Subtherapeutic Kitasamycin Promoted Fat Accumulation in the Longissimus Dorsi Muscle in Growing–Finishing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Animals and Experimental Design
2.3. Animal Housing and Sampling
2.4. Intestinal Index
2.5. Chemical Analyses
2.6. Biochemical Analyses
2.7. Microbial Real—Time Quantitative PCR (RT—qPCR)
2.8. RNA Extraction, Reverse Transcription, and RT—qPCR
2.9. Statistical Analysis
3. Results
3.1. The Impact of Different Doses of KM on Growth Performance and Apparent Total Tract Digestibility
3.2. Subtherapeutic KM Supplementation Enhanced Back Fat Thickness and Fat Content in the LM
3.3. Subtherapeutic KM Supplementation Elevated Gene Expression Relating to Lipogenesis and Inflammatory Factors in the LM
3.4. Subtherapeutic KM Supplementation Elevated Plasma Total Cholesterol
3.5. The Impact of Different Doses of KM on Intestinal Index, Cecal Microflora, SCFAs and Their Receptors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- La, T.; Phillips, N.D.; Dunlop, H.; Lugsomya, K.; Coiacetto, F.; Hampson, D.J. Testing the Efficacy of Kitasamycin for Use in the Control and Treatment of Swine Dysentery in Experimentally Infected Pigs. Aust. Vet. J. 2019, 97, 452–464. [Google Scholar] [CrossRef]
- Hernández, F.; Sancho, J.V.; Ibáñez, M.; Guerrero, C. Antibiotic Residue Determination in Environmental Waters by LC-MS. TrAC Trends Anal. Chem. 2007, 26, 466–485. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N.G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Global Trends in Antimicrobial Resistance in Animals in Low- And Middle-Income Countries. Science 2019, 365, eaaw1944. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Glennon, E.E.; Chen, D.; Gilbert, M.; Robinson, T.P.; Grenfell, B.T.; Levin, S.A.; Bonhoeffer, S.; Laxminarayan, R. Reducing Antimicrobial Use in Food Animals. Science 2017, 357, 1350–1352. [Google Scholar] [CrossRef]
- Näslund, J.; Hedman, J.E.; Agestrand, C. Effects of the Antibiotic Ciprofloxacin on the Bacterial Community Structure and Degradation of Pyrene in Marine Sediment. Aquat. Toxicol. 2008, 90, 223–227. [Google Scholar] [CrossRef]
- Rasmussen, S.H.; Shrestha, S.; Bjerregaard, L.G.; Ängquist, L.H.; Baker, J.L.; Jess, T.; Allin, K.H. Antibiotic Exposure in Early Life and Childhood Overweight and Obesity: A Systematic Review and Meta-Analysis. Diabetes Obes. Metab. 2018, 20, 1508–1514. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.A.; Wu, R.K.S.; Oremus, M. The Association between Antibiotic Use in Infancy and Childhood Overweight or Obesity: A Systematic Review and Meta-Analysis. Obes. Rev. 2018, 19, 1463–1475. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, F.; Simon, T.G.; Hagström, H.; Sun, J.; Bergman, D.; Forss, A.; Roelstraete, B.; Engstrand, L.; Ludvigsson, J.F. Antibiotic Use and Development of Nonalcoholic Fatty Liver Disease: A Population-Based Case–Control Study. Liver Int. 2023, 43, 2186–2197. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Ustulin, M.; Park, S.; Han, K.D.; Kim, J.Y.; Shin, D.W.; Rhee, S.Y. Systemic Antibiotics and Obesity: Analyses from a Population-Based Cohort. J. Clin. Med. 2021, 10, 2601. [Google Scholar] [CrossRef]
