The Genetic Basis Underpinning Sexually Selected Traits across Different Animal Lineages: Are There Genetic Mechanisms in Common?
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Genetic Basis of Various Sexually Selected Traits (SSTs) or Exaggerated Sexual Ornaments in Animal Taxa
2.1. Sexually Selected Traits on Flies
2.2. Exaggerated Male Traits in Beetle Horns
2.3. Swords in Swordtail Fish
2.4. Colorful Sexual Traits
3. Common Genetic Architecture among Sexually Selected Traits
3.1. Signs of Co-Option
3.2. Sex Determination and Sex-Biased Genes
3.3. Insulin Signaling Pathway
3.4. Steroid Hormone-Related Genes
3.5. Other Reported Common Genes
4. Transcriptome Profiling of Sexually Selected Traits or Male Ornaments
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robinson, D.M.; Tudor, M.S.; Morris, M.R. Female preference and the evolution of an exaggerated male ornament: The shape of the preference function matters. Anim. Behav. 2011, 81, 1015–1021. [Google Scholar] [CrossRef]
- Zahavi, A. Mate selection—A selection for a handicap. J. Theor. Biol. 1975, 53, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Endler, J.A. Natural selection on color patterns in Poecilia reticulata. Evolution 1980, 34, 76–91. [Google Scholar] [CrossRef]
- Amundsen, T.; Forsgren, E.; Hansen, L.T. On the function of female ornaments: Male bluethroats prefer colourful females. Proc. R. Soc. B Biol. Sci. 1997, 264, 1579–1586. [Google Scholar] [CrossRef]
- Amundsen, T.; Forsgren, E. Male mate choice selects for female coloration in a fish. Proc. Natl. Acad. Sci. USA 2001, 98, 13155–13160. [Google Scholar] [CrossRef]
- Tobias, J.A.; Montgomerie, R.; Lyon, B.E. The evolution of female ornaments and weaponry: Social selection, sexual selection and ecological competition. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 2274–2293. [Google Scholar] [CrossRef] [PubMed]
- Nolazco, S.; Delhey, K.; Nakagawa, S.; Peters, A. Ornaments are equally informative in male and female birds. Nat. Commun. 2022, 13, 5917. [Google Scholar] [CrossRef] [PubMed]
- Waffender, A.; Henshaw, J.M. Long-term persistence of exaggerated ornaments under Fisherian runaway despite costly mate search. J. Evol. Biol. 2023, 36, 45–56. [Google Scholar] [CrossRef]
- Andersson, M.; Simmons, L.W. Sexual selection and mate choice. Trends. Ecol. Evol. 2006, 21, 296–302. [Google Scholar] [CrossRef]
- Collins, S.A.; Luddem, S.T. Degree of male ornamentation affects female preference for conspecific versus heterospecific males. Proc. Biol. Sci. 2002, 269, 111–117. [Google Scholar] [CrossRef]
- Darwin, C. The Descent of Man, and Selection in Relation to Sex; Murray: London, UK, 1871. [Google Scholar]
- Moller, A.P. Male ornament size as a reliable cue to enhanced offspring viability in the barn swallow. Proc. Natl. Acad. Sci. USA 1994, 91, 6929–6932. [Google Scholar] [CrossRef] [PubMed]
- Pryke, S.R.; Andersson, S.; Lawes, M.J. Sexual selection of multiple handicaps in the red-collared widowbird: Female choice of tail length but not carotenoid display. Evolution 2001, 55, 1452–1463. [Google Scholar] [CrossRef]
- Hamilton, W.D.; Zuk, M. Heritable true fitness and bright birds: A role for parasites? Science 1982, 218, 384–387. [Google Scholar] [CrossRef]
- Berglund, A.; Bisazza, A.; Pilastr, O. Armaments and ornaments: An evolutionary explanation of traits of dual utility. Biol. J. Linnean. Soc. 1996, 58, 385–399. [Google Scholar] [CrossRef]
- Warren, I.A.; Gotoh, H.; Dworkin, I.M.; Emlen, D.J.; Lavine, L.C. A general mechanism for conditional expression of exaggerated sexually-selected traits. Bioessays 2013, 35, 889–899. [Google Scholar] [CrossRef] [PubMed]
- De Heij, M.E.; Gustafsson, L.; Brommer, J.E. Experimental manipulation shows that the white wing patch in collared flycatchers is a male sexual ornament. Ecol. Evol. 2011, 1, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.W.; Denniff, M.; Chapman, T.; Fowler, K.; Pomiankowski, A. Male sexual ornament size is positively associated with reproductive morphology and enhanced fertility in the stalk-eyed fly Teleopsis Dalmanni. BMC Evol. Biol. 2008, 8, 236. [Google Scholar] [CrossRef] [PubMed]
- West, P.M.; Packer, C. Sexual selection, temperature, and the lion’s mane. Science 2002, 297, 1339–1343. [Google Scholar] [CrossRef]
- Hoi, H.; Griggio, M. Dual utility of a melanin-based ornament in bearded tits. Ethology 2008, 114, 1094–1100. [Google Scholar] [CrossRef]
- Kabasakal, B.; Poláček, M.; Aslan, A.; Hoi, H.; Erdoğan, A.; Griggio, M. Sexual and non-sexual social preferences in male and female white-eyed bulbuls. Sci. Rep. 2017, 7, 5847. [Google Scholar] [CrossRef]
- Tanaka, Y. Social selection and the evolution of animal signals. Evolution 1996, 50, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Dennenmoser, S.; Christy, J.H. The design of a beautiful weapon: Compensation for opposing sexual selection on a trait with two functions. Evolution 2013, 67, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Emlen, D.J.; Corley Lavine, L.; Ewen-Campen, B. On the origin and evolutionary diversification of beetle horns. Proc. Natl. Acad. Sci. USA 2007, 104, 8661–8668. [Google Scholar] [CrossRef] [PubMed]
