Folic Acid and Taurine Alleviate the Impairment of Redox Status, Immunity, Rumen Microbial Composition and Fermentation of Lambs under Heat Stress
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sampling
2.2. Measurements of Physiological Indices, Inflammatory Cytokine, and Antioxidative Capacity in 1st Crossbred (Dorper × Hu) Male Lambs
2.3. Rumen Fermentation
2.4. Rumen Bacterial DNA Extraction, Amplification, Sequencing and Analysis
2.5. Statistical Analysis
3. Results
3.1. THI and Growth Performance
3.2. Effects of Folic Acid and Taurine on the HR, RR, ST and RT of Du-Hu Crossed Ram under HS
3.3. The Folic Acid and Taurine Alleviate the Deleterious Effects of HS on Oxidative Stability and Immune Status in Dorper–Hu Crossbred Lambs
3.4. Effects of Folic Acid and Taurine on Rumen Fermentation of Dorper-Hu Crossed Sheep under HS
3.5. Comparison of Bacterial Community Composition in Rumen among Each Group
3.6. Correlation Analysis between the Predominant Genus and the Ruminal Ferment Parameters, the Immune Cytokines or Antioxidant Indices
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clemens, V.; von Hirschhausen, E.; Fegert, J.M. Report of the Intergovernmental Panel on Climate Change: Implications for the Mental Health Policy of Children and Adolescents in Europe—A Scoping Review. Eur. Child. Adolesc. Psychiatry 2022, 31, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of Heat Stress on Animal Physiology, Metabolism, and Meat Quality: A Review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Warner, R.D.; Dunshea, F.R.; DiGiacomo, K.; Joy, A.; Abhijith, A.; Osei-Amponsah, R.; Hopkins, D.L.; Ha, M.; Chauhan, S.S. Impact of Heat Stress on the Growth Performance and Retail Meat Quality of 2nd Cross (Poll Dorset × (Border Leicester × Merino)) and Dorper Lambs. Meat Sci. 2021, 181, 108581. [Google Scholar] [CrossRef] [PubMed]
- Bokharaeian, M.; Toghdory, A.; Ghoorchi, T. Effects of Dietary Curcumin Nano-Micelles on Growth Performance, Blood Metabolites, Antioxidant Status, Immune and Physiological Responses of Fattening Lambs under Heat-Stress Conditions. J. Therm. Biol. 2023, 114, 103585. [Google Scholar] [CrossRef]
- Becker, C.A.; Collier, R.J.; Stone, A.E. Invited Review: Physiological and Behavioral Effects of Heat Stress in Dairy Cows. J. Dairy Sci. 2020, 103, 6751–6770. [Google Scholar] [CrossRef] [PubMed]
- Koch, F.; Thom, U.; Albrecht, E.; Weikard, R.; Nolte, W.; Kuhla, B.; Kuehn, C. Heat Stress Directly Impairs Gut Integrity and Recruits Distinct Immune Cell Populations into the Bovine Intestine. Proc. Natl. Acad. Sci. USA 2019, 116, 10333–10338. [Google Scholar] [CrossRef] [PubMed]
- Dahl, G.E.; Tao, S.; Laporta, J. Heat Stress Impacts Immune Status in Cows Across the Life Cycle. Front. Vet. Sci. 2020, 7, 116. [Google Scholar] [CrossRef]
- Li, Y.; Fu, B.; Zhang, J.; Wang, G.; Gong, W.; Tian, J.; Li, H.; Zhang, K.; Xia, Y.; Li, Z.; et al. Effects of Heat Stress on the Chemical Composition, Oxidative Stability, Muscle Metabolism, and Meat Quality of Nile Tilapia (Oreochromis Niloticus). Food Chem. 2023, 426, 136590. [Google Scholar] [CrossRef]