- Cho, I.; Yamanishi, S.; Cox, L.; Methé, B.A.; Zavadil, J.; Li, K.; Gao, Z.; Mahana, D.; Raju, K.; Teitler, I.; et al. Antibiotics in Early Life Alter the Murine Colonic Microbiome and Adiposity. Nature 2012, 488, 621–626. [Google Scholar] [CrossRef]
- Livanos, A.E.; Greiner, T.U.; Vangay, P.; Pathmasiri, W.; Stewart, D.; McRitchie, S.; Li, H.; Chung, J.; Sohn, J.; Kim, S.; et al. Antibiotic-Mediated Gut Microbiome Perturbation Accelerates Development of Type 1 Diabetes in Mice. Nat. Microbiol. 2016, 1, 16140. [Google Scholar] [CrossRef]
- Sterenczak, K.A.; Fuellen, G.; Jünemann, A.; Guthoff, R.F.; Stachs, O.; Stahnke, T. The Antibiotic Kitasamycin—A Potential Agent for Specific Fibrosis Preventing Therapy after Fistulating Glaucoma Surgery? Pharmaceutics 2023, 15, 329. [Google Scholar] [CrossRef]
- Song, M.; Fan, Y.; Su, H.; Ye, J.; Liu, F.; Zhu, X.; Wang, L.; Gao, P.; Shu, G.; Wang, Z.; et al. Effects of Actigen, a Second-Generation Mannan Rich Fraction, in Antibiotics-Free Diets on Growth Performance, Intestinal Barrier Functions and Inflammation in Weaned Piglets. Livest. Sci. 2019, 229, 4–12. [Google Scholar] [CrossRef]
- Cao, X.; Tang, L.; Zeng, Z.; Wang, B.; Zhou, Y.; Wang, Q.; Zou, P.; Li, W. Effects of Probiotic BaSC06 on Intestinal Digestion and Absorption Function, Antioxidant Capacity and Macrophage Polarization and Microbiota Composition in Fattening Pigs. Front. Vet. Sci. 2020, 5, 7–35. [Google Scholar] [CrossRef]
- Lunney, J.K.; Van Goor, A.; Walker, K.E.; Hailstock, T.; Franklin, J.; Dai, C. Importance of the Pig as a Human Biomedical Model. Sci. Transl. Med. 2021, 13, eabd5758. [Google Scholar] [CrossRef] [PubMed]
- Di Mauro, S.; Trevisan, C.; Hays, A. Disorders of Lipid Metabolism in Muscle. Muscle Nerve 1980, 3, 369–388. [Google Scholar] [CrossRef] [PubMed]
- Tremaroli, V.; Bäckhed, F. Functional Interactions between the Gut Microbiota and Host Metabolism. Nature 2012, 489, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Ghazalpour, A.; Cespedes, I.; Bennett, B.J.; Allayee, H. Expanding Role of Gut Microbiota in Lipid Metabolism. Curr. Opin. Lipidol. 2016, 27, 141. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirements of Swine; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- O’Connor, T.M. Cell Dynamics in the Intestine of the Mouse from Late Fetal Life to Maturity. Am. J. Anat. 1966, 118, 525–536. [Google Scholar] [CrossRef]
- Gaithersburg MD Association of Official Analytical Chemists, Official Methods of Analysis. Available online: https://www.aoac.org/official-methods-of-analysis/ (accessed on 15 January 2024).