- Clutton-Brock, T.H.; Albon, S.D. The Roaring of Red Deer and the Evolution of Honest Advertisement. Behaviour 1979, 69, 145–170. [Google Scholar] [CrossRef]
- Hettyey, A.; Hegyi, G.; Puurtinen, M.; Hoi, H.; Török, J.; Penn, D.J. Mate choice for genetic benefits: Time to put the pieces together. Ethology 2010, 116, 1–9. [Google Scholar] [CrossRef]
- Trivers, R.L. Parental investment and sexual selection. In Sexual Selection and the Descent of Man. 1871–1971; Campbell, B., Ed.; Aldine Publishing Company: Chicago, IL, USA, 1972; pp. 136–179. [Google Scholar]
- Schlupp, I. Male mate choice in livebearing fishes: An overview. Curr. Zool. 2018, 64, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.L.; Dubin, M. Male mate choice as differential investment in contest competition is affected by female ornament expression. Curr. Zool. 2018, 64, 335–344. [Google Scholar] [CrossRef]
- Yong, L.; Lee, B.; McKinnon, J.S. Variation in female aggression in 2 three-spined stickleback populations with female throat and spine coloration. Curr. Zool. 2018, 64, 345–350. [Google Scholar] [CrossRef]
- Fitzpatrick, C.L.; Servedio, M.R. The evolution of male mate choice and female ornamentation: A review of mathematical models. Curr. Zool. 2018, 64, 323–333. [Google Scholar] [CrossRef]
- Heubel, K.U.; Plath, M. Influence of male harassment and female competition on female feeding behaviour in a sexual–asexual mating complex of mollies (Poecilia mexicana, P. formosa). Behav. Ecol. Sociobiol. 2008, 62, 1689–1699. [Google Scholar] [CrossRef]
- Müller, G.B.; Wagner, G.P. Novelty in evolution: Restructuring the concept. Annu. Rev. Ecol. Syst. 1991, 22, 229–256. [Google Scholar] [CrossRef]
- McKenna, K.Z.; Wagner, G.P.; Cooper, K.L. A developmental perspective of homology and evolutionary novelty. Curr. Top. Dev. Biol. 2021, 141, 1–38. [Google Scholar] [PubMed]
- Wagner, G.P.; Lynch, V.J. Evolutionary novelties. Curr. Biol. 2010, 20, R48–R52. [Google Scholar] [CrossRef] [PubMed]
- Galis, F. Key innovations and radiations. In The Character Concept in Evolutionary Biology; Academic Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Williams, T.M.; Carroll, S.B. Genetic and molecular insights into the development and evolution of sexual dimorphism. Nat. Rev. Genet. 2009, 10, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Chenoweth, S.F.; McGuigan, K. The Genetic Basis of Sexually Selected Variation. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 81–101. [Google Scholar] [CrossRef]
- Powell, D.L.; Payne, C.; Banerjee, S.M.; Keegan, M.; Bashkirova, E.; Cui, R.; Andolfatto, P.; Rosenthal, G.G.; Schumer, M. The genetic architecture of variation in the sexually selected sword ornament and its evolution in hybrid populations. Curr. Biol. 2021, 31, 923–935. [Google Scholar] [CrossRef]
- Schartl, M.; Kneitz, S.; Ormanns, J.; Schmidt, C.; Anderson, J.L.; Amores, A.; Catchen, J.; Wilson, C.; Geiger, D.; Du, K.; et al. The developmental and genetic architecture of the sexually selected male ornament of swordtails. Curr. Biol. 2021, 31, 911–922. [Google Scholar] [CrossRef]
- Kijimoto, T.; Costello, J.; Tang, Z.; Moczek, A.P.; Andrews, J. EST and microarray analysis of horn development in Onthophagus beetles. BMC Genom. 2009, 10, 504. [Google Scholar] [CrossRef]
- Choi, J.H.; Kijimoto, T.; Snell-Rood, E.; Tae, H.; Yang, Y.; Moczek, A.P.; Andrews, J. Gene discovery in the horned beetle Onthophagus taurus. BMC Genom. 2010, 11, 703. [Google Scholar] [CrossRef]
- Warren, I.A.; Vera, J.C.; Johns, A.; Zinna, R.; Marden, J.H.; Emlen, D.J.; Dworkin, I.; Lavine, L.C. Insights into the development and evolution of exaggerated traits using de novo transcriptomes of two species of horned scarab beetles. PLoS ONE 2014, 9, e88364. [Google Scholar] [CrossRef]
- Zinna, R.; Emlen, D.; Lavine, L.C.; Johns, A.; Gotoh, H.; Niimi, T.; Dworkin, I. Sexual dimorphism and heightened conditional expression in a sexually selected weapon in the Asian rhinoceros beetle. Mol. Ecol. 2018, 27, 5049–5072. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Zhao, Y.; Wang, Q.; Zhang, M.; Liu, M.; Liu, H.; Li, J. De novo characterization of the antler tip of Chinese Sika deer transcriptome and analysis of gene expression related to rapid growth. Mol. Cell. Biochem. 2012, 364, 93–100. [Google Scholar] [CrossRef]
- Yao, B.; Zhao, Y.; Zhang, H.; Zhang, M.; Liu, M.; Liu, H.; Li, J. Sequencing and de novo analysis of the Chinese Sika deer antler-tip transcriptome during the ossification stage using Illumina RNA-Seq technology. Biotechnol. Lett. 2012, 34, 813–822. [Google Scholar] [CrossRef]
- Zhao, Y.; Yao, B.; Zhang, M.; Wang, S.; Zhang, H.; Xiao, W. Comparative analysis of differentially expressed genes in Sika deer antler at different stages. Mol. Biol. Rep. 2013, 40, 1665–1676. [Google Scholar] [CrossRef] [PubMed]
- Peters, L.; Huisman, J.; Kruuk, L.E.; Pemberton, J.M.; Johnston, S.E. Genomic analysis reveals a polygenic architecture of antler morphology in wild red deer (Cervus elaphus). Mol. Ecol. 2022, 31, 1281–1298. [Google Scholar] [CrossRef]
