MiR-106a-5p by Targeting MAP3K2 Promotes Repair of Oxidative Stress Damage to the Intestinal Barrier in Prelaying Ducks
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals and Treatments
2.3. Sample Collection
2.4. Morphological Examination
2.5. RNA Extraction and Sequencing
2.6. Protein Extraction and TMT Labeling
2.7. Quantitative Real-Time PCR
2.8. Establishment of the Cell Oxidative Stress Model
2.9. Cell Transfection
2.10. Cell Viability Determination
2.11. Measurement of Cell Transmembrane Resistance
2.12. Protein-MiRNA Interaction Network Construction and Pathway Analysis
2.13. Dual-Luciferase Reporter Assay
2.14. Western Blotting
2.15. Statistical Analysis
3. Results
3.1. Body Weight and Morphological Examination
3.2. MiRNA Expression Profiles and Target Gene Functional Annotation
3.3. Validation of Differentially Expressed MiRNA by qRT-PCR
3.4. Effect of Apla-miR-106a-5p on Cell Viability of dIECs
3.5. Effect of Apla-miR-106a-5p on Transmembrane Resistance in the dIECs
3.6. Differential Protein Expression and Pathway Analysis
3.7. Prediction of Targets in the 3′-UTR of Differentially Expressed miRNAs and Proteins
3.8. Validation of the Negative Regulation of miRNA/mRNA Pairs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Zhang, Y.; Gu, T.; Tian, Y.; Chen, L.; Li, G.; Zhou, W.; Liu, G.; Wu, X.; Zeng, T.; Xu, Q.; et al. Effects of cage and floor rearing system on the factors of antioxidant defense and inflammatory injury in laying ducks. BMC Genet. 2019, 20, 103. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.B.; Yan, H.L.; Zhang, Y.; Hu, Y.D.; Zhang, H.F. Effects of dietary energy and protein content and lipid source on growth performance and carcass traits in Pekin ducks. Poult. Sci. 2019, 98, 4829–4837. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Wu, Y.; Liang, Z.H.; Pi, J.S.; Cheng, S.B.; Wei, W.Z.; Liu, J.B.; Lu, L.Z.; Zhang, H. Plasma metabolites associated with physiological and biochemical indexes indicate the effect of caging stress on mallard ducks (Anas platyrhynchos). Anim. Biosci. 2022, 35, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, S. Satisfaction of farm animal behavioral needs in behaviorally restricted systems: Reducing stressors and environmental enrichment. Anim. Sci. J. 2014, 85, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Schoultz, I.; Keita, Å.V. The Intestinal Barrier and Current Techniques for the Assessment of Gut Permeability. Cells 2020, 9, 1909. [Google Scholar] [CrossRef] [PubMed]
- Maloy, K.J.; Powrie, F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 2011, 474, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Duan, S.; Li, Y.; Pan, X.; Han, L. Polysaccharides in natural products that repair the damage to intestinal mucosa caused by cyclophosphamide and their mechanisms: A review. Carbohydr. Polym. 2021, 261, 117876. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Zmora, N.; Adolph, T.E.; Elinav, E. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 2020, 20, 40–54. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Q.; Pan, X. MicroRNAs and their regulatory roles in animals and plants. J. Cell. Physiol. 2007, 210, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Zhao, X.; Zhang, Y.; Amevor, F.K.; Tan, B.; Ma, M.; Kang, H.; Wang, J.; Zhu, Q.; Yin, H.; et al. MiR-34a-5p promotes autophagy and apoptosis of ovarian granulosa cells via the Hippo-YAP signaling pathway by targeting LEF1 in chicken. Poult. Sci. 2023, 102, 102374. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Bofill-De Ros, X.; Shao, T.-J.; Jiang, M.; Li, K.; Villanueva, P.; Dai, L.; Gu, S. 3′ Uridylation Confers miRNAs with Non-canonical Target Repertoires. Mol. Cell 2019, 75, 511–522.e4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yan, H.; Zhou, P.; Zhang, Z.; Liu, J.; Zhang, H. MicroRNA-152 Promotes Slow-Twitch Myofiber Formation via Targeting Uncoupling Protein-3 Gene. Animals 2019, 9, 669. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, X.; Du, L.; Wang, Y.; Liu, X.; Tian, H.; Wang, L.; Li, P.; Zhao, Y.; Duan, W.; et al. Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer. Mol. Cancer 2019, 18, 43. [Google Scholar] [CrossRef] [PubMed]