- Qin, Q.; Li, Z.; Zhang, M.; Dai, Y.; Li, S.; Wu, H.; Zhang, Z.; Chen, P. Effects of Melittin on Production Performance, Antioxidant Function, Immune Function, Heat Shock Protein, Intestinal Morphology, and Cecal Microbiota in Heat-Stressed Quails. Poult. Sci. 2023, 102, 102713. [Google Scholar] [CrossRef]
- Ji, B.; Banhazi, T.; Perano, K.; Ghahramani, A.; Bowtell, L.; Wang, C.; Li, B. A Review of Measuring, Assessing and Mitigating Heat Stress in Dairy Cattle. Biosyst. Eng. 2020, 199, 4–26. [Google Scholar] [CrossRef]
- Souza, V.C.; Moraes, L.E.; Baumgard, L.H.; Santos, J.E.P.; Mueller, N.D.; Rhoads, R.P.; Kebreab, E. Modeling the Effects of Heat Stress in Animal Performance and Enteric Methane Emissions in Lactating Dairy Cows. J. Dairy Sci. 2023, 106, 4725–4737. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Nong, K.; Qin, X.; Liu, Z.; Gao, F.; Jing, Y.; Fan, H.; Wang, Z.; Wang, X.; Zhang, H. Effect of Purple Sweet Potato-Derived Anthocyanins on Heat Stress Response in Wenchang Chickens and Preliminary Mechanism Study. Poult. Sci. 2023, 102, 102861. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, B.; Li, H.; Jian, L.; Luo, H.; Wang, B.; Zhang, C.; Zhao, X.; Xue, Y.; Peng, S.; et al. Maternal Folic Acid Supplementation Differently Affects the Small Intestinal Phenotype and Gene Expression of Newborn Lambs from Differing Litter Sizes. Animals 2020, 10, 2183. [Google Scholar] [CrossRef] [PubMed]
- Gouda, A.; Amer, S.A.; Gabr, S.; Tolba, S.A. Effect of Dietary Supplemental Ascorbic Acid and Folic Acid on the Growth Performance, Redox Status, and Immune Status of Broiler Chickens under Heat Stress. Trop. Anim. Health Prod. 2020, 52, 2987–2996. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Wang, W.; You, S.; Dong, J.; Zhou, Y.; Wang, J. In Vitro Antioxidant Activity and in Vivo Antifatigue Effect of Layered Double Hydroxide Nanoparticles as Delivery Vehicles for Folic Acid. Int. J. Nanomed. 2014, 9, 5701–5710. [Google Scholar] [CrossRef]
- Wang, B.; Li, H.; Li, Z.; Wang, B.; Zhang, H.; Zhang, B.; Luo, H. Integrative Network Analysis Revealed the Molecular Function of Folic Acid on Immunological Enhancement in a Sheep Model. Front. Immunol. 2022, 13, 913854. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Q.; Wang, C.; Liu, C.; Zhang, J.; Liu, Q. Effects of Coated Folic Acid and Coated Methionine on Growth Performance, Nutrient Digestibility and Rumen Fermentation in Simmental Bulls. Anim. Feed. Sci. Technol. 2023, 298, 115596. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Kidd, M.T. Taurine in Poultry Nutrition. Anim. Feed. Sci. Technol. 2020, 260, 114339. [Google Scholar] [CrossRef]
- Wang, F.R.; Dong, X.F.; Tong, J.M.; Zhang, X.M.; Zhang, Q.; Wu, Y.Y. Effects of Dietary Taurine Supplementation on Growth Performance and Immune Status in Growing Japanese Quail (Coturnix Coturnix Japonica). Poult. Sci. 2009, 88, 1394–1398. [Google Scholar] [CrossRef]
- Salze, G.P.; Davis, D.A. Taurine: A Critical Nutrient for Future Fish Feeds. Aquaculture 2015, 437, 215–229. [Google Scholar] [CrossRef]
- Uyanga, V.A.; Oke, E.O.; Amevor, F.K.; Zhao, J.; Wang, X.; Jiao, H.; Onagbesan, O.M.; Lin, H. Functional Roles of Taurine, L-Theanine, L-Citrulline, and Betaine during Heat Stress in Poultry. J. Anim. Sci. Biotechnol. 2022, 13, 23. [Google Scholar] [CrossRef]