- Ekblom, R.; Farrell, L.L.; Lank, D.B.; Burke, T. Gene expression divergence and nucleotide differentiation between males of different color morphs and mating strategies in the ruff. Ecol. Evol. 2012, 2, 2485–2505. [Google Scholar] [CrossRef]
- Semenov, G.A.; Linck, E.; Enbody, E.D.; Harris, R.B.; Khaydarov, D.R.; Alström, P.; Andersson, L.; Taylor, S.A. Asymmetric introgression reveals the genetic architecture of a plumage trait. Nat. Commun. 2021, 12, 1019. [Google Scholar] [CrossRef] [PubMed]
- Warren, I.; Smith, H. Stalk-eyed flies (Diopsidae): Modelling the evolution and development of an exaggerated sexual trait. Bioessays 2007, 29, 300–307. [Google Scholar] [CrossRef]
- Wilkinson, G.S.; Johns, P.M.; Metheny, J.D.; Baker, R.H. Sex-biased gene expression during head development in a sexually dimorphic stalk-eyed fly. PLoS ONE 2013, 8, e59826. [Google Scholar] [CrossRef]
- Singh, A.; Gogia, N.; Chang, C.Y.; Sun, Y.H. Proximal fate marker homothorax marks the lateral extension of stalk-eyed fly Cyrtodopsis Whitei. Genes 2019, 57, e23309. [Google Scholar] [CrossRef]
- Baker, R.H.; Morgan, J.; Wang, X.; Boore, J.L.; Wilkinson, G.S. Genomic analysis of a sexually-selected character: EST sequencing and microarray analysis of eye-antennal imaginal discs in the stalk-eyed fly Teleopsis dalmanni (Diopsidae). BMC Genom. 2009, 10, 361. [Google Scholar] [CrossRef] [PubMed]
- Kopp, A. Drosophila sex combs as a model of evolutionary innovations. Evol. Dev. 2011, 13, 504–522. [Google Scholar] [CrossRef] [PubMed]
- Scordato, E.S.; Bontrager, A.L.; Price, T.D. Cross-generational effects of climate change on expression of a sexually selected trait. Curr. Biol. 2012, 22, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Vanpe, C.; Gaillard, J.M.; Kjellander, P.; Mysterud, A.; Magnien, P.; Delorme, D.; Van Laere, G.; Klein, F.; Liberg, O.; Hewison, A.J. Antler size provides an honest signal of male phenotypic quality in roe deer. Am. Nat. 2007, 169, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Hurley, I.; Fowler, K.; Pomiankowski, A.; Smith, H. Conservation of the expression of Dll, en, and wg in the eye-antennal imaginal disc of stalk-eyed flies. Evol. Dev. 2001, 3, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Devi, T.R.; Shyamala, B.V. Male- and female-specific variants of doublesex gene products have different roles to play towards regulation of Sex. combs reduced expression and sex comb morphogenesis in Drosophila. J. Biosci. 2013, 38, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Barmina, O.; Sanders, L.E.; Arbeitman, M.N.; Kopp, A. Evolution of sex-specific traits through changes in HOX-dependent doublesex expression. PLoS Biol. 2011, 9, e1001131. [Google Scholar] [CrossRef]
- Atallah, J.; Vurens, G.; Mavong, S.; Mutti, A.; Hoang, D.; Kopp, A. Sex-specific repression of dachshund is required for Drosophila sex comb development. Dev. Biol. 2014, 386, 440–447. [Google Scholar] [CrossRef]
- Graze, R.M.; Barmina, O.; Tufts, D.; Naderi, E.; Harmon, K.L.; Persianinova, M.; Nuzhdin, S.V. New candidate genes for sex-comb divergence between Drosophila mauritiana and Drosophila simulans. Genetics 2007, 176, 2561–2576. [Google Scholar] [CrossRef]
- Rice, G.; Barmina, O.; Hu, K.; Kopp, A. Evolving doublesex expression correlates with the origin and diversification of male sexual ornaments in the Drosophila immigrans species group. Evol. Dev. 2018, 20, 78–88. [Google Scholar] [CrossRef]
- Barmina, O.; Kopp, A. Sex-specific expression of a HOX gene associated with rapid morphological evolution. Dev. Biol. 2007, 311, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Wasik, B.R.; Rose, D.J.; Moczek, A.P. Beetle horns are regulated by the Hox gene, Sex combs reduced, in a species- and sex-specific manner. Evol. Dev. 2010, 12, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.M.; Selegue, J.E.; Werner, T.; Gompel, N.; Kopp, A.; Carroll, S.B. The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila. Cell 2008, 134, 610–623. [Google Scholar] [CrossRef] [PubMed]
- Emlen, D.J.; Hunt, J.; Simmons, L.W. Evolution of sexual dimorphism and male dimorphism in the expression of beetle horns: Phylogenetic evidence for modularity, evolutionary lability, and constraint. Am. Nat. 2005, 166, S42–S68. [Google Scholar] [CrossRef] [PubMed]
- Moczek, A.P.; Rose, D.J. Differential recruitment of limb patterning genes during development and diversification of beetle horns. Proc. Natl. Acad. Sci. USA 2009, 106, 8992–8997. [Google Scholar] [CrossRef] [PubMed]
- Emlen, D.J.; Warren, I.A.; Johns, A.; Dworkin, I.; Lavine, L.C. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 2012, 337, 860–864. [Google Scholar] [CrossRef]
- Lavine, L.C.; Hahn, L.L.; Warren, I.A.; Garczynski, S.F.; Dworkin, I.; Emlen, D.J. Cloning and characterization of an mRNA encoding an insulin receptor from the horned scarab beetle Onthophagus nigriventris (Coleoptera: Scarabaeidae). Arch. Insect. Biochem. Physiol. 2013, 82, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Kijimoto, T.; Moczek, A.P.; Andrews, J. Diversification of doublesex function underlies morph-, sex-, and species-specific development of beetle horns. Proc. Natl. Acad. Sci. USA 2012, 109, 20526–20531. [Google Scholar] [CrossRef]
