Susceptibility, Immunity, and Persistent Infection Drive Endemic Cycles of Coxiellosis on Dairy Farms
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Assessment of Antibody Profiles in 49 Bavarian Dairy Farms (Monitoring 2015)
2.2. Long-Term Changes in the Antibody Profile in One Dairy Farm
2.3. The Immune Status of Seronegative Animals–Assessment of an Anamnestic Antibody Response in Seronegative Cows after Vaccination
2.4. The Immune Status of Seronegative Animals—IFN-γ Reactivity in Seronegative Heifers in Infected Farms
2.5. Time Course of Seroconversion in a Group of Cows in 2nd Lactation
2.6. Examples of Dairy Cow Herds with Prevalent Detection of C. burnetii in Milk Samples
2.7. Vaccination
2.8. Sample Collection
2.9. Tests
2.10. Statistical Analysis
3. Results
3.1. Assessment of Antibody Profiles in 49 Bavarian Dairy Farms (Monitoring 2015)
3.2. Long-Term Changes in the Antibody Profile in One Dairy Farm
3.3. The Immune Status of Seronegative Animals—Assessment of an Anamnestic Antibody Response in Seronegative Cows after Vaccination
3.4. The Immune Status of Seronegative Animals—IFN-γ Reactivity in Seronegative Heifers in Infected Farms
3.5. Time Course of Seroconversion in a Group of Cows from Birth to Second Lactation
3.6. Examples of Dairy Cow Herds with Prevalent Detection of C. burnetii in Milk Samples
4. Discussion
4.1. The Different States of Herd-Level Infection
4.2. Persistently Infected Cows
4.3. Susceptibility to Infection in Young Cows
4.4. The Time Course of Infection
4.5. The Endemic Cycle
4.6. The Endemic Cycle as a Basis for the Assessment of the Clinical Impact of Coxiellosis
4.7. Practical Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauer, B.; Runge, M.; Campe, A.; Henning, K.; Mertens-Scholz, K.; Boden, K.; Ganter, M. Coxiella burnetii: A review focusing on infections in German sheep and goat flocks. Berl Munch Tierarztl Wochenschr 2020, 113, 7. [Google Scholar]
- Aitken, I.D. Clinical aspects and prevention of Q fever in animals. Eur. J. Epidemiol. 1989, 5, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, J.; Vossen, A.; Janowetz, B.; Alex, M.; Gangl, A.; Randt, A.; Meier, N. Insights into the dynamics of endemic Coxiella burnetii infection in cattle by application of phase-specific ELISAs in an infected dairy herd. Veter. Microbiol. 2011, 151, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Loftis, A.D.; Priestley, R.A.; Massung, R.F. Detection of Coxiella burnetii in commercially available raw milk from the United States. Foodborne Pathog. Dis. 2010, 7, 1453–1456. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.T.; Nielsen, S.S.; Agger, J.F.; Christoffersen, A.-B.; Agerholm, J.S. Association between antibodies to Coxiella burnetii in bulk tank milk and perinatal mortality of Danish dairy calves. Acta Veter. Scand. 2011, 53, 64. [Google Scholar] [CrossRef]
- Pearson, T.; Hornstra, H.M.; Hilsabeck, R.; Gates, L.T.; Olivas, S.M.; Birdsell, D.M.; Hall, C.M.; German, S.; Cook, J.M.; Seymour, M.L.; et al. High prevalence and two dominant host-specific genotypes of Coxiella burnetii in U.S. milk. BMC Microbiol. 2014, 14, 41. [Google Scholar] [CrossRef] [PubMed]