- Larabi, A.; Barnich, N.; Nguyen, H.T.T. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy 2020, 16, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Zeng, J. Inhibition of miR-494-3p alleviates oxidative stress-induced cell senescence and inflammation in the primary epithelial cells of COPD patients. Int. Immunopharmacol. 2021, 92, 107044. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, C.; Chen, S.; Lin, H.; Zhao, H.; Liu, M.; Weng, J.; Liu, T.; Li, X.; Lei, C.; et al. MicroRNA-21 increases the expression level of occludin through regulating ROCK1 in prevention of intestinal barrier dysfunction. J. Cell. Biochem. 2019, 120, 4545–4554. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, F.; Liang, Z.; Wu, Y.; Pi, J.; Wang, L.; Du, J.; Shen, J.; Pan, A.; Pu, Y. Analysis of miRNAs and their target genes associated with mucosal damage caused by transport stress in the mallard duck intestine. PLoS ONE 2020, 15, e0237699. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-Y.; Cui, Y.-H.; Xiao, L.; Chung, H.K.; Zhang, Y.; Rao, J.N.; Gorospe, M.; Wang, J.-Y. Regulation of Intestinal Epithelial Barrier Function by Long Noncoding RNA uc.173 through Interaction with MicroRNA 29b. Mol. Cell. Biol. 2018, 38, e00010-18. [Google Scholar] [CrossRef]
- Zhang, D.; Facchinetti, V.; Wang, X.; Huang, Q.; Qin, J.; Su, B. Identification of MEKK2/3 serine phosphorylation site targeted by the Toll-like receptor and stress pathways. EMBO J. 2006, 25, 97–107. [Google Scholar] [CrossRef]
- Chen, S.; Yang, L.; Pan, A.; Duan, S.; Li, M.; Li, P.; Huang, J.; Gao, X.; Huang, X.; Lin, Y. Inhibitory Effect on the Hepatitis B Cells through the Regulation of miR-122-MAP3K2 signal pathway. An. Acad. Bras. Cienc. 2019, 91, e20180941. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Sun, H.; Zhao, X.; Zhang, Y.; Tan, J.; Qi, Y.; Wang, Q.; Ng, M.; Liu, Z.; He, L.; et al. MAP3K2-regulated intestinal stromal cells define a distinct stem cell niche. Nature 2021, 592, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, S.; Liu, S.; Chen, B. miR-3613-3p/MAP3K2/p38/caspase-3 pathway regulates the heat-stress-induced apoptosis of endothelial cells. Mol. Med. Rep. 2021, 24, 633. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; She, K.; Peng, G.; Wang, W.; Huang, J.; Li, J.; Wang, Z.; He, J. MicroRNA-186 suppresses cell proliferation and metastasis through targeting MAP3K2 in non-small cell lung cancer. Int. J. Oncol. 2016, 49, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Huang, M.; Song, J.; Zeng, L.; Liang, Q.; Qu, Y.; Li, J.; Xu, G.; Zheng, J. Effects of different duck rearing systems on egg flavor and quality and microbial diversity. Poult. Sci. 2022, 101, 102110. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Qi, J.; Yang, Q.; Tang, Q.; Qi, J.; Li, Y.; Wang, J.; Han, C.; Li, L. Effects of Cage and Floor Rearing Systems on the Metabolic Components of the Uropygial Gland in Ducks. Animals 2022, 12, 214. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Kidd, M.T. Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants 2019, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Uratani, R.; Toiyama, Y.; Kitajima, T.; Kawamura, M.; Hiro, J.; Kobayashi, M.; Tanaka, K.; Inoue, Y.; Mohri, Y.; Mori, T.; et al. Diagnostic Potential of Cell-Free and Exosomal MicroRNAs in the Identification of Patients with High-Risk Colorectal Adenomas. PLoS ONE 2016, 11, e0160722. [Google Scholar] [CrossRef]
- Calin, G.A.; Liu, C.-G.; Sevignani, C.; Ferracin, M.; Felli, N.; Dumitru, C.D.; Shimizu, M.; Cimmino, A.; Zupo, S.; Dono, M.; et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl. Acad. Sci. USA 2004, 101, 11755–11760. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Mao, X.; Chen, D.; Yu, B.; He, J.; Yan, H.; Wang, J. miRNAs Can Affect Intestinal Epithelial Barrier in Inflammatory Bowel Disease. Front. Immunol. 2022, 13, 868229. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-F.; Zhang, M.; Shan, Y.-J.; Pang, L.-C.; Ji, G.-G.; Ju, X.-J.; Tu, Y.-J.; Shi, S.-Y.; Bai, H.; Zou, J.-M.; et al. Transcriptome sequencing analysis of the role of miR-499-5p and SOX6 in chicken skeletal myofiber specification. Front. Genet. 2022, 13, 1008649. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.-Y.; Wang, Z.; Wang, Z.-H.; Jiang, X.-G.; Lu, W.-H. Inhibition of miR-155 alleviates sepsis-induced inflammation and intestinal barrier dysfunction by inactivating NF-κB signaling. Int. Immunopharmacol. 2021, 90, 107218. [Google Scholar] [CrossRef]