- He, X.; Lu, Z.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Effects of Dietary Taurine Supplementation on Growth Performance, Jejunal Morphology, Appetite-Related Hormones, and Genes Expression in Broilers Subjected to Chronic Heat Stress. Poult. Sci. 2019, 98, 2719–2728. [Google Scholar] [CrossRef]
- Lu, Z.; He, X.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Dietary Taurine Supplementation Improves Breast Meat Quality in Chronic Heat-Stressed Broilers via Activating the Nrf2 Pathway and Protecting Mitochondria from Oxidative Attack. J. Sci. Food Agric. 2019, 99, 1066–1072. [Google Scholar] [CrossRef]
- Shao, X.; Hu, Z.; Hu, C.; Bu, Q.; Yan, G.; Deng, P.; Lv, L.; Wu, D.; Deng, Y.; Zhao, J.; et al. Taurine Protects Methamphetamine-Induced Developmental Angiogenesis Defect through Antioxidant Mechanism. Toxicol. Appl. Pharmacol. 2012, 260, 260–270. [Google Scholar] [CrossRef]
- Lu, Z.; He, X.F.; Ma, B.B.; Zhang, L.; Li, J.L.; Jiang, Y.; Zhou, G.H.; Gao, F. The Alleviative Effects and Related Mechanisms of Taurine Supplementation on Growth Performance and Carcass Characteristics in Broilers Exposed to Chronic Heat Stress. Poult. Sci. 2019, 98, 878–886. [Google Scholar] [CrossRef]
- Cai, L.; Yu, J.; Hartanto, R.; Qi, D. Dietary Supplementation with Saccharomyces Cerevisiae, Clostridium Butyricum and Their Combination Ameliorate Rumen Fermentation and Growth Performance of Heat-Stressed Goats. Animals 2021, 11, 2116. [Google Scholar] [CrossRef]
- Li, B.; Zhang, K.; Li, C.; Wang, X.; Chen, Y.; Yang, Y. Characterization and Comparison of Microbiota in the Gastrointestinal Tracts of the Goat (Capra Hircus) during Preweaning Development. Front. Microbiol. 2019, 10, 2125. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yin, W.; Lei, M.; Wang, X.; Yang, Y.; Zhang, C.; Chen, Y. Exploring the Digesta- and Mucosa-Associated Microbial Community Dynamics in the Rumen and Hindgut of Goats from Birth to Adult. Front. Microbiol. 2023, 14, 1190348. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Magoč, T.; Salzberg, S.L. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Marai, I.F.M.; El-Darawany, A.A.; Fadiel, A.; Abdel-Hafez, M.A.M. Physiological Traits as Affected by Heat Stress in Sheep—A Review. Small Rumin. Res. 2007, 71, 1–12. [Google Scholar] [CrossRef]
- Rhoads, M.L.; Rhoads, R.P.; VanBaale, M.J.; Collier, R.J.; Sanders, S.R.; Weber, W.J.; Crooker, B.A.; Baumgard, L.H. Effects of Heat Stress and Plane of Nutrition on Lactating Holstein Cows: I. Production, Metabolism, and Aspects of Circulating Somatotropin1. J. Dairy Sci. 2009, 92, 1986–1997. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Ponnampalam, E.N.; Celi, P.; Hopkins, D.L.; Leury, B.J.; Dunshea, F.R. High Dietary Vitamin E and Selenium Improves Feed Intake and Weight Gain of Finisher Lambs and Maintains Redox Homeostasis under Hot Conditions. Small Rumin. Res. 2016, 137, 17–23. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Rashamol, V.P.; Bagath, M.; Sejian, V.; Dunshea, F.R. Impacts of Heat Stress on Immune Responses and Oxidative Stress in Farm Animals and Nutritional Strategies for Amelioration. Int. J. Biometeorol. 2021, 65, 1231–1244. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.L.; He, J.H.; Xie, H.B.; Yang, Y.S.; Li, J.C.; Zou, Y. Resveratrol Induces Antioxidant and Heat Shock Protein mRNA Expression in Response to Heat Stress in Black-Boned Chickens. Poult. Sci. 2014, 93, 54–62. [Google Scholar] [CrossRef]
