Studies of a Naturally Occurring Selenium-Induced Microcytic Anemia in the Przewalski’s Gazelle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Design Experiments
2.3. Sample Collection
2.4. Sample Processing
2.5. Sample Analysis
2.6. Treatment Trial
2.7. Data Analysis
3. Results
3.1. Clinical Investigations
3.2. Content Analysis of Mineral Elements
3.3. Physiological and Biochemical Parameters Analysis
3.4. Treatment Experiment
4. Discussion
4.1. Mineral Contents in the Soil and Forage
4.2. Mineral Contents in the Blood and Liver
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Jiang, Z. Sexual segregation in Tibetan gazelle: A test of the activity budget hypothesis. J. Zool. 2008, 274, 327–331. [Google Scholar] [CrossRef]
- Lian, X.M.; Li, X.X.; Zhou, D.X.; Yan, P.S. Avoidance distance from Qinghai-Tibet Highway in sympatric Tibetan antelope and gazelle. Transp. Res. Part D Transp. Environ. 2012, 17, 585–587. [Google Scholar] [CrossRef]
- Li, C.L.; Jiang, Z.G.; Li, L.L.; Li, Z.Q.; Fang, H.X.; Li, C.W.; Beauchamp, G. Effects of reproductive status, social rank, sex and group size on vigilance patterns in Przewalski’s gazelle. PLoS ONE 2012, 7, e32607. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.K.; Huo, B.; Shen, X.Y. Distribution characteristics of selenium nutrition on the natural habitat of Przewalski’s gazelle. Pol. J. Environ. Stud. 2020, 29, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M.; Blazejak, S. Current knowledge on the importance of selenium in food for living organisms: A review. Molecules 2016, 21, 609. [Google Scholar] [CrossRef]
- Wang, Y.P.; Du, S.Y.; Yang, Y.B.; Zhang, X.; Duszynski, D.W.; Bian, J.H.; Cao, Y.F. Intestinal parasites in the critically endangered Przewalski’s gazelle (Procapra przewalskii) in China, with the description of a new species of Eimeria (Apicomplexa: Eimeriidae). J. Wildlife Dis. 2016, 52, 945–948. [Google Scholar] [CrossRef]
- Li, Z.Q.; Jiang, Z.G.; Li, C.W. Dietary overlap of Przewalski’s gazelle, Tibetan gazelle, and Tibetan sheep on the Qinghai-Tibet Plateau. J. Wildlife Manag. 2008, 72, 944–948. [Google Scholar] [CrossRef]
- Ye, R.R.; Cai, P.; Peng, M.; Lu, X.F.; Ma, S.Z. The investigation about distribution and population size of Przewalski’s gazelle (Procapra przewalski) in Qinghai Province, China. Acta Theriol. Sin. 2006, 04, 373–379. [Google Scholar]
- Li, C.L.; Jiang, Z.G.; Ping, X.G.; Cai, J.; You, Z.Q.; Li, C.W.; Wu, Y.L. Current status and conservation of the Endangered Przewalski’s gazelle Procapra przewalskii, endemic to the Qinghai-Tibetan Plateau, China. Oryx 2012, 46, 145–153. [Google Scholar] [CrossRef]
- Yu, H.; Song, S.Y.; Liu, J.Z.; Li, S.; Zhang, L.; Wang, D.J.; Luo, S.J. Effects of the Qinghai-Tibet Railway on the landscape genetics of the endangered Przewalski’s gazelle (Procapra przewalskii). Sci. Rep. 2017, 7, 17983. [Google Scholar] [CrossRef]
- Feng, H.Y.; Squires, V.R. Socio-environmental dynamics of alpine grasslands, steppes and meadows of the Qinghai-Tibetan Plateau, China: A commentary. Appl. Sci. 2020, 10, 6488. [Google Scholar] [CrossRef]
- Pei, J.; Pan, X.Y.; Wei, G.H.; Hua, Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front. Pharmacol. 2023, 14, 1147414. [Google Scholar] [CrossRef] [PubMed]