- Johnsson, M.; Gustafson, I.; Rubin, C.J.; Sahlqvist, A.S.; Jonsson, K.B.; Kerje, S.; Ekwall, O.; Kampe, O.; Andersson, L.; Jensen, P.; et al. A sexual ornament in chickens is affected by pleiotropic alleles at HAO1 and BMP2, selected during domestication. PLoS Genet. 2012, 8, e1002914. [Google Scholar] [CrossRef]
- Liu, Y.; Tu, Y.; Zhang, M.; Zou, J.; Ji, G.; Shan, Y.; Ju, X.; Shu, J. Study on CHADL as a candidate gene for comb growth traits in Partridge Shank roosters. Can. J. Anim. Sci. 2020, 100, 455–461. [Google Scholar] [CrossRef]
- Zauner, H.; Begemann, G.; Mari-Beffa, M.; Meyer, A. Differential regulation of msx genes in the development of the gonopodium, an intromittent organ, and of the “sword”, a sexually selected trait of swordtail fishes (Xiphophorus). Evol. Dev. 2003, 5, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Offen, N.; Blum, N.; Meyer, A.; Begemann, G. Fgfr1 signalling in the development of a sexually selected trait in vertebrates, the sword of swordtail fish. BMC Dev. Biol. 2008, 8, 98. [Google Scholar] [CrossRef] [PubMed]
- Kottler, V.A.; Koch, I.; Flotenmeyer, M.; Hashimoto, H.; Weigel, D.; Dreyer, C. Multiple pigment cell types contribute to the black, blue, and orange ornaments of male guppies (Poecilia reticulata). PLoS ONE 2014, 9, e85647. [Google Scholar] [CrossRef] [PubMed]
- Kapanen, A.; Ryhanen, J.; Birr, E.; Vaananen, H.K.; Tuukkanen, J. Bone morphogenetic protein 3b expressing reindeer antler. J. Biomed. Mater. Res. 2002, 59, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Pita-Thomas, W.; Fernandez-Martos, C.; Yunta, M.; Maza, R.M.; Navarro-Ruiz, R.; Lopez-Rodriguez, M.J.; Reigada, D.; Nieto-Sampedro, M.; Nieto-Diaz, M. Gene expression of axon growth promoting factors in the deer antler. PLoS ONE 2010, 5, e15706. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.Q.; Chen, D.; Ghosh-Choudhury, N.; Esparza, J.; Mundy, G.R.; Harris, S.E. Bone morphogenetic protein 2 transcripts in rapidly developing deer antler tissue contain an extended 5′ non-coding region arising from a distal promoter. Biochim. Biophys. Acta 1997, 1350, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Broggini, C.; Abril, N.; Carranza, J.; Membrillo, A. Evaluation of candidate reference genes for quantitative real-time PCR normalization in red deer growing antler. Sci. Rep. 2022, 12, 16264. [Google Scholar] [CrossRef] [PubMed]
- Emlen, D.J.; Nijhout, H.F. The development and evolution of exaggerated morphologies in insects. Annu. Rev. Entomol. 2000, 45, 661–708. [Google Scholar] [CrossRef]
- Baker, R.H.; Narechania, A.; Johns, P.M.; Wilkinson, G.S. Gene duplication, tissue-specific gene expression and sexual conflict in stalk-eyed flies (Diopsidae). Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 2357–2375. [Google Scholar] [CrossRef]
- Snook, R.R.; Gidaszewski, N.A.; Chapman, T.; Simmons, L.W. Sexual selection and the evolution of secondary sexual traits: Sex comb evolution in Drosophila. J. Evol. Biol. 2013, 26, 912–918. [Google Scholar] [CrossRef]
- Emlen, D.J.; Szafran, Q.; Corley, L.S.; Dworkin, I. Insulin signaling and limb-patterning: Candidate pathways for the origin and evolutionary diversification of beetle ‘horns’. Heredity 2006, 97, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Froesch, E.R.; Schmid, C.; Schwander, J.; Zapf, J. Actions of insulin-like growth factors. Annu. Rev. Physiol. 1985, 47, 443–467. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, C.; Bengtsson, B.A.; Isaksson, O.G.; Andreassen, T.T.; Slootweg, M.C. Growth hormone and bone. Endocr. Rev. 1998, 19, 55–79. [Google Scholar] [CrossRef] [PubMed]
- Lavine, M.D.; Gotoh, H.; Hayes, A.; Lavine, L.C. The insulin signaling substrate chico and the ecdysone response element broad both regulate growth of the head horns in the Asian rhinoceros beetle, Trypoxylus dichotomus. Integr. Comp. Biol. 2019, 59, 1338–1345. [Google Scholar] [CrossRef] [PubMed]
- Rosen, D.E. Middle-American poeciliid fish of the genus Xiphophorus. Bull. Fla. State Mus. Biol. Sci. 1960, 5, 57–242. [Google Scholar]
- Kallman, K.D.; Kazianis, S. The genus Xiphophorus in Mexico and central america. Zebrafish 2006, 3, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.; Morrissey, J.M.; Schartl, M. Recurrent origin of a sexually selected trait in Xiphophorus fishes inferred from a molecular phylogeny. Nature 1994, 368, 539–542. [Google Scholar] [CrossRef]
- Meyer, A. The evolution of sexually selected traits in male swordtail fishes (Xiphophorus: Poeciliidae). Heredity 1997, 79, 329–337. [Google Scholar] [CrossRef]
- Jones, J.C.; Fan, S.; Franchini, P.; Schartl, M.; Meyer, A. The evolutionary history of Xiphophorus fish and their sexually selected sword: A genome-wide approach using restriction site-associated DNA sequencing. Mol. Ecol. 2013, 22, 2986–3001. [Google Scholar] [CrossRef]
- Kang, J.H.; Schartl, M.; Walter, R.B.; Meyer, A. Comprehensive phylogenetic analysis of all species of swordtails and platies (Pisces: Genus Xiphophorus) uncovers a hybrid origin of a swordtail fish, Xiphophorus monticolus, and demonstrates that the sexually selected sword originated in the ancestral lineage of the genus, but was lost again secondarily. BMC Evol. Biol. 2013, 13, 25. [Google Scholar] [CrossRef]