- Hellenbrand, W.; Breuer, T.; Petersen, L. Changing epidemiology of Q fever in Germany, 1947–1999. Emerg. Infect. Dis. 2001, 7, 789. [Google Scholar] [CrossRef]
- Bernard, H.; Brockmann, S.O.; Kleinkauf, N.; Klinc, C.; Wagner-Wiening, C.; Stark, K.; Jansen, A. High seroprevalence of Coxiella burnetii antibodies in veterinarians associated with cattle obstetrics, Bavaria, 2009. Vector-Borne Zoonotic Dis. 2012, 12, 552–557. [Google Scholar] [CrossRef]
- Graves, S.R.; Islam, A. Endemic Q fever in New South Wales, Australia: A case series (2005–2013). Am. J. Trop. Med. Hyg. 2016, 95, 55. [Google Scholar] [CrossRef]
- Böttcher, J.; Frangoulidis, D.; Schumacher, M.; Janowetz, B.; Gangl, A.; Alex, M. The impact of Q fever-phase-specific milk serology for the diagnosis of puerperal and chronic milk shedding of C. burnetii in dairy cows. Berl. Munch. Tierarztl. Wochenschr 2013, 126, 427–435. [Google Scholar]
- Guatteo, R.; Beaudeau, F.; Seegers, H.; Joly, A. Coxiella burnetii shedding by dairy cows. Vet. Res. 2007, 38, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Guatteo, R.; Beaudeau, F.; Joly, A.; Seegers, H. Assessing the within-herd prevalence of Coxiella burnetii milk-shedder cows using a real-time PCR applied to bulk tank milk. Zoonoses Public Health 2007, 54, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Guatteo, R.; Joly, A.; Beaudeau, F. Shedding and serological patterns of dairy cows following abortions associated with Coxiella burnetii DNA detection. Veter. Microbiol. 2012, 155, 430–433. [Google Scholar] [CrossRef]
- Arricau-Bouvery, N.; Souriau, A.; Bodier, C.; Dufour, P.; Rousset, E.; Rodolakis, A. Effect of vaccination with phase I and phase II Coxiella burnetii vaccines in pregnant goats. Vaccine 2005, 23, 4392–4402. [Google Scholar] [CrossRef] [PubMed]
- Hawker, J.I.; Ayres, J.G.; Blair, I.; Evans, M.R.; Smith, D.L.; Smith, E.G.; Wood, M.J. A large outbreak of Q fever in the West Midlands: Windbourne spread into a metropolitan area? Commun. Dis. Public Health 1998, 1, 180–187. [Google Scholar] [PubMed]
- Álvarez-Alonso, R.; Basterretxea, M.; Barandika, J.F.; Hurtado, A.; Idiazabal, J.; Jado, I.; Beraza, X.; Montes, M.; Liendo, P.; García-Pérez, A.L. A Q Fever Outbreak with a High Rate of Abortions at a Dairy Goat Farm: Coxiella burnetii Shedding, Environmental Contamination, and Viability. Appl. Environ. Microbiol. 2018, 84, e01650-18. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ispierto, I.; Tutusaus, J.; López-Gatius, F. Does Coxiella burnetii affect reproduction in cattle? A clinical update. Reprod. Domest. Anim. 2014, 49, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Agerholm, J.S. Coxiella burnetii associated reproductive disorders in domestic animals—A critical review. Acta Vet. Scand. 2013, 55, 13. [Google Scholar] [CrossRef] [PubMed]