- Sheiha, A.M.; Abdelnour, S.A.; Abd El-Hack, M.E.; Khafaga, A.F.; Metwally, K.A.; Ajarem, J.S.; Maodaa, S.N.; Allam, A.A.; El-Saadony, M.T. Effects of dietary biological or chemical-synthesized nano-selenium supplementation on growing rabbits exposed to thermal stress. Animals 2020, 10, 430. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, D.L.; Tsuji, P.A.; Carlson, B.A.; Gladyshev, V.N. Selenium and selenocysteine: Roles in cancer, health, and development. Trends Biochem. Sci. 2014, 39, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Hosnedlova, B.; Kepinska, M.; Skalickova, S.; Fernandez, C.; Ruttkay-Nedecky, B.; Malevu, T.D.; Sochor, J.; Baron, M.; Melcova, M.; Zidkova, J.; et al. A Summary of new findings on the biological effects of selenium in selected animal species-a critical review. Int. J. Mol. Sci. 2017, 18, 2209. [Google Scholar] [CrossRef] [PubMed]
- Hefnawy, A.E.; Tórtora-Pérez, J.L. The importance of selenium and the effects of its deficiency in animal health. Small Ruminant Res. 2010, 89, 185–192. [Google Scholar] [CrossRef]
- Davis, T.Z.; Tiwary, A.K.; Stegelmeier, B.L.; Pfister, J.A.; Panter, K.E.; Hall, J.O. Comparative oral dose toxicokinetics of sodium selenite and selenomethionine. J. Appl. Toxicol. 2017, 37, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Zhou, P.; Shen, X.Y. Abnormal phenylalanine metabolism of Procapra przewalskii in chronic selenosis in selenium-enriched habitats. Metabolites 2023, 13, 982. [Google Scholar] [CrossRef] [PubMed]
- Zhai, B.W.; Zhao, K.; Liu, F.Y.; Shen, X.Y. Studies of high molybdenum-induced copper deprivation in P. przewalskii on the Qinghai Lake Pasture in China. Appl. Sci. 2021, 11, 5071. [Google Scholar] [CrossRef]
- Lall, S.P.; Kaushik, S.J. Nutrition and metabolism of minerals in fish. Animals 2021, 11, 2711. [Google Scholar] [CrossRef]
- Netto, A.S.; Zanetti, M.A.; Del Claro, G.R.; De Melo, M.P.; Vilela, F.G.; Correa, L.B. Effects of copper and selenium supplementation on performance and lipid metabolism in confined Brangus bulls. Asian-Australas. J. Anim. Sci. 2014, 27, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Myint, Z.W.; Oo, T.H.; Thein, K.Z.; Tun, A.M.; Saeed, H. Copper deficiency anemia: Review article. Ann. Hematol. 2018, 97, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R.D.; et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022, 375, 1254. [Google Scholar] [CrossRef] [PubMed]
- Zhai, B.W.; Zhao, K.; Shen, X.Y. Effects of sulphur fertilizer on copper metabolism in grazing Tibetan Sheep in fertilized pasture. Pol. J. Environ. Stud. 2021, 30, 5351–5356. [Google Scholar] [CrossRef] [PubMed]
- Spears, J.W. Trace mineral bioavailability in ruminants. J. Nutr. 2003, 133 (Suppl. 1), 1506S–1509S. [Google Scholar] [CrossRef] [PubMed]
- Xin, G.S.; Long, R.J.; Shang, Z.H.; Ding, L.M.; Guo, X.S. Status of some selected major and trace elements in pasture soil from northeast of the Qinghai-Tibetan plateau. Acta Prataculturae Sin. 2012, 21, 8–17. [Google Scholar]
- Lutsenko, S.; Barnes, N.L.; Bartee, M.Y.; Dmitriev, O.Y. Function and regulation of human copper-transporting ATPases. Physiol. Rev. 2007, 87, 1011–1046. [Google Scholar] [CrossRef]
- Li, W.D.; Zhang, X.W.; Feng, Y.Z.; Cui, Z.H. Research advances on applications of trace element cooper in ruminants production. Chin. Anim. Husb. 2021, 48, 178–189. [Google Scholar]
- Adogwa, A.; Mutani, A.; Ramnanan, A.; Ezeokoli, C. The effect of gastrointestinal parasitism on blood copper and hemoglobin levels in sheep. Can. Vet. J. 2005, 46, 1017–1021. [Google Scholar]