- Chen, Y.; Liu, K.; Su, Y.; Zheng, X.; Wang, Q. Continuous Bioproduction of Short-Chain Fatty Acids from Sludge Enhanced by the Combined Use of Surfactant and Alkaline PH. Bioresour. Technol. 2013, 140, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Jackson, J.A.; Vilgalys, R.; Jackson, R.B. Assessment of Soil Microbial Community Structure by Use of Taxon-Specific Quantitative PCR Assays. Appl. Environ. Microbiol. 2005, 71, 4117–4120. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A New Mathematical Model for Relative Quantification in Real-Time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Roca-Saavedra, P.; Rodriguez, J.A.; Lamas, A.; Miranda, J.M.; Nebot, C.; Cardelle-Cobas, A.; Franco, C.M.; Cepeda, A. Low-Dosage Antibiotic Intake Can Disturb Gut Microbiota in Mice. CyTA-J. Food 2018, 16, 672–678. [Google Scholar] [CrossRef]
- Yan, H.; Yu, B.; Degroote, J.; Spranghers, T.; Van Noten, N.; Majdeddin, M.; Van Poucke, M.; Peelman, L.; De Vrieze, J.; Boon, N.; et al. Antibiotic Affects the Gut Microbiota Composition and Expression of Genes Related to Lipid Metabolism and Myofiber Types in Skeletal Muscle of Piglets. BMC Vet. Res. 2020, 16, 392. [Google Scholar] [CrossRef]
- Zhao, X.; Fu, H.Y.; Qiu, S.N.; Teng, T.; Bai, G.D.; Ju, D.X.; Sun, Y.C.; Shi, B.M. Effects of Early Protein Restriction on the Growth Performance and Gut Development of Pigs Fed Diets with or without Antibiotic. Animals 2020, 14, 1392–1401. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Zhang, C.; Yang, Y.; Mu, C.; Su, Y.; Yu, K.; Zhu, W. Long-Term Effects of Early Antibiotic Intervention on Blood Parameters, Apparent Nutrient Digestibility, and Fecal Microbial Fermentation Profile in Pigs with Different Dietary Protein Levels. J. Anim. Sci. Biotechnol. 2017, 8, 60. [Google Scholar] [CrossRef]
- Jin, Z.; Yang, Y.X.; Choi, J.Y.; Shinde, P.L.; Yoon, S.Y.; Hahn, T.W.; Lim, H.T.; Park, Y.K.; Hahm, K.S.; Joo, J.W.; et al. Effects of Potato (Solanum tuberosum L. Cv. Golden Valley) Protein Having Antimicrobial Activity on the Growth Performance, and Intestinal Microflora and Morphology in Weanling Pigs. Anim. Feed. Sci. Technol. 2008, 140, 139–154. [Google Scholar] [CrossRef]
- Yoon, J.H.; Ingale, S.L.; Kim, J.S.; Kim, K.H.; Lohakare, J.; Park, Y.K.; Park, J.C.; Kwon, I.K.; Chae, B.J. Effects of Dietary Supplementation with Antimicrobial Peptide-P5 on Growth Performance, Apparent Total Tract Digestibility, Faecal and Intestinal Microflora and Intestinal Morphology of Weanling Pigs. J. Sci. Food Agric. 2013, 93, 587–592. [Google Scholar] [CrossRef]
- Gilbert, M. Role of Skeletal Muscle Lipids in the Pathogenesis of Insulin Resistance of Obesity and Type 2 Diabetes. J. Diabetes Investig. 2021, 12, 1934–1941. [Google Scholar] [CrossRef]
- Hana, C.A.; Klebermass, E.M.; Balber, T.; Mitterhauser, M.; Quint, R.; Hirtl, Y.; Klimpke, A.; Somloi, S.; Hutz, J.; Sperr, E.; et al. Inhibition of Lipid Accumulation in Skeletal Muscle and Liver Cells: A Protective Mechanism of Bilirubin Against Diabetes Mellitus Type 2. Front. Pharmacol. 2021, 11, 636533. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Tu, H.; Shan, B.; Luk, A.; DeBose-Boyd, R.A.; Bashmakov, Y.; Goldstein, J.L.; Brown, M.S. Unsaturated Fatty Acids Inhibit Transcription of the Sterol Regulatory Element-Binding Protein-1c (SREBP-1c) Gene by Antagonizing Ligand-Dependent Activation of the LXR. Proc. Natl. Acad. Sci. USA 2001, 98, 6027–6032. [Google Scholar] [CrossRef]
