Effect of Butorphanol-Medetomidine and Butorphanol-Dexmedetomidine on Echocardiographic Parameters during Propofol Anaesthesia in Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Echocardiographic Examination
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Virtanen, R.; Savola, J.M. Characterization of the selectivity, specificity and potency of medetomidine as an alpha 2-adrenoceptor agonist. Eur. J. Pharmacol. 1988, 150, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Murrell, J.C. Pre-anaesthetic medication and sedation. In BSAVA Manual of Canine and Feline Anaesthesia and Analgesia, 3rd ed.; Duke-Novakovski, T., de Vries, M., Seymour, C., Eds.; British Small Animal Veterinary Association: Gloucester, UK, 2016; pp. 170–190. [Google Scholar]
- Carter, J.E.; Campbell, N.B.; Posner, L.P.; Swanson, C. The hemodynamic effects of medetomidine continuous rate infusions in the dog. Vet. Anaesth. Analg. 2010, 37, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Tranquilli, W.J.; Thurmon, J.C.; Grimm, K.A. Veterinary Anesthesia and Analgesia, 5th ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2015; p. 1072. [Google Scholar]
- MacDonald, E.; Scheinin, M. Comparison of the behavioural and neurochemical effects of the two optical enantiomers of medetomidine, a selective alpha-2-adrenoceptor agonist. J. Pharmacol. Exp. Ther. 1991, 259, 848–854. [Google Scholar] [PubMed]
- Carollo, D.S.; Nossaman, B.D.; Ramadhyani, U. Dexmedetomidine a review of clinical application. Curr. Opin. Anesthesiol. 2008, 21, 457–461. [Google Scholar] [CrossRef]
- Artigas, C.; Redondo, J.I.; Lopez-Murcia, M.M. Effects of intravenous administration of dexmedetomidine on intraocular pressure and pupil size in clinically normal dogs. Vet. Ophthalmol. 2012, 15, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Crassous, P.A.; Denis, C.; Paris, H.; Sénard, J.M. Interest of alpha2-adrenergic agonists and antagonists in clinical practice: Background, facts and perspectives. Curr. Top. Med. Chem. 2007, 7, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Cormack, J.R.; Orme, R.M.; Costello, T.G. The role of alpha 2-agonists in neurosurgery. J. Clin. Neurosci. 2005, 12, 375–378. [Google Scholar] [CrossRef]
- Sinclair, M.D. A review of the physiological effects of alpha 2-agonists related to the clinical use of medetomidine in small animal practice. Can. Vet. J. 2003, 44, 885–897. [Google Scholar]
- Rankin, D.C. Sedatives and tranquilizers. In Veterinary Anesthesia and Analgesia, 5th ed.; Grimm, K.A., Lamont, L.A., Tranquilli, W.J., Greene, S.A., Robertson, S.A., Eds.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 196–206. [Google Scholar]
- Savola, J.M.; Virtanen, R. Central α 2-adrenoceptors are highly stereoselective for dexmedetomidine, the dextro enantiomer of medetomidine. Eur. J. Pharmacol. 1991, 195, 193–199. [Google Scholar] [CrossRef]
- Kuusela, E.; Raekallio, M.; Anttila, M.; Mölsä, V. Clinical effects and pharmacokinetics of medetomidine and its enantiomers in dogs. J. Vet. Pharmacol. Ther. 2000, 23, 15–20. [Google Scholar] [CrossRef]
- Gómez-Villamandos, R.J.; Palacios, C.; Benítez, A.; Granados, M.M.; Domínguez, J.M.; Lopez, I. Dexmedetomidine or medetomidine premedication before propofol-desflurane anaesthesia in dogs. J. Vet. Pharmacol. Ther. 2006, 29, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Granholm, M.; McKusick, B.C.; Westerholm, C.; Aspegrén, J.C. Evaluation of the clinical efficacy and safety of intramuscular and intravenous doses of dexmedetomidine and medetomidine in dogs and their reversal with atipamezole. Vet. Rec. 2007, 160, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Lammintausta, R. The alpha-2 adrenergic drugs in veterinary anaesthesia. J. Vet. Anaesth. 1991, 18, 3–8. [Google Scholar]