- Pajarillo, E.A.B.; Lee, E.; Kang, D.K. Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper. Anim. Nutr. 2021, 7, 750–761. [Google Scholar] [CrossRef]
- Dev, S.; Babitt, J.L. Overview of iron metabolism in health and disease. Hemodial. Int. 2017, 21, S6–S20. [Google Scholar] [CrossRef] [PubMed]
- Song, C.J.; Jiang, Q.; Shen, X.Y. Responses of Przewalski’s gazelle (Procapra przewalskii) to zinc nutrition in physical habitat. Biol. Trace Elem. Res. 2020, 199, 142–147. [Google Scholar] [CrossRef]
- Mickiewicz, B.; Villemaire, M.L.; Sandercock, L.E.; Jirik, F.R.; Vogel, H.J. Metabolic changes associated with selenium deficiency in mice. Biometals 2014, 27, 1137–1147. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.X.; Liu, X.H.; Sun, W.L.; Ashraf, A.; Zhang, Y.K.; Jin, X.L.; He, X.B.; He, B.S. Characteristics of heavy metal concentrations and risk assessment for giant pandas and their habitat in the Qinling Mountains, China. Environ. Sci. Pollut. Res. 2020, 27, 1569–1584. [Google Scholar] [CrossRef] [PubMed]
- Terry, N.; Zayed, A.M.; De Souza, M.P.; Tarun, A.S. Selenium in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 401–432. [Google Scholar] [CrossRef]
- Muller, A.S.; Pallauf, J.; Most, E. Parameters of dietary selenium and vitamin E deficiency in growing rabbits. J. Trace Elem. Med. Biol. 2002, 16, 47–55. [Google Scholar] [CrossRef]
- Demirci-Çekiç, S.; Özkan, G.; Avan, A.N.; Uzunboy, S.; Çapanoglu, E.; Apak, R. Biomarkers of oxidative stress and antioxidant defense. J. Pharm. Biomed. 2022, 209, 114477. [Google Scholar] [CrossRef]
- Bissinger, R.; Bhuyan, A.A.; Qadri, S.M.; Lang, F. Oxidative stress, eryptosis and anemia: A pivotal mechanistic nexus in systemic diseases. FEBS J. 2019, 286, 826–854. [Google Scholar] [CrossRef]
- Schwab, C.G.; Broderick, G.A. A 100-year review: Protein and amino acid nutrition in dairy cows. J. Dairy Sci. 2017, 100, 10094–10112. [Google Scholar] [CrossRef]
- Suttle, N.F. Residual effects of Mycobacterium avium infection on susceptibility of sheep to copper toxicity and efficacy of treatment with tetrathiomolybdate. Vet. Rec. 2012, 171, 18. [Google Scholar] [CrossRef]
- Xie, Z.Z.; Liu, Y.; Bian, J.S. Hydrogen sulfide and cellular redox homeostasis. Oxid. Med. Cell Longev. 2016, 2016, 6043038. [Google Scholar] [CrossRef]
- Lopes, P.A.; Pinheiro, T.; Santos, M.C.; da Luz Mathias, M.; Collares-Pereira, M.J.; Viegas-Crespo, A.M. Response of antioxidant enzymes in freshwater fish populations (Leuciscus alburnoides complex) to inorganic pollutants exposure. Sci. Total Environ. 2001, 280, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.B.; Ma, H.; Fan, C.Y.; Zhang, Z.J.; Jia, Z.H.; Zhu, X.P.; Wang, L.S. Effects of different copper sources and levels on plasma superoxide dismutase, lipid peroxidation, and copper status of lambs. Biol. Trace Elem. Res. 2011, 144, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Shen, X.Y. Response of Wumeng Semi-Fine Wool Sheep to copper-contaminated environment. Pol. J. Environ. Stud. 2020, 29, 2917–2924. [Google Scholar] [CrossRef]
Characteristic | Male (25) a | Unpregnant (25) a | Pregnant (25) a | Antepartum (25) a | Postpartum (25) a |
---|---|---|---|---|---|
Occurrence of emaciation (%) | 96 | 92 | 100 | 100 | 100 |
Occurrence of anemia (%) | 100 | 100 | 100 | 96 | 100 |
Occurrence of pica (%) | 100 | 100 | 100 | 100 | 100 |
Occurrence of inappetence (%) | 92 | 96 | 100 | 100 | 100 |
Occurrence of dyskinesia (%) | 20 | 24 | 52 | 64 | 72 |