- Basolo, A.L. Female preference predates the evolution of the sword in swordtail fish. Science 1990, 250, 808–810. [Google Scholar] [CrossRef] [PubMed]
- Basolo, A.L. A further examination of a preexisting bias favoring a sword in the genus Xiphophorus. Anim. Behav. 1995, 50, 365–375. [Google Scholar] [CrossRef]
- Kang, J.H.; Manousaki, T.; Franchini, P.; Kneitz, S.; Schartl, M.; Meyer, A. Transcriptomics of two evolutionary novelties: How to make a sperm-transfer organ out of an anal fin and a sexually selected “sword” out of a caudal fin. Ecol. Evol. 2015, 5, 848–864. [Google Scholar] [CrossRef] [PubMed]
- Griggio, M.; Zanollo, V.; Hoi, H. UV plumage color is an honest signal of quality in male budgerigars. Ecol. Res. 2010, 25, 77–82. [Google Scholar] [CrossRef]
- Keyser, A.J.; Hill, G.E. Structurally based plumage coloration is an honest signal of quality in male blue grosbeaks. Behav. Ecol. 2000, 11, 202–209. [Google Scholar] [CrossRef]
- Laucht, S.; Kempenaers, B.; Dale, J. Bill color, not badge size, indicates testosterone-related information in house sparrows. Behav. Ecol. Sociobiol. 2010, 64, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- Makarova, A.V.; Mitrofanova, O.V.; Vakhrameev, A.B.; Dementeva, N.V. Molecular-genetic bases of plumage coloring in chicken. Vavilov J. Genet. Breed. 2019, 23, 343–354. [Google Scholar] [CrossRef]
- Aguillon, S.M.; Walsh, J.; Lovette, I.J. Extensive hybridization reveals multiple coloration genes underlying a complex plumage phenotype. Proc. R. Soc. B 2021, 288, 1943. [Google Scholar] [CrossRef]
- Seehausen, O.; Mayhew, P.J.; Alphen, J.J.M. Evolution of colour patterns in East African cichlid fish. J. Evol. Biol. 1999, 12, 514–534. [Google Scholar] [CrossRef]
- Parichy, D.M. Evolution of pigment cells and patterns: Recent insights from teleost fishes. Curr. Opin. Genet. Dev. 2021, 69, 88–96. [Google Scholar] [CrossRef]
- McGraw, K.J. The antioxidant function of many animal pigments: Are there consistent health benefits of sexually selected colourants? Anim. Behav. 2005, 69, 757–764. [Google Scholar] [CrossRef]
- Kolluru, G.R.; Grether, G.F.; South, S.H.; Dunlop, E.; Cardinali, A.; Liu, L.; Carapiet, A. The effects of carotenoid and food availability on resistance to a naturally occurring parasite (Gyrodactylus turnbulli) in guppies (Poecilia reticulata). Biol. J. Linnean. Soc. 2006, 89, 301–309. [Google Scholar] [CrossRef]
- Gunter, H.M.; Clabaut, C.; Salzburger, W.; Meyer, A. Identification and characterization of gene expression involved in the coloration of cichlid fish using microarray and qRT-PCR approaches. J. Mol. Evol. 2011, 72, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Henning, F.; Jones, J.C.; Franchini, P.; Meyer, A. Transcriptomics of morphological color change in polychromatic Midas cichlids. BMC Genom. 2013, 14, 171. [Google Scholar] [CrossRef] [PubMed]
- Kottler, V.A.; Fadeev, A.; Weigel, D.; Dreyer, C. Pigment pattern formation in the guppy, Poecilia reticulata, involves the Kita and Csf1ra receptor tyrosine kinases. Genetics 2013, 194, 631–646. [Google Scholar] [CrossRef] [PubMed]
- Pointer, M.A.; Prager, M.; Andersson, S.; Mundy, N.I. A novel method for screening a vertebrate transcriptome for genes involved in carotenoid binding and metabolism. Mol. Ecol. Resour. 2012, 12, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Schielzeth, H.; Kempenaers, B.; Ellegren, H.; Forstmeier, W. QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait. Evolution 2012, 66, 18–30. [Google Scholar] [CrossRef]
- Maia, R.; Rubenstein, D.R.; Shawkey, M.D. Key ornamental innovations facilitate diversification in an avian radiation. Proc. Natl. Acad. Sci. USA 2013, 110, 10687–10692. [Google Scholar] [CrossRef]
- Kopp, A.; Duncan, I.; Godt, D.; Carroll, S.B. Genetic control and evolution of sexually dimorphic characters in Drosophila. Nature 2000, 408, 553–559. [Google Scholar] [CrossRef]
- Jeong, S.; Rokas, A.; Carroll, S.B. Regulation of body pigmentation by the Abdominal-B Hox protein and its gain and loss in Drosophila evolution. Cell 2006, 125, 1387–1399. [Google Scholar] [CrossRef]
- Herdegen, M.; Dudka, K.; Radwan, J. Heterozygosity and orange coloration are associated in the guppy (Poecilia reticulata). J. Evol. Biol. 2014, 27, 220–225. [Google Scholar] [CrossRef]
- Hedges, S.B.; Dudley, J.; Kumar, S. TimeTree: A public knowledge-base of divergence times among organisms. Bioinformatics 2006, 22, 2971–2972. [Google Scholar] [CrossRef] [PubMed]
- Carroll, S.B.; Grenier, J.K.; Weatherbee, S.D. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design; Blackwell: Malden, MA, USA, 2008. [Google Scholar]
- Fraser, G.J.; Hulsey, C.D.; Bloomquist, R.F.; Uyesugi, K.; Manley, N.R.; Streelman, J.T. An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biol. 2009, 7, e31. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.; Podlaha, O. Wings, horns, and butterfly eyespots: How do complex traits evolve? PLoS Biol. 2009, 7, e37. [Google Scholar] [CrossRef] [PubMed]
