Field Implementation of Precision Livestock Farming: Selected Proceedings from the 2nd U.S. Precision Livestock Farming Conference
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Menendez, H.M., III; Brennan, J.R.; Ehlert, K.A.; Parsons, I.L. Improving Dry Matter Intake Estimates Using Precision Body Weight on Cattle Grazed on Extensive Rangelands. Animals 2023, 13, 3844. [Google Scholar] [CrossRef] [PubMed]
- Van Steenkiste, G.; Van Den Brulle, I.; Piepers, S.; De Vliegher, S. In-Line Detection of Clinical Mastitis by Identifying Clots in Milk Using Images and a Neural Network Approach. Animals 2023, 13, 3783. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.N.; Yoder, J.; Nasiri, A.; Burns, R.T.; Gan, H. Analysis of the Drinking Behavior of Beef Cattle Using Computer Vision. Animals 2023, 13, 2984. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.L.; Hersom, M.J.; Andrae, J.G.; Duckett, S.K. Training and Adaptation of Beef Calves to Precision Supplementation Technology for Individual Supplementation in Grazing Systems. Animals 2023, 13, 2872. [Google Scholar] [CrossRef] [PubMed]
- Nyamuryekung’e, S.; Duff, G.; Utsumi, S.; Estell, R.; McIntosh, M.M.; Funk, M.; Cox, A.; Cao, H.; Spiegal, S.; Perea, A.; et al. Real-Time Monitoring of Grazing Cattle Using LORA-WAN Sensors to Improve Precision in Detecting Animal Welfare Implications via Daily Distance Walked Metrics. Animals 2023, 13, 2641. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, A.; Amirivojdan, A.; Zhao, Y.; Gan, H. Estimating the Feeding Time of Individual Broilers via Convolutional Neural Network and Image Processing. Animals 2023, 13, 2428. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, E.S.; Zhang, D.; Wang, C.; Thomas, P.; Moura, C.A.A.; Holtkamp, D.J.; Trevisan, G.; Rademacher, C.; Silva, G.S.; Linhares, D.C.L. Field Implementation of Forecasting Models for Predicting Nursery Mortality in a Midwestern US Swine Production System. Animals 2023, 13, 2412. [Google Scholar] [CrossRef] [PubMed]
- Paudel, S.; de Sousa, R.V.; Sharma, S.R.; Brown-Brandl, T. Deep Learning Models to Predict Finishing Pig Weight Using Point Clouds. Animals 2024, 14, 31. [Google Scholar] [CrossRef] [PubMed]
- Nyamuryekung’e, S.; Cox, A.; Perea, A.; Estell, R.; Cibils, A.F.; Holland, J.P.; Waterhouse, T.; Duff, G.; Funk, M.; McIntosh, M.M.; et al. Behavioral Adaptations of Nursing Brangus Cows to Virtual Fencing: Insights from a Training Deployment Phase. Animals 2023, 13, 3558. [Google Scholar] [CrossRef] [PubMed]
- van Erp-van der Kooij, E.; de Graaf, L.F.; de Kruijff, D.A.; Pellegrom, D.; de Rooij, R.; Welters, N.I.T.; van Poppel, J. Using Sound Location to Monitor Farrowing in Sows. Animals 2023, 13, 3538. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; DuBien, J.; Ramachandran, R.; Liang, Y.; Dridi, S.; Tabler, T. Effects of a Sprinkler and Cool Cell Combined System on Cooling Water Usage, Litter Moisture, and Indoor Environment of Broiler Houses. Animals 2023, 13, 2939. [Google Scholar] [CrossRef] [PubMed]
- Jaihuni, M.; Gan, H.; Tabler, T.; Prado, M.; Qi, H.; Zhao, Y. Broiler Mobility Assessment via a Semi-Supervised Deep Learning Model and Neo-Deep Sort Algorithm. Animals 2023, 13, 2719. [Google Scholar] [CrossRef] [PubMed]
- Bery, S.; Brown-Brandl, T.M.; Jones, B.T.; Rohrer, G.A.; Sharma, S.R. Determining the Presence and Size of Shoulder Lesions in Sows Using Computer Vision. Animals 2024, 14, 131. [Google Scholar] [CrossRef] [PubMed]
- Sefeedpari, P.; Pishgar-Komleh, S.H.; Aarnink, A.J.A. Model Adaptation and Validation for Estimating Methane and Ammonia Emissions from Fattening Pig Houses: Effect of Manure Management System. Animals 2024, 14, 964. [Google Scholar] [CrossRef]
- Elliott, K.C.; Werkheiser, I. A Framework for Transparency in Precision Livestock Farming. Animals 2023, 13, 3358. [Google Scholar] [CrossRef]
- Akinyemi, B.E.; Akaichi, F.; Siegford, J.M.; Turner, S.P. US Swine Industry Stakeholder Perceptions of Precision Livestock Farming Technology: A Q-Methodology Study. Animals 2023, 13, 2930. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Ramirez, B.C.; Siegford, J.M.; Gan, H.; Wang-Li, L.; Berckmans, D.; Burns, R.T. Field Implementation of Precision Livestock Farming: Selected Proceedings from the 2nd U.S. Precision Livestock Farming Conference. Animals 2024, 14, 1128. https://doi.org/10.3390/ani14071128
Zhao Y, Ramirez BC, Siegford JM, Gan H, Wang-Li L, Berckmans D, Burns RT. Field Implementation of Precision Livestock Farming: Selected Proceedings from the 2nd U.S. Precision Livestock Farming Conference. Animals. 2024; 14(7):1128. https://doi.org/10.3390/ani14071128
Chicago/Turabian StyleZhao, Yang, Brett C. Ramirez, Janice M. Siegford, Hao Gan, Lingjuan Wang-Li, Daniel Berckmans, and Robert T. Burns. 2024. "Field Implementation of Precision Livestock Farming: Selected Proceedings from the 2nd U.S. Precision Livestock Farming Conference" Animals 14, no. 7: 1128. https://doi.org/10.3390/ani14071128
APA StyleZhao, Y., Ramirez, B. C., Siegford, J. M., Gan, H., Wang-Li, L., Berckmans, D., & Burns, R. T. (2024). Field Implementation of Precision Livestock Farming: Selected Proceedings from the 2nd U.S. Precision Livestock Farming Conference. Animals, 14(7), 1128. https://doi.org/10.3390/ani14071128