette from Brachiaria | 90.9 | n/a | 5.3 | 73.3 | 50.7 |
Cactus pear | 8.3 | 95.4 | 9.2 | 30.0 | 19.0 |
Cassava shoots hay | 83.5 | 94.2 | 5.2 | 60.1 | 48.2 |
Citrus pulp | 20.0 | n/a | 9.0 | 31.6 | 7.8 |
Corn ground grain | 90.2 | 97.9 | 9.2 | 20.4 | 5.9 |
Crambe meal | 91.7 | 93.4 | 36.3 | 28.0 | 16.7 |
Cynodon nlemfuensis | 33.7 | n/a | 7.9 | n/a | 39.2 |
Elephant grass silage | 51.3 | n/a | 6.6 | 71.2 | 42.7 |
Fresh sugarcane bagasse | 71.0 | 96.7 | 1.9 | 83.4 | 57.9 |
Green maize | 12.9 | 88.9 | 8.7 | 52.5 | 32.8 |
Lentisk | 45.9 | 95.6 | 8.5 | 42.1 | 31.4 |
Leucaena leucocephala | 30.3 | n/a | 25.9 | n/a | 24.8 |
Palm kernel cake | 92.3 | n/a | 10.7 | 65.6 | 46.4 |
Peanut cake | 90.9 | n/a | 44.7 | 11.8 | 7.0 |
Pennisetum purpureum | 25.5 | n/a | 3.1 | 67.7 | 44.3 |
Rice polishing | 92.0 | n/a | 8.1 | 17.8 | 32.2 |
Sorghum silage | 33.2 | 92.2 | 6.6 | 65.0 | 38.9 |
Soybean meal | 90.0 | 94.0 | 46.9 | 16.2 | 11.2 |
Sulla | 19.1 | n/a | 17.2 | 44.3 | 26.9 |
Tithonia diversifolia | 29.3 | n/a | 14.5 | 39.5 | 20.8 |
Wheat straw | 90.1 | 91.5 | 3.1 | 77.8 | 50.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponnampalam, E.N.; Priyashantha, H.; Vidanarachchi, J.K.; Kiani, A.; Holman, B.W.B. Effects of Nutritional Factors on Fat Content, Fatty Acid Composition, and Sensorial Properties of Meat and Milk from Domesticated Ruminants: An Overview. Animals 2024, 14, 840. https://doi.org/10.3390/ani14060840
Ponnampalam EN, Priyashantha H, Vidanarachchi JK, Kiani A, Holman BWB. Effects of Nutritional Factors on Fat Content, Fatty Acid Composition, and Sensorial Properties of Meat and Milk from Domesticated Ruminants: An Overview. Animals. 2024; 14(6):840. https://doi.org/10.3390/ani14060840
Chicago/Turabian StylePonnampalam, Eric N., Hasitha Priyashantha, Janak K. Vidanarachchi, Ali Kiani, and Benjamin W. B. Holman. 2024. "Effects of Nutritional Factors on Fat Content, Fatty Acid Composition, and Sensorial Properties of Meat and Milk from Domesticated Ruminants: An Overview" Animals 14, no. 6: 840. https://doi.org/10.3390/ani14060840
APA StylePonnampalam, E. N., Priyashantha, H., Vidanarachchi, J. K., Kiani, A., & Holman, B. W. B. (2024). Effects of Nutritional Factors on Fat Content, Fatty Acid Composition, and Sensorial Properties of Meat and Milk from Domesticated Ruminants: An Overview. Animals, 14(6), 840. https://doi.org/10.3390/ani14060840