- Hosseini-Vashan, S.J.; Golian, A.; Yaghobfar, A. Growth, Immune, Antioxidant, and Bone Responses of Heat Stress-Exposed Broilers Fed Diets Supplemented with Tomato Pomace. Int. J. Biometeorol. 2016, 60, 1183–1192. [Google Scholar] [CrossRef]
- Bagath, M.; Krishnan, G.; Devaraj, C.; Rashamol, V.P.; Pragna, P.; Lees, A.M.; Sejian, V. The Impact of Heat Stress on the Immune System in Dairy Cattle: A Review. Res. Vet. Sci. 2019, 126, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Lemal, P.; May, K.; König, S.; Schroyen, M.; Gengler, N. Invited Review: From Heat Stress to Disease—Immune Response and Candidate Genes Involved in Cattle Thermotolerance. J. Dairy Sci. 2023, 106, 4471–4488. [Google Scholar] [CrossRef]
- Ellamie, A.M.; Fouda, W.A.; Ibrahim, W.M.; Ramadan, G. Dietary Supplementation of Brown Seaweed (Sargassum Latifolium) Alleviates the Environmental Heat Stress-Induced Toxicity in Male Barki Sheep (Ovis Aries). J. Therm. Biol. 2020, 89, 102561. [Google Scholar] [CrossRef]
- Mishra, S.R. Behavioural, Physiological, Neuro-Endocrine and Molecular Responses of Cattle against Heat Stress: An Updated Review. Trop. Anim. Health Prod. 2021, 53, 400. [Google Scholar] [CrossRef]
- Deng, W.; Dong, X.F.; Tong, J.M.; Zhang, Q. The Probiotic Bacillus Licheniformis Ameliorates Heat Stress-Induced Impairment of Egg Production, Gut Morphology, and Intestinal Mucosal Immunity in Laying Hens1. Poult. Sci. 2012, 91, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Monteiro, A.P.A.; Thompson, I.M.; Hayen, M.J.; Dahl, G.E. Effect of Late-Gestation Maternal Heat Stress on Growth and Immune Function of Dairy Calves. J. Dairy Sci. 2012, 95, 7128–7136. [Google Scholar] [CrossRef] [PubMed]
- Fontoura, A.B.P.; Javaid, A.; de la Maza-Escolà, V.S.; Salandy, N.S.; Fubini, S.L.; Grilli, E.; McFadden, J.W. Heat Stress Develops with Increased Total-Tract Gut Permeability, and Dietary Organic Acid and Pure Botanical Supplementation Partly Restores Lactation Performance in Holstein Dairy Cows. J. Dairy Sci. 2022, 105, 7842–7860. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Min, L.; Zheng, N.; Wang, J. Effect of Heat Stress on Bacterial Composition and Metabolism in the Rumen of Lactating Dairy Cows. Animals 2019, 9, 925. [Google Scholar] [CrossRef] [PubMed]
- Chaidanya, K.; Soren, N.M.; Sejian, V.; Bagath, M.; Manjunathareddy, G.B.; Kurien, E.K.; Varma, G.; Bhatta, R. Impact of Heat Stress, Nutritional Stress and Combined (Heat and Nutritional) Stresses on Rumen Associated Fermentation Characteristics, Histopathology and HSP70 Gene Expression in Goats. J. Anim. Behav. Biometeorol. 2017, 5, 36–48. [Google Scholar] [CrossRef]
- Amini, A.; Pirmohammadi, R.; Khalilvandi-Behroozyar, H.; Mazaheri-Khameneh, R. Effects of Heat Stress on in Vivo and in Vitro Ruminal Metabolism in Fat-Tailed Ewes. Anim. Prod. Sci. 2022, 62, 860–869. [Google Scholar] [CrossRef]