- Bildfell, R.J.; Thomson, G.W.; Haines, D.M.; McEwen, B.J.; Smart, N. Coxiella burnetii infection is associated with placentitis in cases of bovine abortion. J. Veter. Diagn. Investig. 2000, 12, 419–425. [Google Scholar] [CrossRef]
- Hansen, M.S.; Rodolakis, A.; Cochonneau, D.; Agger, J.F.; Christoffersen, A.-B.; Jensen, T.K.; Agerholm, J.S. Coxiella burnetii associated placental lesions and infection level in parturient cows. Veter. J. 2011, 190, e135–e139. [Google Scholar] [CrossRef]
- Gorvel, L.; Ben Amara, A.; Ka, M.B.; Textoris, J.; Gorvel, J.-P.; Mege, J.-L. Myeloid decidual dendritic cells and immunoregulation of pregnancy: Defective responsiveness to Coxiella burnetii and Brucella abortus. Front. Cell. Infect. Microbiol. 2014, 4, 179. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Kim, E.H.; Lafferty, C.J.; Dubovi, E. Coxiella burnetii in bulk tank milk samples, United States. Emerg. Infect. Dis. 2005, 11, 619. [Google Scholar] [CrossRef] [PubMed]
- Shannon, J.G.; Heinzen, R.A. Adaptive immunity to the obligate intracellular pathogen Coxiella burnetii. Immunol. Res. 2009, 43, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Fournier, P.; Casalta, J.; Habib, G.; Messana, T.; Raoult, D. Modification of the diagnostic criteria proposed by the duke endocarditis service to permit improved diagnosis of q fever endocarditis. Am. J. Med. 1996, 100, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Marrie, T.J.; Raoult, D. Q fever—A review and issues for the next century. Int. J. Antimicrob. Agents 1997, 8, 145–161. [Google Scholar] [CrossRef] [PubMed]
- Capo, C.; Iorgulescu, I.; Mutillod, M.; Mege, J.-L.; Raoult, D. Increases in the levels of Coxiella burnetii-specific immunoglobulin G1 and G3 antibodies in acute Q fever and chronic Q fever. Clin. Diagn. Lab. Immunol. 1998, 5, 814–816. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, G.; Péter, O.; Peacock, M.; Burgdorfer, W.; Haller, E. Immunoglobulin responses in acute Q fever. J. Clin. Microbiol. 1985, 22, 484–487. [Google Scholar] [CrossRef]
- Allman, D.; Wilmore, J.R.; Gaudette, B.T. The continuing story of T-cell independent antibodies. Immunol. Rev. 2019, 288, 128–135. [Google Scholar] [CrossRef]
- Nutt, S.L.; Hodgkin, P.D.; Tarlinton, D.M.; Corcoran, L.M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 2015, 15, 160–171. [Google Scholar] [CrossRef]
- Dellacasagrande, J.; Capo, C.; Raoult, D.; Mege, J.L. IFN-gamma-mediated control of Coxiella burnetii survival in monocytes: The role of cell apoptosis and TNF. J. Immunol. 1999, 162, 2259–2265. [Google Scholar] [CrossRef]
- Dellacasagrande, J.; Ghigo, E.; Raoult, D.; Capo, C.; Mege, J.L. IFN-γ-induced apoptosis and microbicidal activity in monocytes harboring the intracellular bacterium Coxiella burnetii require membrane TNF and homotypic cell adherence. J. Immunol. 2002, 169, 6309–6315. [Google Scholar] [CrossRef] [PubMed]
- Long, C.M. Q Fever Vaccine Development: Current Strategies and Future Considerations. Pathogens 2021, 10, 1223. [Google Scholar] [CrossRef] [PubMed]