- Chang, J.S. Recent Insights into the Molecular Mechanisms of Simultaneous Fatty Acid Oxidation and Synthesis in Brown Adipocytes. Front. Endocrinol. 2023, 14, 1106544. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Wang, M.; Su, J.; Li, Y.; Long, J.; Chu, J.; Wan, X.; Cao, Y.; Li, Q. Lipid Metabolism and Cancer. Life 2022, 12, 784. [Google Scholar] [CrossRef]
- Oropeza, D.; Jouvet, N.; Bouyakdan, K.; Perron, G.; Ringuette, L.J.; Philipson, L.H.; Kiss, R.S.; Poitout, V.; Alquier, T.; Estall, J.L. PGC-1 Coactivators in β-Cells Regulate Lipid Metabolism and Are Essential for Insulin Secretion Coupled to Fatty Acids. Mol. Metab. 2015, 4, 811–822. [Google Scholar] [CrossRef]
- Cheng, C.F.; Ku, H.C.; Lin, H. PGC-1α as a Pivotal Factor in Lipid and Metabolic Regulation. Int. J. Mol. Sci. 2018, 19, 3447. [Google Scholar] [CrossRef] [PubMed]
- Althaher, A.R. An Overview of Hormone-Sensitive Lipase (HSL). Sci. World J. 2022, 2022, 1964684. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, K.; Liao, X.; Hu, H.; Chen, L.; Meng, L.; Gao, W.; Li, Q. Carnitine Palmitoyltransferase System: A New Target for Anti-Inflammatory and Anticancer Therapy. Front. Pharmacol. 2021, 12, 760581. [Google Scholar] [CrossRef]
- Patel, R.; Dwivedi, M.; Mansuri, M.S.; Ansarullah; Laddha, N.C.; Thakker, A.; Ramachandran, A.V.; Begum, R. Association of Neuropeptide-Y (NPY) and Interleukin-1beta (IL1B), Genotype-Phenotype Correlation and Plasma Lipids with Type-II Diabetes. PLoS ONE 2016, 11, e0164437. [Google Scholar] [CrossRef]
- Roubaud-Baudron, C.; Ruiz, V.E.; Swan, A.M.; Vallance, B.A.; Ozkul, C.; Pei, Z.; Li, J.; Battaglia, T.W.; Perez-Perez, G.I.; Blaser, M.J. Long-Term Effects of Early-Life Antibiotic Exposure on Resistance to Subsequent Bacterial Infection. mBio 2019, 10, 10-1128. [Google Scholar] [CrossRef]
- Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; De los Reyes-Gavilán, C.G.; Salazar, N. Intestinal Short Chain Fatty Acids and Their Link with Diet and Human Health. Front. Microbiol. 2016, 7, 180861. [Google Scholar] [CrossRef]
- May, K.S.; Den Hartigh, L.J. Modulation of Adipocyte Metabolism by Microbial Short-Chain Fatty Acids. Nutrients 2021, 13, 3666. [Google Scholar] [CrossRef]
- Morrison, D.J.; Preston, T. Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S. Host-Gut Microbiota Metabolic Interactions. Science 2012, 336, 1262–1267. [Google Scholar] [CrossRef]
- Samuel, B.S.; Shaito, A.; Motoike, T.; Rey, F.E.; Backhed, F.; Manchester, J.K.; Hammer, R.E.; Williams, S.C.; Crowley, J.; Yanagisawa, M.; et al. Effects of the Gut Microbiota on Host Adiposity Are Modulated by the Short-Chain Fatty-Acid Binding G Protein-Coupled Receptor, Gpr41. Proc. Natl. Acad. Sci. USA 2008, 105, 16767–16772. [Google Scholar] [CrossRef]
- Velagapudi, V.R.; Hezaveh, R.; Reigstad, C.S.; Gopalacharyulu, P.; Yetukuri, L.; Islam, S.; Felin, J.; Perkins, R.; Borén, J.; Orešič, M.; et al. The Gut Microbiota Modulates Host Energy and Lipid Metabolism in Mice. J. Lipid Res. 2010, 51, 1101–1112. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Fan, P.X.; Li, L.S.; Qiao, S.Y.; Zhang, G.L.; Li, D.F. Butyrate Promotes the Recovering of Intestinal Wound Healing through Its Positive Effect on the Tight Junctions. J. Anim. Sci. 2012, 90, 266–268. [Google Scholar] [CrossRef]