- Correia Sales, G.F.; Carvalho, B.F.; Schwan, R.F.; de Figueiredo Vilela, L.; Moreno Meneses, J.A.; Gionbelli, M.P.; Luiza da Silva Ávila, C. Heat Stress Influence the Microbiota and Organic Acids Concentration in Beef Cattle Rumen. J. Therm. Biol. 2021, 97, 102897. [Google Scholar] [CrossRef] [PubMed]
- Sohail, M.U.; Hume, M.E.; Byrd, J.A.; Nisbet, D.J.; Shabbir, M.Z.; Ijaz, A.; Rehman, H. Molecular Analysis of the Caecal and Tracheal Microbiome of Heat-Stressed Broilers Supplemented with Prebiotic and Probiotic. Avian Pathol. 2015, 44, 67–74. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, H.; Ma, T.; Yan, Z.; Zhang, Y.; Geng, Y.; Zhu, Y.; Shi, Y. Effect of Chronic Cyclic Heat Stress on the Intestinal Morphology, Oxidative Status and Cecal Bacterial Communities in Broilers. J. Therm. Biol. 2020, 91, 102619. [Google Scholar] [CrossRef]
- He, J.; Guo, H.; Zheng, W.; Xue, Y.; Zhao, R.; Yao, W. Heat Stress Affects Fecal Microbial and Metabolic Alterations of Primiparous Sows during Late Gestation. J. Anim. Sci. Biotechnol. 2019, 10, 84. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, E.J.C.; Iljazovic, A.; Amend, L.; Lesker, T.R.; Renault, T.; Thiemann, S.; Hao, L.; Roy, U.; Gronow, A.; Charpentier, E.; et al. Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella Spp. Cell Host Microbe 2020, 28, 838–852.e6. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Niu, K.; Rushdi, H.E.; Zhang, M.; Fu, T.; Gao, T.; Yang, L.; Liu, S.; Lin, F. Heat Stress Induces Shifts in the Rumen Bacteria and Metabolome of Buffalo. Animals 2022, 12, 1300. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhang, H.; Zhao, N.; Yang, X.; Du, E.; Huang, S.; Guo, W.; Zhang, W.; Wei, J. Effect of Chlorogenic Acid on Intestinal Inflammation, Antioxidant Status, and Microbial Community of Young Hens Challenged with Acute Heat Stress. Anim. Sci. J. 2021, 92, e13619. [Google Scholar] [CrossRef] [PubMed]
- Hackmann, T.J.; Ngugi, D.K.; Firkins, J.L.; Tao, J. Genomes of Rumen Bacteria Encode Atypical Pathways for Fermenting Hexoses to Short-Chain Fatty Acids. Environ. Microbiol. 2017, 19, 4670–4683. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Xie, J.; Fang, W.; Wen, X.; Yin, C.; Meng, Q.; Zhong, R.; Chen, L.; Zhang, H. Chronic Heat Stress Induces the Disorder of Gut Transport and Immune Function Associated with Endoplasmic Reticulum Stress in Growing Pigs. Anim. Nutr. 2022, 11, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Altermann, E.; Leahy, S.C.; Jauregui, R.; Jonker, A.; Henderson, G.; Kittelmann, S.; Attwood, G.T.; Kamke, J.; Waters, S.M.; et al. Genomic Insights into the Physiology of Quinella, an Iconic Uncultured Rumen Bacterium. Nat. Commun. 2022, 13, 6240. [Google Scholar] [CrossRef]
- Xia, B.; Wu, W.; Fang, W.; Wen, X.; Xie, J.; Zhang, H. Heat Stress-Induced Mucosal Barrier Dysfunction Is Potentially Associated with Gut Microbiota Dysbiosis in Pigs. Anim. Nutr. 2022, 8, 289–299. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Zhang, X.X.; Li, F.D.; Li, C.; Li, G.Z.; Zhang, D.Y.; Song, Q.Z.; Li, X.L.; Zhao, Y.; Wang, W.M. Characterization of the Rumen Microbiota and Its Relationship with Residual Feed Intake in Sheep. Animal 2021, 15, 100161. [Google Scholar] [CrossRef]