- Murrell, J.C.; Hellebrekers, L.J. Medetomidine and dexmedetomidine: A review of cardiovascular effects and antinociceptive properties in the dog. Vet. Anaesth. Analg. 2005, 32, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Miño, N.; Espino, L.; Barreiro, A. Effects of medetomidine on doppler variables of major abdominal arteries in normal dogs. Vet. Res. Commun. 2008, 32, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, C.J.; Prinzen, F.W.; de Lange, S. The Effect of Dexmedetomidine on Nutrient Organ Blood Flow. Anest. Analg. 1996, 83, 1160–1165. [Google Scholar] [CrossRef]
- KuKanich, B.; Papich, M.G. Opioid analgesic drugs. In Veterinary Pharmacology and Therapeutics, 10th ed.; Riviere, J.E., Papich, M.G., Eds.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2018; pp. 305–347. [Google Scholar]
- Gomes, V.H.; Oliveira, R.L.; Marques, J.L.; Coelho, C.M.; Silva, M.F. Comparison of the sedative effects of nalbuphine and butorphanol, alone or in combination with acepromazine in dogs. Vet. Anaesth. Analg. 2018, 45, 68–72. [Google Scholar] [CrossRef]
- Hosgood, G. Pharmacologic features of butorphanol in dogs and cats. J. Am. Vet. Med. Assoc. 1990, 196, 135–136. [Google Scholar] [CrossRef] [PubMed]
- Novellas, R.; Ruiz de Gopegui, R.; Espada, Y. Effects of sedation with midazolam and butorphanol on resistive and pulsatility indices in healthy dogs. Vet. Radiol. Ultrasound 2007, 48, 276–280. [Google Scholar] [CrossRef]
- Houghton, K.J.; Rech, R.H.; Sawyer, D.C.; Durham, R.A.; Adams, T.; Langham, M.A.; Striler, E.L. Dose-response of intravenous butorphanol to increase visceral nociceptive threshold in dogs. Proc. Soc. Exp. Biol. Med. 1991, 197, 290–296. [Google Scholar] [CrossRef]
- Puighibet, Z.; Costa-Farré, C.; Santos, L.; Canfrán, S.; de Segura, I.A.G. The sedative effects of intramuscular low-dose medetomidine in combination with butorphanol or methadone in dogs. Vet. Anaesth. Analg. 2015, 42, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Koshi, M.; Izumisawa, Y.; Kotani, T. Effect of combination of medetomidine and butorphanol for preanesthetic medication in dogs. Jpn. J. Vet. Anesth. Surg. 1999, 30, 15–25. [Google Scholar] [CrossRef]
- Keegan, R.D.; Greene, S.A. Cardiovascular effects of a continuous two-hour propofol infusion in dogs. Comparison with isoflurane anesthesia. Vet. Surg. 1993, 22, 537–543. [Google Scholar] [CrossRef]
- Lagerweij, E.; Hall, L.W.; Nolan, A.M. Effects of medetomidine premedication on propofol infusion anaesthesia in dogs. J. Vet. Anaesth. 1993, 20, 78–83. [Google Scholar] [CrossRef]
- Steffen, F.; Grasmeuk, S. Propofol for treatment of refractory seizures in dogs and in a cat with intracranial disorders. J. Small Anim. Pract. 2000, 41, 496–499. [Google Scholar] [CrossRef]
- Shafer, S.L. Advances in propofol pharmacokinetics and pharmacodynamics. J. Clin. Anesth. 1993, 5, 14–21. [Google Scholar] [CrossRef]
- Henao-Guerrero, N.; Riccó, C.H. Comparison of the cardiorespiratory effects of a combination of ketamine and propofol, propofol alone, or a combination of ketamine and diazepam before and after induction of anesthesia in dogs sedated with acepromazine and oxymorphone. Am. J. Vet. Res. 2014, 75, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Wong, C.S.; Yu, C.C.; Luk, H.N.; Lin, C.I. Propofol inhibits cardiac L-type calcium current in guinea pig ventricular myocytes. Anesthesiology 1996, 84, 626–635. [Google Scholar] [CrossRef]
- Guenoun, T.; Montagne, O.; Laplace, M.; Crozatier, B. Propofol induced modifications of cardiomyocyte calcium transient and sarcoplasmic reticulum function in rats. Anesthesiology 2000, 92, 542–549. [Google Scholar] [CrossRef]