- Conti, F.; Boucherit, N.; Baldassarre, V.; Trouplin, V.; Toman, R.; Mottola, G.; Mege, J.-L.; Ghigo, E. Coxiella burnetii lipopolysaccharide blocks p38α-MAPK activation through the disruption of TLR-2 and TLR-4 association. Front. Cell. Infect. Microbiol. 2015, 4, 182. [Google Scholar] [CrossRef] [PubMed]
- Honstettre, A.; Ghigo, E.; Moynault, A.; Capo, C.; Toman, R.; Akira, S.; Mege, J.L. Lipopolysaccharide from Coxiella burnetii is involved in bacterial phagocytosis, filamentous actin reorganization, and inflammatory responses through Toll-like receptor 4. J. Immunol. 2004, 172, 3695–3703. [Google Scholar] [CrossRef] [PubMed]
- Honstettre, A.; Imbert, G.; Ghigo, E.; Gouriet, F.; Capo, C.; Raoult, D.; Mege, J. Dysregulation of cytokines in acute Q fever: Role of interleukin-10 and tumor necrosis factor in chronic evolution of Q fever. J. Infect. Dis. 2003, 187, 956–962. [Google Scholar] [CrossRef] [PubMed]
- A Izzo, A.; Marmion, B.P. Variation in interferon-gamma responses to Coxiella burnetii antigens with lymphocytes from vaccinated or naturally infected subjects. Clin. Exp. Immunol. 1993, 94, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, D.S.; Campos, M.A.; Torrecilhas, A.C.T.; Kiss, K.; Samuel, J.E.; Golenbock, D.T.; Lauw, F.N.; Roy, C.R.; Almeida, I.C.; Gazzinelli, R.T. Stimulation of toll-like receptor 2 by Coxiella burnetii is required for macrophage production of pro-inflammatory cytokines and resistance to infection. J. Biol. Chem. 2004, 279, 54405–54415. [Google Scholar] [CrossRef] [PubMed]
- Toman, R.; Garidel, P.; Andrä, J.; Slaba, K.; Hussein, A.; Koch, M.H.; Brandenburg, K. Physicochemical characterization of the endotoxins from Coxiella burnetii strain Priscilla in relation to their bioactivities. BMC Biochem. 2004, 5, 1. [Google Scholar] [CrossRef]
- Horigan, M.W.; Bell, M.M.; Pollard, T.R.; Sayers, A.R.; Pritchard, G.C. Q fever diagnosis in domestic ruminants: Comparison between complement fixation and commercial enzyme-linked immunosorbent assays. J. Vet. Diagn. Investig. 2011, 23, 924–931. [Google Scholar] [CrossRef]
- Schmeer, N. Enzyme-linked immunosorbent assay (ELISA) for the demonstration of IgG1, IgG2 and IgM antibodies in bovine Q fever infection. Zentralbl Bakteriol Mikrobiol Hyg A 1985, 259, 20–34. [Google Scholar]
- Schmeer, N.; Adami, M.; Döpfer, B.; Herbst, W.; Schmuck, W. Humoral immune response of goats, rabbits and guinea pigs following vaccination with a Q fever vaccine. Berl. Munch. Tierarztl. Wochenschr 1985, 98, 20–24. [Google Scholar] [PubMed]
- Schmeer, N.; Müller, H.P.; Baumgärtner, W.; Wieda, J.; Krauss, H. Enzyme-linked immunosorbent fluorescence assay and high-pressure liquid chromatography for analysis of humoral immune responses to Coxiella burnetti proteins. J. Clin. Microbiol. 1988, 26, 2520–2525. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, J.; Bauer, B.U.; Ambros, C.; Alex, M.; Domes, U.; Roth, S.; Boll, K.; Korneli, M.; Bogner, K.-H.; Randt, A.; et al. Long-term control of Coxiellosis in sheep by annual primary vaccination of gimmers. Vaccine 2022, 40, 5197–5206. [Google Scholar] [CrossRef] [PubMed]