- Yu, Z.; Cantet, J.M.; Paz, H.A.; Kaufman, J.D.; Orellano, M.S.; Ipharraguerre, I.R.; Ríus, A.G. Heat Stress–Associated Changes in the Intestinal Barrier, Inflammatory Signals, and Microbiome Communities in Dairy Calves. J. Dairy Sci. 2024, 107, 1175–1196. [Google Scholar] [CrossRef]
- Liu, B.; Ye, D.; Yang, H.; Song, J.; Sun, X.; Mao, Y.; He, Z. Two-Sample Mendelian Randomization Analysis Investigates Causal Associations Between Gut Microbial Genera and Inflammatory Bowel Disease, and Specificity Causal Associations in Ulcerative Colitis or Crohn’s Disease. Front. Immunol. 2022, 13, 921546. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Liao, R.; Wu, N.; Zhu, G.; Yang, C. Heat Stress Mediates Changes in Fecal Microbiome and Functional Pathways of Laying Hens. Appl. Microbiol. Biotechnol. 2019, 103, 461–472. [Google Scholar] [CrossRef] [PubMed]
Items | Day | Treatment (T) | p | ||||||
---|---|---|---|---|---|---|---|---|---|
C | MHS | SHS | RHS | D | T | D | T × D | ||
T-AOC/(mM/mL) | 1 d | 0.40 ± 0.02 | 0.41 ± 0.02 | 0.38 ± 0.01 | 0.46 ± 0.05 | 0.42 ± 0.02 AB | 0.193 | 0.001 | 0.113 |
4 d | 0.35 ± 0.05 | 0.34 ± 0.10 | 0.27 ± 0.05 | 0.44 ± 0.13 | 0.38 ± 0.03 A | ||||
7 d | 0.52 ± 0.08 | 0.48 ± 0.06 | 0.39 ± 0.08 | 0.47 ± 0.09 | 0.46 ± 0.02 B | ||||
T | 0.42 ± 0.04 | 0.41 ± 0.04 | 0.33 ± 0.04 | 0.46 ± 0.04 | |||||
SOD/ (U/mL) | 1 d | 31.55 ± 2.09 | 30.48 ± 2.21 | 29.00 ± 1.07 | 43.13 ± 0.95 | 33.65 ± 1.04 | 0.025 | 0.199 | 0.090 |
4 d | 37.49 ± 2.55 | 35.07 ± 3.61 | 22.90 ± 1.63 | 42.04 ± 2.33 | 32.76 ± 2.68 | ||||
7 d | 38.32 ± 1.79 | 37.09 ± 1.21 | 31.59 ± 1.15 | 37.38 ± 3.53 | 36.89 ± 1.38 | ||||
T | 35.64 ± 2.29 b | 33.91 ± 2.96 ab | 27.83 ± 2.09 a | 40.35 ± 2.56 b | |||||
GPx/ (U/mL) | 1 d | 68.61 ± 2.49 | 62.22 ± 4.86 | 52.59 ± 3.41 | 73.17 ± 2.76 | 64.10 ± 2.03 BC | <0.001 | <0.001 | 0.767 |
4 d | 58.89 ± 4.73 | 44.17 ± 2.23 | 37.33 ± 1.72 | 67.28 ± 8.01 | 52.44 ± 2.94 A | ||||
7 d | 71.14 ± 4.27 | 68.86 ± 5.18 | 60.86 ± 7.15 | 83.54 ± 8.12 | 72.22 ± 3.34 C | ||||
T | 65.92 ± 3.18 bc | 57.80 ± 3.18 ab | 50.40 ± 3.56 a | 74.67 ± 2.91 c | |||||
MDA/ (nmol/mL) | 1 d | 1.27 ± 0.07 | 1.77 ± 0.33 | 4.78 ± 0.85 | 2.01 ± 0.18 | 2.53 ± 0.26 A | <0.001 | 0.016 | 0.205 |
4 d | 2.41 ± 0.34 | 3.81 ± 0.51 | 6.23 ± 0.68 | 2.08 ± 0.30 | 2.79 ± 0.26 B | ||||
7 d | 2.38 ± 0.11 | 2.42 ± 0.0.12 | 2.90 ± 0.74 | 2.31 ± 0.15 | 2.61 ± 0.29 A | ||||
T | 2.15 ± 0.17 a | 2.65 ± 0.15 a | 4.42 ± 0.17 b | 2.14 ± 0.12 a |
Items | Day | Treatment (T) | D | p | |||||
---|---|---|---|---|---|---|---|---|---|
C | MHS | SHS | RHS | T | D | T × D | |||
IL-1β /(pg/mL) | 1 d | 55.26 ± 8.46 | 53.27 ± 5.36 | 63.79 ± 5.09 | 60.12 ± 5.93 | 58.11 ± 1.63 A | 0.226 | <0.001 | 0.167 |
4 d | 79.66 ± 5.32 | 88.78 ± 3.90 | 91.03 ± 4.01 | 74.00 ± 7.50 | 83.34 ± 1.98 C | ||||
7 d | 67.63 ± 7.25 | 72.64 ± 4.48 | 67.53 ± 4.92 | 68.60 ± 9.00 | 69.10 ± 2.60 B | ||||
T | 67.52 ± 2.18 | 71.56 ± 2.18 | 74.12 ± 2.81 | 67.57 ± 2.43 | |||||
TNF-α/ (pg/mL) | 1 d | 69.81 ± 3.14 | 79.65 ± 2.59 | 104.51 ± 2.85 | 79.20 ± 3.16 | 83.29 ± 0.91 A | <0.001 | <0.001 | 0.250 |
4 d | 77.13 ± 8.10 | 127.63 ± 8.26 | 135.17 ± 5.64 | 125.79 ± 8.92 | 116.43 ± 5.56 B | ||||
7 d | 97.46 ± 7.40 | 115.86 ± 6.89 | 137.13 ± 13.34 | 104.18 ± 8.38 | 113.66 ± 4.73 B | ||||