- Lemons, D.; Fritzenwanker, J.H.; Gerhart, J.; Lowe, C.J.; McGinnis, W. Co-option of an anteroposterior head axis patterning system for proximodistal patterning of appendages in early bilaterian evolution. Dev. Biol. 2010, 344, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A. Gene regulatory networks reused to build novel traits: Co-option of an eye-related gene regulatory network in eye-like organs and red wing patches on insect wings is suggested by optix expression. BioEssays 2012, 34, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; McCulloch, K.J.; Patel, N.H.; Briscoe, A.D.; Gilbert, L.E.; Reed, R.D. Multiple recent co-options of Optix associated with novel traits in adaptive butterfly wing radiations. Evodevo 2014, 5, 7. [Google Scholar] [CrossRef]
- Lee, P.N.; Callaerts, P.; De Couet, H.G.; Martindale, M.Q. Cephalopod Hox genes and the origin of morphological novelties. Nature 2003, 424, 1061–1065. [Google Scholar] [CrossRef]
- Estrada, B.; Casares, F.; Sánchez-Herrero, E. Development of the genitalia in Drosophila melanogaster. Differentiation 2003, 71, 299–310. [Google Scholar] [CrossRef]
- Khila, A.; Abouheif, E.; Rowe, L. Function, developmental genetics, and fitness consequences of a sexually antagonistic trait. Science 2012, 336, 585–589. [Google Scholar] [CrossRef]
- Gotoh, H.; Miyakawa, H.; Ishikawa, A.; Ishikawa, Y.; Sugime, Y.; Emlen, D.J.; Lavine, L.C.; Miura, T. Developmental link between sex and nutrition; doublesex regulates sex-specific mandible growth via juvenile hormone signaling in stag beetles. PLoS Genet. 2014, 10, e1004098. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.; Chen, B.I.N.; Ramos, D.M.; Oliver, J.C.; Tong, X.; Guo, M.I.N.; Wang, W.K.; Fazzino, L.; Kamal, F. Distal-Less Regulates Eyespot Patterns and Melanization in Bicyclus Butterflies. J. Exp. Zool. B Mol. Dev. Evol. J. 2013, 320, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Diepeveen, E.T.; Kim, F.D.; Salzburger, W. Sequence analyses of the distal-less homeobox gene family in East African cichlid fishes reveal signatures of positive selection. BMC Evol. Biol. 2013, 13, 153. [Google Scholar] [CrossRef] [PubMed]
- Struhl, G. Genes controlling segmental specification in the Drosophila thorax. Proc. Natl. Acad. Sci. USA 1982, 79, 7380–7384. [Google Scholar] [CrossRef] [PubMed]
- Curtis, C.D.; Brisson, J.A.; DeCamillis, M.A.; Shippy, T.D.; Brown, S.J.; Denell, R.E. Molecular characterization of Cephalothorax, the Tribolium ortholog of Sex combs reduced. Genesis 2001, 30, 12–20. [Google Scholar] [CrossRef]
- Masse, J.; Watrin, T.; Laurent, A.; Deschamps, S.; Guerrier, D.; Pellerin, I. The developing female genital tract: From genetics to epigenetics. Int. J. Dev. Biol. 2009, 53, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Hogan, B.L. Bone morphogenetic proteins in development. Curr. Opin. Genet. Dev. 1996, 6, 432–438. [Google Scholar] [CrossRef]
- Campas, O.; Mallarino, R.; Herrel, A.; Abzhanov, A.; Brenner, M.P. Scaling and shear transformations capture beak shape variation in Darwin’s finches. Proc. Natl. Acad. Sci. USA 2010, 107, 3356–3360. [Google Scholar] [CrossRef]
- Uller, T. Developmental plasticity and the evolution of parental effects. Trends Ecol. Evol. 2008, 23, 432–438. [Google Scholar] [CrossRef]
- Marın, I.; Baker, B.S. The evolutionary dynamics of sex determination. Science 1998, 281, 1990–1994. [Google Scholar] [CrossRef]
- Hattori, R.S.; Murai, Y.; Oura, M.; Masuda, S.; Majhi, S.K.; Sakamoto, T.; Fernandino, J.I.; Somoza, G.M.; Yokota, M.; Strüssmann, C.A. A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. Proc. Natl. Acad. Sci. USA 2012, 109, 2955–2959. [Google Scholar] [CrossRef] [PubMed]
- Yano, A.; Guyomard, R.; Nicol, B.; Jouanno, E.; Quillet, E.; Klopp, C.; Cabau, C.; Bouchez, O.; Fostier, A.; Guiguen, Y. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr. Biol. 2012, 22, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Trukhina, A.V.; Lukina, N.A.; Wackerow-Kouzova, N.D.; Smirnov, A.F. The variety of vertebrate mechanisms of sex determination. Biomed. Res. Int. 2013, 2013, 587460. [Google Scholar] [CrossRef] [PubMed]
- Hirst, C.E.; Major, A.T.; Ayers, K.L.; Brown, R.J.; Mariette, M.; Sackton, T.B.; Smith, C.A. Sex reversal and comparative data undermine the W chromosome and support Z-linked DMRT1 as the regulator of gonadal sex differentiation in birds. Endocrinology 2017, 158, 2970–2987. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, M.; Nagahama, Y.; Shinomiya, A.; Sato, T.; Matsuda, C.; Kobayashi, T.; Morrey, C.E.; Shibata, N.; Asakawa, S.; Shimizu, N.; et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 2002, 417, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.A.; Carrel, L.; Chakravarti, A.; Eichler, E.E. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: The Lyon repeat hypothesis. Proc. Natl. Acad. Sci. USA 2000, 97, 6634–6639. [Google Scholar] [CrossRef] [PubMed]
- Petraccioli, A.; Guarino, F.M.; Kupriyanova, L.; Mezzasalma, M.; Odierna, G.; Picariello, O.; Capriglione, T. Isolation and characterization of interspersed repeated sequences in the common lizard, Zootoca vivipara, and their conservation in Squamata. Cytogenet. Genome Res. 2019, 157, 65–76. [Google Scholar] [CrossRef]