- Louis, P.; Young, P.; Holtrop, G.; Flint, H.J. Diversity of Human Colonic Butyrate-Producing Bacteria Revealed by Analysis of the Butyryl-CoA:Acetate CoA-Transferase Gene. Environ. Microbiol. 2010, 12, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, S.; Macfarlane, G.T. Regulation of Short-Chain Fatty Acid Production. Proc. Nutr. Soc. 2003, 62, 67–72. [Google Scholar] [CrossRef]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut Microbiota Functions: Metabolism of Nutrients and Other Food Components. Eur. J. Nutr. 2017, 57, 1–24. [Google Scholar] [CrossRef]
- Ou, G.; Liu, Y.; Tang, Y.; You, X.; Zeng, Y.; Xiao, J.; Chen, L.; Yu, M.; Wang, M.; Zhu, C. In Vitro Subminimum Inhibitory Concentrations of Macrolide Antibiotics Induce Macrolide Resistance in Mycoplasma Pneumoniae. Hippokratia 2015, 19, 57. [Google Scholar]
Ingredients | Content, % | Nutrient Compositions | Level c, % | ||||
---|---|---|---|---|---|---|---|
50–75 kg | 75–100 kg | 100–120 kg | 50–75 kg | 75–100 kg | 100–120 kg | ||
Maize (Crude protein 7.8%) | 76.8 | 79.37 | 80.82 | Digestible energy/(MJ/kg) | 14.23 | 14.23 | 14.23 |
Soybean meal (Crude protein 43%) | 19 | 17 | 16 | Crude protein | 14.59 | 14.06 | 13.62 |
Soybean oil | 1.5 | 1.3 | 1.3 | Ca | 0.57 | 0.52 | 0.46 |
L-lysine·HCl | 0.34 | 0.25 | 0.12 | Total protein | 0.47 | 0.43 | 0.41 |
DL-Methionine | 0.06 | 0.04 | 0 | Available protein | 0.27 | 0.24 | 0.22 |
Threonine | 0.1 | 0.06 | 0.01 | Digestible lysine | 0.85 | 0.73 | 0.61 |
Choline chloride | 0.15 | 0.1 | 0.1 | Digestible methionine | 0.26 | 0.24 | 0.2 |
CaCO3 | 0.55 | 0.54 | 0.47 | Digestible Threonine | 0.52 | 0.46 | 0.4 |
CaHPO4 | 0.82 | 0.66 | 0.5 | Digestible Tryptophan | 0.13 | 0.12 | 0.12 |
Mineral Complex a | 0.3 | 0.3 | 0.3 | ||||
Vitamin Complex b | 0.03 | 0.03 | 0.03 | ||||
NaCl | 0.35 | 0.35 | 0.35 | ||||
Total | 100 | 100 | 100 |
Items | Primer/Probe Name and Sequence (5′–3′) | Product Length/bp |
---|---|---|
Total bacteria | F, ACTCCTACGGGAGGCAGCAG | |
R, ATTACCGCGGCTGCTGG | 200 | |
Lactobacillus spp. | F, GAGGCAGCAGTAGGGAATCTTC | |
R, CAACAGTTACTCTGACACCCGTTCTTC | 126 | |
P, (FMA)AAGAAGGGTTTCGGCTCGTAAAACTCTGTT(BHQ-1) | ||
Bifidobacterium spp. | F, CGCGTCCGGTGTGAAAG | |
R, CTTCCCGATATCTACACATTCCA | 121 | |
P, (FMA) ATTCCACCGTTACACCGGGAA(BHQ-1) | ||
Bacillus spp. | F, GCAACGAGCGCAACCCTTGA | |
R, TCATCCCCACCTTCCTCCGGT | 92 | |
P, (FMA)CGGTTTGTCACCGGCAGTCACCT(BHQ-1) | ||
Escherichia-coli | F, CATGCCGCGTGTATGAAGAA | |
R, CGGGTAACGTCAATGAGCAAA | 96 | |
P, (FMA)AGGTATTAACTTTACTCCCTTCCTC(BHQ-1) |
Target Gene | Forward Primer 5′−3′ | Reverse Primer 5′−3′ | Accession Number |
---|---|---|---|
Lipid metabolism factors | |||
Srebp 1c | GCGACGGTGCCTCTGGTAGT | CGCAAGACGGCGGATTTA | NM_214157.1 |
Acc 1 | AGCAAGGTCGAGACCGAAAG | TAAGACCACCGGCGGATAGA | NM_001114269 |
Fas | CTACGAGGCCATTGTGGACG | AGCCTATCATGCTGTAGCCC | NM_001099930 |