- Nogareda, C.; Almería, S.; Serrano, B.; García-Ispierto, I.; López-Gatius, F. Dynamics of Coxiella burnetii antibodies and seroconversion in a dairy cow herd with endemic infection and excreting high numbers of the bacterium in the bulk tank milk. Res. Veter. Sci. 2012, 93, 1211–1212. [Google Scholar] [CrossRef]
- Freick, M.; Enbergs, H.; Walraph, J.; Diller, R.; Weber, J.; Konrath, A. Coxiella burnetii: Serological reactions and bacterial shedding in primiparous dairy cows in an endemically infected herd—Impact on milk yield and fertility. Reprod. Domest. Anim. 2017, 52, 160–169. [Google Scholar] [CrossRef]
- Taurel, A.-F.; Guatteo, R.; Joly, A.; Seegers, H.; Beaudeau, F. Seroprevalence of Q fever in naturally infected dairy cattle herds. Prev. Veter. Med. 2011, 101, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Muskens, J.; Van Engelen, E.; Van Maanen, C.; Bartels, C.; Lam, T.J.G.M. Prevalence of Coxiella burnetii infection in Dutch dairy herds based on testing bulk tank milk and individual samples by PCR and ELISA. Veter. Rec. 2011, 168, 79. [Google Scholar] [CrossRef]
- Miller, H.K.; Priestley, R.A.; Kersh, G.J. Comparison of three Coxiella burnetii infectious routes in mice. Virulence 2021, 12, 2562–2570. [Google Scholar] [CrossRef] [PubMed]
- Wittwer, M.; Hammer, P.; Runge, M.; Valentin-Weigand, P.; Neubauer, H.; Henning, K.; Mertens-Scholz, K. Inactivation Kinetics of Coxiella burnetii During High-Temperature Short-Time Pasteurization of Milk. Front. Microbiol. 2021, 12, 753871. [Google Scholar] [CrossRef] [PubMed]
- Lucchese, L.; Capello, K.; Barberio, A.; Zuliani, F.; Stegeman, A.; Ceglie, L.; Guerrini, E.; Marangon, S.; Natale, A. IFAT and ELISA phase I/phase II as tools for the identification of Q fever chronic milk shedders in cattle. Veter. Microbiol. 2015, 179, 102–108. [Google Scholar] [CrossRef]
- Schaal, E.; Schaaf, J. Erfahrungen und Erfolge bei der Sanierung von Rinderbeständen mit Q-Fieber. ZBL Vet. Med. 1969, 16, 818–831. [Google Scholar] [CrossRef]
- Benoit, M.; Barbarat, B.; Bernard, A.; Olive, D.; Mege, J. Coxiella burnetii, the agent of Q fever, stimulates an atypical M2 activation program in human macrophages. Eur. J. Immunol. 2008, 38, 1065–1070. [Google Scholar] [CrossRef]
- Benoit, M.; Ghigo, E.; Capo, C.; Raoult, D.; Mege, J.-L. The uptake of apoptotic cells drives Coxiella burnetii replication and macrophage polarization: A model for Q fever endocarditis. PLoS Pathog. 2008, 4, e1000066. [Google Scholar] [CrossRef]
- Trevisi, E.; Minuti, A. Assessment of the innate immune response in the periparturient cow. Res. Veter. Sci. 2018, 116, 47–54. [Google Scholar] [CrossRef]
- Vlasova, A.N.; Saif, L.J. Bovine Immunology: Implications for Dairy Cattle. Front. Immunol. 2021, 12, 643206. [Google Scholar] [CrossRef]
- Rodolakis, A.; Berri, M.; Héchard, C.; Caudron, C.; Souriau, A.; Bodier, C.; Blanchard, B.; Camuset, P.; Devillechaise, P.; Natorp, J.; et al. Comparison of Coxiella burnetii shedding in milk of dairy bovine, caprine, and ovine herds. J. Dairy Sci. 2007, 90, 5352–5360. [Google Scholar] [CrossRef]