- Pan, Y.-J.; Zhuang, Y.; Zheng, J.-N.; Pei, D.-S. MiR-106a: Promising biomarker for cancer. Bioorg. Med. Chem. Lett. 2016, 26, 5373–5377. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Y.; Li, Y.; Liu, L.; Li, Z.; Liu, Y.; Xiao, Y. MicroRNA-106a-5p promotes the proliferation, autophagy and migration of lung adenocarcinoma cells by targeting LKB1/AMPK. Exp. Ther. Med. 2021, 22, 1422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, S.; Deng, H.; Zhang, S.; Wang, J.; Song, X.; Yu, D.; Zhang, Y.; Deng, W. STAT3 promotes RNA polymerase III-directed transcription by controlling the miR-106a-5p/TP73 axis. eLife 2023, 12, e82826. [Google Scholar] [CrossRef] [PubMed]
- Tai, L.; Huang, C.-J.; Choo, K.B.; Cheong, S.K.; Kamarul, T. Oxidative Stress Down-Regulates MiR-20b-5p, MiR-106a-5p and E2F1 Expression to Suppress the G1/S Transition of the Cell Cycle in Multipotent Stromal Cells. Int. J. Med. Sci. 2020, 17, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Xu, R.; He, Y.; Zhao, Z.; Mao, X.; Lin, L.; Hu, J. Downregulation of microRNA-106a-5p alleviates ox-LDL-mediated endothelial cell injury by targeting STAT3. Mol. Med. Rep. 2020, 22, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Chen, D.; Sun, H.; Tan, J.; Zhang, Y.; Zhang, T.; Han, Y.; Liu, H.; Ouyang, X.; Yang, X.D. MAP3K2 augments Th1 cell differentiation via IL-18 to promote T cell-mediated colitis. Chin. Sci. Life Sci. Engl. Version 2021, 64, 15. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Guo, B.; Yan, J.; Wei, H.; Liu, S.; Li, Y. CircHSPG2 knockdown attenuates hypoxia-induced apoptosis, inflammation, and oxidative stress in human AC16 cardiomyocytes by regulating the miR-1184/MAP3K2 axis. Cell Stress Chaperones 2023, 28, 177–190. [Google Scholar] [CrossRef] [PubMed]
Primer | Sequences (5′ to 3′) |
---|---|
apla-miR-106a-5p-RT | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCTACCTGC |
apla-miR-106a-5p-F | CTGGTAGGAAAAGTGCTTACAGTGCA |
apla-miR-106a-5p-R | TCAACTGGTGTCGTGGAGTCGGC |
apla-miR-7-1-3p-RT | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAG |
apla-miR-7-1-3p-F | CTGGTAGGCAACAAATCACAGTCTGC |
apla-miR-7-1-3p-R | TCAACTGGTGTCGTGGAGTCGGC |
MAP3K2-F | AATACGGTGTTTGGTGTC |
MAP3K2-R | GTGATTTGGGATAGTTGTC |
U6-RT * | AACGCTTCACGAATTTGCGT |
U6-F * | CTCGCTTCGGCAGCACA |
U6-R * | AACGCTTCACGAATTTGCGT |
β-ACTIN-F # | ATGTCGCCCTGGATTTCG |
β-ACTIN-R # | CACAGGACTCCATACCCAAGAA |
Primer | Sequences (5′ to 3′) |
---|---|
apla-miR-106a-5p mimics | F: CAAAGUGCUAACAGUGCAGGUAG |
R: ACCUGCACUGUUAGCACUUUGUU | |
apla-miR-106a-5p inhibitor | F: CUACCUGCACUGUUAGCACUUUG |
R: ACCUGCACUGUUAGCACUUUGUU | |
NC mimics | F: UUCUCCGAACGUGUCACGUTT |
R: ACGUGACACGUUCGGAGAATT | |
NC inhibitor | F: CAGUACUUUUGUGUAGUACAA |
R: ACGUGACACGUUCGGAGAATT |
Item | Breeding Methods | p-Value | |
---|---|---|---|
TB | CR | ||
BWG(g) | 49.51 ± 96.67 | −42.47 ± 122.24 | <0.01 |
FI(g) | 159.38 ± 0.99 | 130.34 ± 4.78 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Luo, X.; Tang, R.; Wu, Y.; Liang, Z.; Liu, J.; Pi, J.; Zhang, H. MiR-106a-5p by Targeting MAP3K2 Promotes Repair of Oxidative Stress Damage to the Intestinal Barrier in Prelaying Ducks. Animals 2024, 14, 1037. https://doi.org/10.3390/ani14071037
Zhang L, Luo X, Tang R, Wu Y, Liang Z, Liu J, Pi J, Zhang H. MiR-106a-5p by Targeting MAP3K2 Promotes Repair of Oxidative Stress Damage to the Intestinal Barrier in Prelaying Ducks. Animals. 2024; 14(7):1037. https://doi.org/10.3390/ani14071037
Chicago/Turabian StyleZhang, Li, Xiang Luo, Rui Tang, Yan Wu, Zhenhua Liang, Jingbo Liu, Jinsong Pi, and Hao Zhang. 2024. "MiR-106a-5p by Targeting MAP3K2 Promotes Repair of Oxidative Stress Damage to the Intestinal Barrier in Prelaying Ducks" Animals 14, no. 7: 1037. https://doi.org/10.3390/ani14071037
APA StyleZhang, L., Luo, X., Tang, R., Wu, Y., Liang, Z., Liu, J., Pi, J., & Zhang, H. (2024). MiR-106a-5p by Targeting MAP3K2 Promotes Repair of Oxidative Stress Damage to the Intestinal Barrier in Prelaying Ducks. Animals, 14(7), 1037. https://doi.org/10.3390/ani14071037