Scd 1 | CCACTATGACCCGGAAGACG | TTGAACGCGATGAGGGTGAA | NM_001007191.1 |
Pgc 1α | CCCGAAACAGTAGCAGAGACAAG | CTGGGGTCAGAGGAAGAGATAAAG | NM-213963 |
Ppar γ | CCAGCATTTCCACTCCACACTA | GACACAGGCTCCACTTTGATG | NM_214379.1 |
Hsl | CACAAGGGCTGCTTCTACGG | AAGCGGCCACTGGTGAAGAG | NM_214315 |
Cpt 1b | CCACTATGACCCGGAAGACG | TTGAACGCGATGAGGGTGAA | NM_214293 |
Inflammatory factors | |||
Il 1β | ACGTGCAATGATGACTTTGTCTG | AGAGCCTTCAGCATGTGTGG | NM_214055.1 |
Il 6 | TTCACCTCTCCGGACAAAAC | TCTGCCAGTACCTCCTTGCT | NC_010451.3 |
Il 10 | TAATGCCGAAGGCAGAGAGT | GGCCTTGCTCTTGTTTTCAC | NM_214041.1 |
TNFα | ACCACGCTCTTCTGCCT | CACTGTCACCTGGAAGCAGAG | NM_214022.1 |
SCFA receptors | |||
Gpr 43 | TCATGGGTTTCGGCTTCTACAG | GTACTGAACGATGAACACGACG | EU_122439.1 |
Gpr 41 | ACTACTTCTCATCCTCGGGGTT | CTCCACTTCGCTCTTCTTCAGT | JX_566879.1 |
β actin | TCTGGCACCACACCTTCT | TGATCTGGGTCATCTTCTCAC | DQ_178122 |
Item | Control | 50 mg/kg KM | 200 mg/kg KM | p-Value |
---|---|---|---|---|
Period 1 | ||||
Initial BW (kg) | 63.32 ± 1.00 | 63.32 ± 1.00 | 63.32 ± 1.01 | 1 |
FW (kg) | 78.34 ± 1.27 | 78.11 ± 1.25 | 79.21 ± 1.09 | 0.795 |
ADG (g) | 1072.96 ± 25.55 | 1094.05 ± 35.99 | 1135.20 ± 24.50 | 0.153 |
ADFI (g) | 2797.13 ± 62.63 a | 3084.54 ± 72.72 b | 3040.39 ± 83.75 b | 0.038 |
F/G | 2.61 ± 0.07 | 2.82 ± 0.06 | 2.68 ± 0.05 | 0.058 |
Period 2 | ||||
FW (kg) | 96.75 ± 2.07 | 98.96 ± 1.95 | 99.50 ± 2.00 | 0.599 |
ADG (g) | 876.53 ± 54.09 | 992.86 ± 44.81 | 945.13 ± 49.27 | 0.247 |
ADFI (g) | 2892.91 ± 140.38 | 3189.69 ± 213.76 | 3233.28 ± 132.66 | 0.529 |
F/G | 3.32 ± 0.10 | 3.22 ± 0.18 | 3.36 ± 0.06 | 0.727 |
Period 3 | ||||
FW (kg) | 119.82 ± 1.81 | 123.64 ± 3.66 | 123.32 ± 2.64 | 0.576 |
ADG (g) | 823.93 ± 39.20 | 941.72 ± 58.02 | 850.71 ± 33.90 | 0.18 |
ADFI (g) | 2998.72 ± 70.56 | 3288.04 ± 131.85 | 3028.28 ± 118.02 | 0.152 |
F/G | 3.69 ± 0.20 | 3.52 ± 0.22 | 3.57 ± 0.08 | 0.784 |
The whole process | ||||
ADG (g) | 896.82 ± 13.86 | 957.46 ± 31.95 | 952.38 ± 32.09 | 0.152 |
ADFI (g) | 2917.63 ± 75.25 | 3189.67 ± 148.77 | 3099.37 ± 109.59 | 0.261 |
F/G | 3.25 ± 0.07 | 3.32 ± 0.11 | 3.25 ± 0.08 | 0.742 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, G.; Yu, J.; He, J.; Zheng, P.; Mao, X.; Yu, B. Subtherapeutic Kitasamycin Promoted Fat Accumulation in the Longissimus Dorsi Muscle in Growing–Finishing Pigs. Animals 2024, 14, 1057. https://doi.org/10.3390/ani14071057
Han G, Yu J, He J, Zheng P, Mao X, Yu B. Subtherapeutic Kitasamycin Promoted Fat Accumulation in the Longissimus Dorsi Muscle in Growing–Finishing Pigs. Animals. 2024; 14(7):1057. https://doi.org/10.3390/ani14071057
Chicago/Turabian StyleHan, Ge, Jie Yu, Jun He, Ping Zheng, Xiangbing Mao, and Bing Yu. 2024. "Subtherapeutic Kitasamycin Promoted Fat Accumulation in the Longissimus Dorsi Muscle in Growing–Finishing Pigs" Animals 14, no. 7: 1057. https://doi.org/10.3390/ani14071057
APA StyleHan, G., Yu, J., He, J., Zheng, P., Mao, X., & Yu, B. (2024). Subtherapeutic Kitasamycin Promoted Fat Accumulation in the Longissimus Dorsi Muscle in Growing–Finishing Pigs. Animals, 14(7), 1057. https://doi.org/10.3390/ani14071057