- Sobotta, K.; Bonkowski, K.; Heydel, C.; Henning, K.; Menge, C. Phenotype of Coxiella burnetii Strains of Different Sources and Genotypes in Bovine Mammary Gland Epithelial Cells. Pathogens 2022, 11, 1422. [Google Scholar] [CrossRef]
- Spier, S.J.; Smith, B.P.; Cullor, J.S.; Olander, H.J.; Da Roden, L.; Dilling, G.W. Persistent experimental Salmonella dublin intramammary infection in dairy cows. J. Veter. Intern. Med. 1991, 5, 341–350. [Google Scholar] [CrossRef]
- Roest, H.I.; Post, J.; van Gelderen, B.; van Zijderveld, F.G.; Rebel, J.M. Q fever in pregnant goats: Humoral and cellular immune responses. Veter. Res. 2013, 44, 67. [Google Scholar] [CrossRef]
- Ascher, M.S.; Berman, M.A.; Ruppanner, R. Initial clinical and immunologic evaluation of a new phase I Q fever vaccine and skin test in humans. J. Infect. Dis. 1983, 148, 214–222. [Google Scholar] [CrossRef]
- Hutson, B.; A Deaker, R.; Newland, J. Vaccination of cattle workers at risk of Q fever on the north coast of New South Wales. Aust. Fam. Physician. 2000, 29, 708–709. [Google Scholar]
- Harris, N.B.; Barletta, R.G. Mycobacterium avium subsp. Paratuberculosis in Veterinary Medicine. Clin. Microbiol. Rev. 2001, 14, 489–512. [Google Scholar] [CrossRef]
- Stabel, J. Transitions in immune responses to Mycobacterium paratuberculosis. Veter. Microbiol. 2000, 77, 465–473. [Google Scholar] [CrossRef]
- Waters, W.R.; Buddle, B.M.; Vordermeier, H.M.; Gormley, E.; Palmer, M.V.; Thacker, T.C.; Bannantine, J.P.; Stabel, J.R.; Linscott, R.; Martel, E.; et al. Development and evaluation of an enzyme-linked immunosorbent assay for use in the detection of bovine tuberculosis in cattle. Clin. Vaccine Immunol. 2011, 18, 1882–1888. [Google Scholar] [CrossRef]
- Freick, M.; Konrath, A.; Enbergs, H.; Walraph, J.; Weber, J.; Eulenberger, K. Detection of Coxiella burnetii DNA and anti-Coxiella burnetii IgG antibodies in precolostral blood samples of stillborn calves in an endemically infected Holstein dairy herd. Folia Microbiol. 2018, 63, 253–260. [Google Scholar] [CrossRef]
- Tutusaus, J.; López-Gatius, F.; Almería, S.; Serrano, B.; Monleón, E.; Badiola, J.J.; García-Ispierto, I. No detectable precolostral antibody response in calves born from cows with cotyledons positive for Coxiella burnetii by quantitative PCR. Acta Veter. Hung. 2013, 61, 432–441. [Google Scholar] [CrossRef]
- Guatteo, R.; Seegers, H.; Joly, A.; Beaudeau, F. Prevention of Coxiella burnetii shedding in infected dairy herds using a phase I C. burnetii inactivated vaccine. Vaccine 2008, 26, 4320–4328. [Google Scholar] [CrossRef]
- Tigertt, W.D.; Benenson, A.S.; Gochenour, W.S. Airborne Q fever. Bacteriol. Rev. 1961, 25, 285–293. [Google Scholar] [CrossRef]
- Guatteo, R.; Beaudeau, F.; Berri, M.; Joly, A.; Rodolakis, A.; Seegers, H. Shedding routes of Coxiella burnetii in dairy cows: Implications for detection and control. Vet. Res. 2006, 37, 827–833. [Google Scholar] [CrossRef]