- Milioto, V.; Perelman, P.L.; Paglia, L.L.; Biltueva, L.; Roelke, M.; Dumas, F. Mapping Retrotransposon LINE-1 Sequences into Two Cebidae Species and Homo sapiens Genomes and a Short Review on Primates. Genes 2022, 13, 1742. [Google Scholar] [CrossRef]
- Dworkin, I. Evidence for canalization of Distal-less function in the leg of Drosophila melanogaster. Evol. Dev. 2005, 7, 89–100. [Google Scholar] [CrossRef]
- Sekido, R.; Lovell-Badge, R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 2008, 453, 930–934. [Google Scholar] [CrossRef]
- Yao, H.H.; Aardema, J.; Holthusen, K. Sexually dimorphic regulation of inhibin beta B in establishing gonadal vasculature in mice. Biol. Reprod. 2006, 74, 978–983. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Xu, H.; Lam, S.H.; Luo, H.; Karuturi, R.K.; Gong, Z. Transcriptomic analyses of sexual dimorphism of the zebrafish liver and the effect of sex hormones. PLoS ONE 2013, 8, e53562. [Google Scholar] [CrossRef]
- Okada, Y.; Katsuki, M.; Okamoto, N.; Fujioka, H.; Okada, K. A specific type of insulin-like peptide regulates the conditional growth of a beetle weapon. PLoS Biol. 2019, 17, e3000541. [Google Scholar] [CrossRef] [PubMed]
- Sharma, E.; Kunstner, A.; Fraser, B.A.; Zipprich, G.; Kottler, V.A.; Henz, S.R.; Weigel, D.; Dreyer, C. Transcriptome assemblies for studying sex-biased gene expression in the guppy, Poecilia Reticulata. BMC Genom. 2014, 15, 400. [Google Scholar] [CrossRef] [PubMed]
- Laucht, S.; Dale, J.; Mutzel, A.; Kempenaers, B. Individual variation in plasma testosterone levels and its relation to badge size in House Sparrows Passer domesticus: It’s a night-and-day difference. Gen. Comp. Endocrinol. 2011, 170, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Lattin, C.R.; Romero, L.M. The size of a melanin-based plumage ornament correlates with glucocorticoid receptor concentrations in the skin of that ornament. Biol. Lett. 2013, 9, 20130440. [Google Scholar] [CrossRef] [PubMed]
- Suttie, J.M.; Fennessy, P.F.; Lapwood, K.R.; Corson, I.D. Role of steroids in antler growth of red deer stags. J. Exp. Zool. 1995, 271, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Husak, J.F.; Irschick, D.J.; Meyers, J.J.; Lailvaux, S.P.; Moore, I.T. Hormones, sexual signals, and performance of green anole lizards (Anolis carolinensis). Horm. Behav. 2007, 52, 360–367. [Google Scholar] [CrossRef]
- Madsen, V.; Valkiunas, G.; Iezhova, T.A.; Mercade, C.; Sanchez, M.; Osorno, J.L. Testosterone levels and gular pouch coloration in courting magnificent frigatebird (Fregata magnificens): Variation with age-class, visited status and blood parasite infection. Horm. Behav. 2007, 51, 156–163. [Google Scholar] [CrossRef]
- Clough, D.; Heistermann, M.; Kappeler, P.M. Individual Facial Coloration in Male Eulemur fulvus rufus: A Condition-dependent Ornament? Int. J. Primatol. 2009, 30, 859–875. [Google Scholar] [CrossRef]
- Casagrande, S.; Dijkstra, C.; Tagliavini, J.; Goerlich, V.C.; Groothuis, T.G. Differential effects of testosterone, dihydrotestosterone and estradiol on carotenoid deposition in an avian sexually selected signal. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2011, 197, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Khalil, S.; Welklin, J.F.; McGraw, K.J.; Boersma, J.; Schwabl, H.; Webster, M.S.; Karubian, J. Testosterone regulates CYP2J19-linked carotenoid signal expression in male red-backed fairywrens (Malurus melanocephalus). Proc. R. Soc. B 2020, 287, 20201687. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, W.R.; Webster, M.S.; Schwabl, H. Sexually selected male plumage color is testosterone dependent in a tropical passerine bird, the red-backed fairy-wren (Malurus melanocephalus). PLoS ONE 2011, 6, e26067. [Google Scholar] [CrossRef] [PubMed]
- Sanger, T.J.; Seav, S.M.; Tokita, M.; Langerhans, R.B.; Ross, L.M.; Losos, J.B.; Abzhanov, A. The oestrogen pathway underlies the evolution of exaggerated male cranial shapes in Anolis lizards. Proc. Biol. Sci. 2014, 281, 20140329. [Google Scholar] [CrossRef] [PubMed]
- Ryoo, H.D.; Mann, R.S. The control of trunk Hox specificity and activity by Extradenticle. Genes Dev. 1999, 13, 1704–1716. [Google Scholar] [CrossRef]
- Elmer, K.R.; Fan, S.; Gunter, H.M.; Jones, J.C.; Boekhoff, S.; Kuraku, S.; Meyer, A. Rapid evolution and selection inferred from the transcriptomes of sympatric crater lake cichlid fishes. Mol. Ecol. 2010, 19, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Assis, R.; Zhou, Q.; Bachtrog, D. Sex-biased transcriptome evolution in Drosophila. Genome Biol. Evol. 2012, 4, 1189–1200. [Google Scholar] [CrossRef]
- Naurin, S.; Hasselquist, D.; Bensch, S.; Hansson, B. Sex-biased gene expression on the avian Z chromosome: Highly expressed genes show higher male-biased expression. PLoS ONE 2012, 7, e46854. [Google Scholar] [CrossRef]
- Albritton, S.E.; Kranz, A.L.; Rao, P.; Kramer, M.; Dieterich, C.; Ercan, S. Sex-biased gene expression and evolution of the x chromosome in nematodes. Genetics 2014, 197, 865–883. [Google Scholar] [CrossRef]