T | 81.47 ± 3.37 a | 107.71 ± 3.37 b | 125.60 ± 4.13 c | 103.06 ± 3.37 b | |||||
IL-10/ (pg/mL) | 1 d | 84.81 ± 6.57 | 91.52 ± 4.89 | 75.56 ± 4.84 | 124.16 ± 6.74 | 94.01 ± 2.60 A | <0.001 | <0.001 | 0.120 |
4 d | 89.67 ± 7.77 | 96.72 ± 7.56 | 100.80 ± 9.23 | 135.20 ± 5.86 | 105.60 ± 3.50 B | ||||
7 d | 108.20 ± 8.79 | 123.84 ± 4.63 | 121.12 ± 7.45 | 129.33 ± 6.12 | 120.62 ± 3.74 C | ||||
T | 94.23 ± 2.89 a | 104.03 ± 3.16 b | 99.16 ± 2.89 ab | 129.56 ± 3.16 c | |||||
IL-13/ (pg/mL) | 1 d | 361.24 ± 21.23 | 340.48 ± 38.38 | 304.73 ± 40.98 | 406.31 ± 54.91 | 353.19 ± 24.34 A | 0.042 | <0.001 | 0.785 |
4 d | 602.60 ± 44.28 | 542.76 ± 32.42 | 521.95 ± 17.11 | 617.91 ± 44.75 | 571.30 ± 20.80 B | ||||
7 d | 607.28 ± 14.56 | 540.80 ± 42.85 | 453.61 ± 43.03 | 513.39 ± 45.26 | 528.77 ± 21.74 B | ||||
T | 523.71 ± 26.03 b | 474.68 ± 23.28 ab | 426.77 ± 23.28 a | 512.53 ± 21.25 b | |||||
IgA/(μg/mL) | 1 d | 207.61 ± 12.08 | 154.42 ± 14.61 | 130.79 ± 11.82 | 223.94 ± 14.78 | 179.19 ± 4.98 A | <0.001 | <0.001 | 0.220 |
4 d | 266.54 ± 19.24 | 270.91 ± 14.64 | 213.09 ± 7.25 | 308.69 ± 11.81 | 264.81 ± 7.21 B | ||||
7 d | 248.40 ± 14.94 | 241.45 ± 13.97 | 218.31 ± 16.63 | 254.13 ± 16.61 | 240.57 ± 8.40 B | ||||
T | 240.85 ± 5.80 c | 222.26 ± 5.29 b | 187.40 ± 6.48 a | 262.25 ± 5.29 d | |||||
IgG/(mg/mL) | 1 d | 61.30 ± 2.72 de | 47.19 ± 4.07 ab | 42.40 ± 0.89 a | 51.51 ± 2.69 bc | 50.60 ± 1.38 A | <0.001 | <0.001 | 0.017 |
4d | 70.93 ± 3.40 f | 68.86 ± 2.89 ef | 49.55 ± 2.69 bc | 67.32 ± 1.95 ef | 64.16 ± 1.41 B | ||||
7 d | 66.51 ± 3.19 ef | 57.01 ± 2.03 cd | 59.40 ± 3.46 cd | 62.40 ± 2.35 def | 61.33 ± 1.39 B | ||||
T | 66.24 ± 1.54 c | 57.68 ± 1.54 b | 50.45 ± 1.69 a | 60.41 ± 1.54 b | |||||
IgM/(μg/mL) | 1 d | 1325.72 ± 85.89 | 1013.81 ± 94.65 | 1040.96 ± 77.88 | 1469.13 ± 40.96 | 1212.41 ± 40.35 A | <0.001 | <0.001 | 0.141 |
4 d | 1722.56 ± 31.73 | 1871.63 ± 79.66 | 1395.73 ± 123.40 | 2202.52 ± 150.60 | 1798.11 ± 54.57 B | ||||
7 d | 1752.58 ± 123.82 | 1732.44 ± 135.26 | 1671.87 ± 113.25 | 2009.63 ± 102.85 | 1791.63 ± 66.88 B | ||||
T | 1600.29 ± 70.54 b | 1539.29 ± 63.09 ab | 1369.52 ± 63.09 a | 1893.76 ± 63.09 c | |||||
HSP70/(pg/mL) | 1 d | 419.53 ± 17.03 | 388.31 ± 27.83 | 453.52 ± 23.29 | 436.67 ± 13.07 | 424.51 ± 12.10 A | 0.021 | 0.001 | 0.170 |
4 d | 477.27 ± 23.62 | 695.14 ± 25.84 | 667.88 ± 35.55 | 594.80 ± 25.38 | 608.77 ± 19.09 C | ||||
7 d | 480.89 ± 36.95 | 532.87 ± 16.72 | 571.91 ± 22.04 | 524.59 ± 30.75 | 527.57 ± 15.41 B | ||||
T | 459.23 ± 27.37 a | 538.77 ± 19.35 b | 564.44 ± 26.37 b | 518.67 ± 20.54 b |
Items | C | MHS | SHS | RHS | p |
---|---|---|---|---|---|
pH | 6.67 ± 0.05 | 6.61 ± 0.06 | 6.44 ± 0.09 | 6.38 ± 0.15 | 0.140 |
TVFA/(mmol/L) | 78.93 ± 3.38 | 91.98 ± 2.60 | 105.29 ± 7.53 | 99.05 ± 11.26 | 0.085 |
Acetate/(%) | 65.68 ± 1.05 ab | 63.65 ± 0.50 a | 67.71 ± 0.71 b | 66.72 ± 1.15 b | 0.026 |
Propionate/(%) | 15.36 ± 0.75 ab | 17.04 ± 0.81 b | 13.07 ± 0.86 a | 12.88 ± 0.84 a | 0.005 |
Isobutyrate/(%) | 0.82 ± 0.04 b | 0.81 ± 0.04 b | 0.66 ± 0.03 a | 0.65 ± 0.05 a | 0.012 |
Butyrate/(%) | 15.60 ± 1.69 | 15.84 ± 0.95 | 16.48 ± 0.93 | 17.75 ± 0.69 | 0.548 |
Isovalerate/(%) | 1.23 ± 0.10 bc | 1.39 ± 0.09 c | 1.05 ± 0.07 ab | 0.96 ± 0.05 a | 0.006 |