Body temperature (°C) | 37.59 ± 1.11 | 37.68 ± 1.13 | 37.55 ± 1.09 | 38.15 ± 1.14 | 37.34 ± 1.17 |
Heartbeat (beats/min) | 56.92 ± 7.73 | 58.31 ± 9.56 | 59.46 ± 8.68 | 59.43 ± 9.18 | 58.86 ± 7.78 |
Breathing rate (breaths/min) | 17.26 ± 2.61 | 17.28 ± 2.47 | 18.42 ± 2.41 | 19.31 ± 2.82 | 19.93 ± 2.28 |
Elements | Soil | Forage | ||
---|---|---|---|---|
Affected Areas | Healthy Areas | Affected Areas | Healthy Areas | |
Mn | 111.15 ± 20.91 | 120.65 ± 25.65 | 64.42 ± 11.31 | 64.53 ± 12.46 |
Zn | 33.41 ± 4.86 | 33.47 ± 5.01 | 7.39 ± 2.02 | 7.76 ± 1.87 |
Fe | 6478.35 ± 712.47 | 6338.46 ± 697.38 | 536.79 ± 41.46 | 542.21 ± 38.43 |
Co | 5.81 ± 1.15 | 6.77 ± 1.28 | 4.55 ± 1.11 | 4.15 ± 1.21 |
Cu | 53.93 ± 18.81 | 52.41 ± 11.78 | 11.33 ± 2.19 | 11.14 ± 2.25 |
P | 50.23 ± 6.05 | 51.19 ± 6.94 | 395.23 ± 55.11 | 398.05 ± 54.15 |
Mo | 2.79 ± 0.48 | 2.7 ± 0.52 | 2.02 ± 0.37 | 2.01 ± 0.26 |
Se | 0.020 ± 0.001 * | 0.063 ± 0.003 | 0.028 ± 0.002 * | 0.078 ± 0.003 |
S (%) | 0.47 ± 0.14 | 0.44 ± 0.12 | 0.36 ± 0.02 * | 0.21 ± 0.01 |
Elements | Blood | Liver | ||
---|---|---|---|---|
Affected Gazelles | Healthy Gazelles | Affected Gazelles | Healthy Gazelles | |
Mn | 0.79 ± 0.17 | 0.77 ± 0.16 | 4.34 ± 1.23 | 4.33 ± 1.26 |
Zn | 3.33 ± 0.16 | 3.46 ± 0.11 | 50.23 ± 11.12 | 50.51 ± 10.78 |
Fe | 353.76 ± 17.34 | 363.14 ± 17.57 | 441.25 ± 25.13 | 443.19 ± 24.27 |
Co | 0.51 ± 0.11 | 0.49 ± 0.19 | 6.33 ± 1.21 | 6.42 ± 1.11 |
Cu | 1.15 ± 0.12 * | 1.67 ± 0.27 | 61.93 ± 8.42 * | 97.85 ± 10.45 |
P | 221.35 ± 19.95 | 223.25 ± 25.65 | 605.15 ± 35.15 | 589.95 ± 33.25 |
Mo | 0.16 ± 0.03 | 0.17 ± 0.04 | 1.43 ± 0.11 | 1.62 ± 0.26 |
Se | 0.012 ± 0.006 * | 0.112 ± 0.062 | 0.117 ± 0.031 * | 0.681 ± 0.068 |
S (%) | 0.14 ± 0.03 * | 0.09 ± 0.02 | 1.51 ± 0.05 * | 0.96 ± 0.03 |
Hematological Values | Affected Gazelles | Healthy Gazelles |
---|---|---|
Hb (g/L) | 107.12 ± 10.76 * | 149.59 ± 13.07 |
RBC (1012/L) | 6.54 ± 0.22 | 6.58 ± 0.23 |
HCT (%) | 39.05 ± 2.96 * | 62.33 ± 3.34 |
MCV (fl) | 56.67 ± 4.02 * | 89.94 ± 7.53 |
MCH (pg) | 15.52 ± 2.62 * | 21.55 ± 2.44 |
MCHC (%) | 22.09 ± 2.16 | 22.76 ± 2.05 |
WBC (109/L) | 8.99 ± 0.67 | 9.11 ± 0.64 |
Biochemical Values | Affected Gazelles | Healthy Gazelles |
---|---|---|
LDH (IU/L) | 241.64 ± 49.51 | 237.09 ± 48.77 |
AST (IU/L) | 24.67 ± 5.35 | 25.39 ± 4.95 |
γ-GGT (IU/L) | 17.84 ± 3.45 | 17.81 ± 3.01 |
AKP (IU/L) | 242.25 ± 12.35 | 247.95 ± 12.35 |
GSH-Px (IU/L) | 4.43 ± 1.64 * | 16.75 ± 2.54 |
MDA (μmol/L) | 167.88 ± 18.69 * | 41.54 ± 9.18 |
CR (µmol/L) | 303.05 ± 32.31 | 295.45 ± 36.13 |
TP (mmol/L) | 1.44 ± 0.22 | 1.49 ± 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, Y.; Li, Y.; Shen, X. Studies of a Naturally Occurring Selenium-Induced Microcytic Anemia in the Przewalski’s Gazelle. Animals 2024, 14, 1114. https://doi.org/10.3390/ani14071114
Ran Y, Li Y, Shen X. Studies of a Naturally Occurring Selenium-Induced Microcytic Anemia in the Przewalski’s Gazelle. Animals. 2024; 14(7):1114. https://doi.org/10.3390/ani14071114
Chicago/Turabian StyleRan, Yang, Yuanfeng Li, and Xiaoyun Shen. 2024. "Studies of a Naturally Occurring Selenium-Induced Microcytic Anemia in the Przewalski’s Gazelle" Animals 14, no. 7: 1114. https://doi.org/10.3390/ani14071114
APA StyleRan, Y., Li, Y., & Shen, X. (2024). Studies of a Naturally Occurring Selenium-Induced Microcytic Anemia in the Przewalski’s Gazelle. Animals, 14(7), 1114. https://doi.org/10.3390/ani14071114