- Eldin, C.; Mélenotte, C.; Mediannikov, O.; Ghigo, E.; Million, M.; Edouard, S.; Mege, J.-L.; Maurin, M.; Raoult, D. From Q Fever to Coxiella burnetii Infection: A Paradigm Change. Clin. Microbiol. Rev. 2017, 30, 115–190. [Google Scholar] [CrossRef]
- Maurin, M.; Raoult, D.F. Q fever. Clin. Microbiol. Rev. 1999, 12, 518–553. [Google Scholar] [CrossRef] [PubMed]
- Russell-Lodrigue, K.E.; Zhang, G.Q.; McMurray, D.N.; Samuel, J.E. Clinical and pathologic changes in a guinea pig aerosol challenge model of acute Q fever. Infect. Immun. 2006, 74, 6085–6091. [Google Scholar] [CrossRef] [PubMed]
- E Behymer, D.; Biberstein, E.L.; Riemann, H.P.; E Franti, C.; Sawyer, M.; Ruppanner, R.; Crenshaw, G.L. Q fever (Coxiella burnetii) investigations in dairy cattle: Challenge of immunity after vaccination. Am. J. Vet. Res. 1976, 37, 631–634. [Google Scholar]
- Morroy, G.; Keijmel, S.P.; Delsing, C.E.; Bleijenberg, G.; Langendam, M.; Timen, A.; Bleeker-Rovers, C.P. Fatigue following Acute Q-Fever: A Systematic Literature Review. PLoS ONE 2016, 11, e0155884. [Google Scholar] [CrossRef] [PubMed]
- Raijmakers, R.P.; Koeken, V.A.; Jansen, A.F.; Keijmel, S.P.; Roerink, M.E.; Joosten, L.A.; Netea, M.G.; van der Meer, J.W.; Bleeker-Rovers, C.P. Cytokine profiles in patients with Q fever fatigue syndrome. J. Infect. 2019, 78, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Raijmakers, R.P.; Stenos, J.; Keijmel, S.P.; Ter Horst, R.; Novakovic, B.; Nguyen, C.; Van Der Meer, J.W.; Netea, M.G.; Bleeker-Rovers, C.P.; Ab Joosten, L.; et al. Long-Lasting Transcriptional Changes in Circulating Monocytes of Acute Q Fever Patients. Open Forum Infect. Dis. 2019, 6, ofz296. [Google Scholar] [CrossRef]
- Raijmakers, R.P.; Jansen, A.F.; Keijmel, S.P.; van der Meer, J.W.; Joosten, L.A.; Netea, M.G.; Bleeker-Rovers, C.P. A possible link between recurrent upper respiratory tract infections and lower cytokine production in patients with Q fever fatigue syndrome. Eur. J. Immunol. 2019, 49, 1015–1022. [Google Scholar] [CrossRef]
- Roest, H.I.; Bossers, A.; van Zijderveld, F.G.; Rebel, J.M. Clinical microbiology of Coxiella burnetii and relevant aspects for the diagnosis and control of the zoonotic disease Q fever. Vet. Q. 2013, 33, 148–160. [Google Scholar] [CrossRef]
- Agger, J.F.; Paul, S. Increasing prevalence of Coxiella burnetii seropositive Danish dairy cattle herds. Acta Veter. Scand. 2014, 56, 46. [Google Scholar] [CrossRef]
- Mccaughey, C.; Murray, L.J.; Mckenna, J.P.; Menzies, F.D.; Mccullough, S.J.; O’Neill, H.J.; Wyatt, D.E.; Cardwell, C.R.; Coyle, P.V. Coxiella burnetii (Q fever) seroprevalence in cattle. Epidemiol. Infect. 2010, 138, 21–27. [Google Scholar] [CrossRef]
- Ryan, E.D.; Kirby, M.; Collins, D.M.; Sayers, R.; Mee, J.F.; Clegg, T. Prevalence of Coxiella burnetii (Q fever) antibodies in bovine serum and bulk-milk samples. Epidemiol. Infect. 2011, 139, 1413–1417. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, J.; Bauer, B.U.; Ambros, C.; Alex, M.; Domes, U.; Roth, S.; Boll, K.; Korneli, M.; Bogner, K.-H.; Randt, A.; et al. The immune response to a Coxiella burnetii vaccine in sheep varies according to their natural pre-exposure. Vaccine 2024, 42, 1993–2003. [Google Scholar] [CrossRef] [PubMed]