Valerate/(%) | 1.32 ± 0.07 b | 1.26 ± 0.08 b | 1.04 ± 0.05 a | 1.04 ± 0.08 a | 0.018 |
Acetate/Propionate | 4.32 ± 0.19 b | 3.78 ± 0.20 b | 5.30 ± 0.36 c | 2.47 ± 0.19 a | <0.001 |
NH3-N/(mmol/L) | 16.71 ± 0.95 bc | 12.64 ± 1.05 a | 15.63 ± 1.20 b | 19.11 ± 1.08 c | 0.004 |
Species Name | Group | SEM | p | |||
---|---|---|---|---|---|---|
Control | MHS | SHS | RHS | |||
Prevotella | 26.689 | 23.358 | 17.833 | 25.994 | 1.817 | 0.312 |
Rikenellaceae_RC9_gut_group | 7.384 a | 7.154 a | 12.290 b | 6.729 a | 0.794 | 0.006 |
UCG004 | 2.784 | 3.457 | 5.139 | 6.530 | 0.703 | 0.593 |
Ruminococcus | 2.503 | 4.900 | 3.998 | 5.195 | 0.623 | 0.442 |
norank_f_F082 | 4.011 | 2.477 | 4.854 | 4.107 | 0.377 | 0.150 |
Prevotellaceae_UCG001 | 2.899 | 2.980 | 4.739 | 4.518 | 0.429 | 0.281 |
Selenomonas | 2.257 | 2.517 | 3.797 | 4.036 | 0.638 | 0.715 |
norank_f_Bacteroidales_RF16_group | 4.267 b | 3.945 b | 2.184 a | 0.737 a | 0.732 | 0.044 |
norank_f_Muribaculaceae | 2.553 | 2.720 | 2.263 | 3.227 | 0.351 | 0.516 |
Quinella | 4.351 c | 1.781 ab | 1.122 a | 3.139 b | 0.515 | 0.039 |
Lachnospiraceae_NK3A20_group | 1.826 | 3.209 | 1.778 | 2.790 | 0.244 | 0.439 |
Prevotellaceae_UCG003 | 2.597 | 3.032 | 1.840 | 1.580 | 0.177 | 0.584 |
Succiniclasticum | 1.701 | 1.595 | 2.228 | 1.961 | 0.243 | 0.192 |
unclassified_f_Prevotellaceae | 2.434 | 1.597 | 1.284 | 2.076 | 0.223 | 0.599 |
Christensenellaceae_R7_group | 1.474 | 1.632 | 1.893 | 2.095 | 0.176 | 0.634 |
NK4A214_group | 1.253 | 1.690 | 1.968 | 1.474 | 0.124 | 0.211 |
Anaeroplasma | 1.630 | 1.347 | 1.273 | 1.949 | 0.169 | 0.736 |
unclassified_f_Selenomonadaceae | 1.153 | 1.997 | 1.128 | 0.888 | 0.220 | 0.294 |
Asteroleplasma | 0.362 a | 0.138 a | 4.173 b | 0.220 a | 0.071 | 0.027 |
Veillonellaceae_UCG001 | 1.037 | 1.266 | 1.395 | 0.925 | 0.145 | 0.424 |
unclassified_f_Lachnospiraceae | 1.025 | 1.553 | 0.903 | 0.972 | 0.130 | 0.283 |
norank_f_norank_o_Clostridia_UCG014 | 1.081 | 1.499 | 1.091 | 0.684 | 0.137 | 0.220 |
Succinivibrio | 3.837 b | 0.030 a | 0.042 a | 2.138 b | 0.809 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Wu, K.; Duan, G.; Yin, W.; Lei, M.; Yan, Y.; Ren, Y.; Zhang, C. Folic Acid and Taurine Alleviate the Impairment of Redox Status, Immunity, Rumen Microbial Composition and Fermentation of Lambs under Heat Stress. Animals 2024, 14, 998. https://doi.org/10.3390/ani14070998
Li B, Wu K, Duan G, Yin W, Lei M, Yan Y, Ren Y, Zhang C. Folic Acid and Taurine Alleviate the Impairment of Redox Status, Immunity, Rumen Microbial Composition and Fermentation of Lambs under Heat Stress. Animals. 2024; 14(7):998. https://doi.org/10.3390/ani14070998
Chicago/Turabian StyleLi, Bibo, Ke Wu, Guoqing Duan, Weiqi Yin, Mingkai Lei, Yining Yan, Youshe Ren, and Chunxiang Zhang. 2024. "Folic Acid and Taurine Alleviate the Impairment of Redox Status, Immunity, Rumen Microbial Composition and Fermentation of Lambs under Heat Stress" Animals 14, no. 7: 998. https://doi.org/10.3390/ani14070998
APA StyleLi, B., Wu, K., Duan, G., Yin, W., Lei, M., Yan, Y., Ren, Y., & Zhang, C. (2024). Folic Acid and Taurine Alleviate the Impairment of Redox Status, Immunity, Rumen Microbial Composition and Fermentation of Lambs under Heat Stress. Animals, 14(7), 998. https://doi.org/10.3390/ani14070998