- Snell-Rood, E.C.; Cash, A.; Han, M.V.; Kijimoto, T.; Andrews, J.; Moczek, A.P. Developmental decoupling of alternative phenotypes: Insights from the transcriptomes of horn-polyphenic beetles. Evolution 2011, 65, 231–245. [Google Scholar] [CrossRef]
- Toubiana, W.; Armisén, D.; Dechaud, C.; Arbore, R.; Khila, A. Impact of male trait exaggeration on sex-biased gene expression and genome architecture in a water strider. BMC Biol. 2021, 19, 89. [Google Scholar] [CrossRef]
- Han, R.; Han, L.; Wang, S.; Li, H. Whole transcriptome analysis of mesenchyme tissue in sika deer antler revealed the CeRNAs regulatory network associated with antler development. Front. Genet. 2020, 10, 1403. [Google Scholar] [CrossRef]
- Mahr, K.; Vincze, O.; Tóth, Z.; Hoi, H.; Lendvai, Á.Z. Insulin-like growth factor 1 is related to the expression of plumage traits in a passerine species. Behav. Ecol. Sociobiol. 2020, 74, 39. [Google Scholar] [CrossRef]
Trait | Organism | Genes | Features | References |
---|---|---|---|---|
Eye span (eye-antennal disc) | Salk-eyed flies (Cyrtodiopsis dalmanni, C. whitei, and Sphyracephala beccarn) | Distaless (dll), hedgehog (hh), wingless (wg), engrailed (en), and defective proventriculus (dve) | - | [51,53,58] |
Stalk-eyed flies (Teleopsis dalmanni) | Crooked legs and cdc2 | EST (Expressed Sequence Tag) sequencing and microarray analysis | [54] | |
Sex comb | Fruit fly (D. melanogaster) | Sex comb reduced (Scr), doublesex (dsx) | Sex comb morphogenesis | [59,60] |
Daschund (dac) and distaless (dll) | Sex comb development | [61] | ||
Fruit fly (D. mauritiana and D. simulans) | Dsx | Sex comb divergence | [62,63] | |
Fruit fly (Drosphila species) | Scr | - | [37,62,64,65] | |
Male-specific abdominal pigmentation | Fruit fly (D. melanogaster) | Bric-à-brac (Bab) and dsx | Genes from pre-existing dimorphic traits | [66] |
Horn (weapon) | Rhinoceros beetle | Hh, wg and dpp | Determination of precise location of horn outgrowth | Reviewed in [67] |
Onthophagus taurus and O. binodis | Dlx or dll | Tissue-specific expression | [68] | |
Rhinoceros beetles (Trypoxylus dichotomus) | Insulin/insulin-like growth factor, chico, Broad | Tissue-specific expression, RNAi-mediated knockdown | [69,70] | |
Rhinoceros beetle (Onthophagus taurus and O. sagittarius) | Dsx | Morph-, sex- and species-specific development | [71] | |
Comb mass (sexual ornament) | Chicken (White Leghorn chickens and a Red Junglefowl) | Bmp2, hao1, CHADL | Pleiotropic effects | [72,73] |
Sword | Swordtails fish (X. hellerii) | Msx and fgfr1 | Hormone-induced features | [74,75] |
Male black ornament | Guppy (Poecilia reticulata) | Colony-stimulation factor 1 receptor a (csf1ra) and Kita | Pigment pattern formation | [76] |
Antler | Deer species | BMP-3b, BMP2, ANXA2, APOD and TPM1 | - | [77,78,79,80] |
Trait | Organism | Features | Method | References |
---|---|---|---|---|
Horn | Onthophagus beetles | Development of horns | EST and microarray | [41] |
Horned beetle (Onthophagus taurus) | Whole body including horns | EST (454 pyrosequencing) | [42] | |
Development of horns (head horns and thoracic horns) | Microarray | [164] | ||
Asian rhinoceros beetle (Tryposylus dichotomus) and dung beetle (Onthophagus nigriventris) | Phenotypically plastic traits (horn-biased gene expression) | RNA-Seq | [43] | |
Exaggerated (head and thorax horns) | RNA-Seq | [44] | ||
Legs | Water strider (Microvelia longipes) | Exaggerated legs in males (weapons) | RNA-Seq | [165] |
Antler | Sika deer (Cervus Nippon hortulorum) | Endochondral ossification (ossification stages) | RNA-Seq | [48] |
Regeneration and rapid growth (antler’s tip) | RNA-Seq | [145] | ||
Differential developmental stages (60 and 90 days) | RNA-Seq | [47] | ||
Development of antler’s tip | RNA-Seq | [166] | ||
Plumage coloration | Ruff (Philomachus pugnax) | Plumage coloration and mating strategies | RNA-Seq | [49] |
Bearded reedling (Panurus biarmicus) | Plumage coloration | RNA-Seq | [167] | |
Red-backed fairywrens (Malurus melanocephalus) | Plumage coloration | RNA-Seq | [156] | |
Sword | Swordtail fish (Xiphophorus hellerii) | Development of male ornament and sexual organ under the hormone-treated conditions | RNA-Seq | [96] |
Swordtail fish (Xiphophorus species) | Sword | RNA-Seq, QTL | [39,40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.H. The Genetic Basis Underpinning Sexually Selected Traits across Different Animal Lineages: Are There Genetic Mechanisms in Common? Animals 2024, 14, 841. https://doi.org/10.3390/ani14060841
Kang JH. The Genetic Basis Underpinning Sexually Selected Traits across Different Animal Lineages: Are There Genetic Mechanisms in Common? Animals. 2024; 14(6):841. https://doi.org/10.3390/ani14060841
Chicago/Turabian StyleKang, Ji Hyoun. 2024. "The Genetic Basis Underpinning Sexually Selected Traits across Different Animal Lineages: Are There Genetic Mechanisms in Common?" Animals 14, no. 6: 841. https://doi.org/10.3390/ani14060841
APA StyleKang, J. H. (2024). The Genetic Basis Underpinning Sexually Selected Traits across Different Animal Lineages: Are There Genetic Mechanisms in Common? Animals, 14(6), 841. https://doi.org/10.3390/ani14060841