Multiparous Cows | Primiparous Cows | |||||
---|---|---|---|---|---|---|
Ph Pattern | n | % | CI 95% | n | % | CI 95% |
PhI−/PhII− | 1420 | 73.0 | 69.2–76.8 | 602 | 78.1 | 72.0–84.6 |
PhI−/PhII+ | 257 | 13.2 | 11.6–14.9 | 98 | 12.7 | 10.3–15.5 |
PhI+/PhII− | 10 | 0.5 | 0.3–0.9 | 2 | 0.3 | 0.03–0.9 |
PhI+/PhII+ | 142 | 7.3 | 6.2–8.6 | 45 | 5.8 | 4.3–7.8 |
PhI ≥ 100 | 117 | 6.0 | 5.0–7.2 | 24 | 3.1 | 2.0–4.6 |
Multiparous Cows | Primiparous Cows | |||||
---|---|---|---|---|---|---|
Ph Pattern | n | % PCR+ | CI 95% | n | % PCR+ | CI 95% |
PhI−/PhII− | 709 | 0.14 a* | 0.0–1.8 | 336 | 0.00 α* | 0.0–1.1 |
PhI−/PhII+ | 162 | 0.60 a,b | 0.0–3.4 | 77 | 0.00 α,ß | 0.0–4.8 |
PhI+/PhII− | 10 | 0.10 b,c,d | 0.25–55.7 | 1 | 0.00 ß,γ,δ | 0.0–100.0 |
PhI+/PhII+ | 103 | 11.7 c | 6.0–20.4 | 37 | 10.8 γ | 3.0–27.7 |
PhI ≥ 100 | 76 | 39.5 d | 26.6–56.5 | 18 | 27.8 δ | 9.0–64.8 |
Animal | C.b./mL a | Q n b | PhI c | PhII c | C.b./mL a | PhI c | PhII c | C.b./mL a | PhI c | PhII c | C.b./mL a | PhI c | PhII c |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | ||||||||||
353 | 2.0 | 2 | 654 | 1099 | |||||||||
517 | neg | 5 | 5 | 2.4 | 5 | 5 | neg | 5 | 5 | ||||
525 | 1.7 | 2 | 5 | 719 | neg | 8 | 591 | neg | 5 | 371 | |||
554 | 2.8 | 3 | 5 | 324 | neg | 5 | 5 | neg | 5 | 37 | |||
563 | 0.5 | 1 | 23 | 311 | |||||||||
585 | 1.5 | 2 | 65 | 74 | |||||||||
589 | 0.6 | 1 | 5 | 48 | neg | 8 | 13 | neg | 5 | 23 | |||
605 | 0.8 | 1 | 5 | 153 | neg | 231 | 72 | neg | 26 | 21 | |||
606 | 0.5 | 1 | 5 | 5 | neg | 5 | 5 | neg | 5 | 5 | |||
631 | 3.9 | 134 | 553 | neg | 253 | 278 | |||||||
636 | neg | 5 | 27 | 2.8 | 33 | 48 | neg | 67 | 49 | ||||
647 | neg | 19 | 42 | 2.2 | 3093 | 849 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böttcher, J.; Alex, M.; Dänicke, S.; Gethmann, J.; Mertens-Scholz, K.; Janowetz, B. Susceptibility, Immunity, and Persistent Infection Drive Endemic Cycles of Coxiellosis on Dairy Farms. Animals 2024, 14, 1056. https://doi.org/10.3390/ani14071056
Böttcher J, Alex M, Dänicke S, Gethmann J, Mertens-Scholz K, Janowetz B. Susceptibility, Immunity, and Persistent Infection Drive Endemic Cycles of Coxiellosis on Dairy Farms. Animals. 2024; 14(7):1056. https://doi.org/10.3390/ani14071056
Chicago/Turabian StyleBöttcher, Jens, Michaela Alex, Sven Dänicke, Jörn Gethmann, Katja Mertens-Scholz, and Britta Janowetz. 2024. "Susceptibility, Immunity, and Persistent Infection Drive Endemic Cycles of Coxiellosis on Dairy Farms" Animals 14, no. 7: 1056. https://doi.org/10.3390/ani14071056
APA StyleBöttcher, J., Alex, M., Dänicke, S., Gethmann, J., Mertens-Scholz, K., & Janowetz, B. (2024). Susceptibility, Immunity, and Persistent Infection Drive Endemic Cycles of Coxiellosis on Dairy Farms. Animals, 14(7), 1056. https://doi.org/10.3390/ani14071056