- Buljubasic, N.; Marijic, J.; Berczi, V.; Supan, D.F.; Kampine, J.P.; Bosnjak, Z.J. Differential effects of etomidate, propofol, and midazolam on calcium and potassium channel currents in canine myocardial cells. Anesthesiology 1996, 85, 1092–1099. [Google Scholar] [CrossRef]
- Kanaya, N.; Murray, P.A.; Damron, D.S. Propofol increases myofilament Ca2+ sensitivity and intracellular pH via activation of Na+–H+ exchange in rat ventricular myocytes. Anesthesiology 2001, 94, 1096–1104. [Google Scholar] [CrossRef]
- Pagel, P.S.; Warltier, D.C. Negative inotropic effects of propofol as evaluated by the regional preload recruitable stroke work relationship in chronically instrumented dogs. Anesthesiology 1993, 78, 100–108. [Google Scholar] [CrossRef]
- Ismail, E.F.; Kim, S.J.; Salem, M.R.; Crystal, G.J. Direct effects of propofol on myocardial contractility in in situ canine hearts. Anesthesiology 1992, 77, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Nakaigawa, Y.; Akazawa, S.; Shimizu, R.; Ishii, R.; Yamato, R. Effects of graded infusion rates of propofol on cardiovascular haemodynamics, coronary circulation and myocardial metabolism in dogs. Br. J. Anaesth. 1995, 75, 616–621. [Google Scholar] [CrossRef]
- Rishniw, M.; Erb, H.N. Evaluation of four 2-dimensional echocardiographic methods of assessing left atrial size in dogs. J. Vet. Intern. Med. 2010, 14, 429–435. [Google Scholar]
- Smets, P.; Daminet, S.; Wess, G. Simpson’s method of discs for measurement of echocardiographic end-diastolic and end-systolic left ventricular volumes: Breed-specific reference ranges in boxer dogs. J. Vet. Intern. Med. 2013, 28, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Vainio, O. Propofol infusion anaesthesia in dogs pre-medicated with medetomidine. J. Vet. Anaesth. 1991, 18, 35–37. [Google Scholar] [CrossRef]
- Kuusela, E.; Raeckallio, M.; Väisänen, M.; Mykkänen, K.; Ropponen, H.; Vainio, O. Comparison of medetomidine and dexmedetomidine as premedicants in dogs undergoing propofol-isoflurane anesthesia. Am. J. Vet. Res. 2001, 62, 1073–1080. [Google Scholar] [CrossRef]
- Kuusela, E.; Raekallio, M.; Hietanen, H.; Huttula, J.; Vainio, O. 24-h Holter-monitoring in the perianaesthetic period in dogs premedicated with dexmedetomidine. Vet. J. 2002, 164, 235–239. [Google Scholar] [CrossRef]
- Cullen, L.K. Medetomidine sedation in dogs and cats: A review of its pharmacology, antagonism and dose. Br. Vet. J. 1996, 152, 519–535. [Google Scholar] [CrossRef]
- Vickery, R.; Sheridan, B.; Segal, I.; Maze, M. Anesthetic and haemodynamic effects of the stereoisomers of medetomidine, an alpha 2 adrenergic agonist, in halothane anesthetized dogs. Anesth. Analg. 1988, 67, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Bloor, B.; Frankland, M.; Alper, G.; Raybould, D. Haemodynamic and sedative effects of dexmedetomidine in dog. J. Pharmacol. Exp. Ther. 1992, 263, 690–697. [Google Scholar] [PubMed]
- Flacke, W.; Flacke, J.; Bloor, B.; McIntee, D.F.; Sagan, M. Effects of dexmedetomidine on systemic and coronary haemodynamics in the anesthetized dog. J. Cardiothorac. Vasc. Anesth. 1993, 7, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Pypendop, B.; Verstegen, J. Haemodynamic effects of medetomidine in the dog: A dose titration study. Vet. Surg. 1998, 27, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.C.; Hung, C.T.; Lee, W.M.; Chang, K.M.; Chen, K.S. Effects of intravenous dexmedetomidine on cardiac characteristics measured using radiography and echocardiography in six healthy dogs. Vet. Radiol. Ultrasound 2016, 57, 8–15. [Google Scholar] [CrossRef]
- Rand, J.S.; Reynolds, W.T.; Priest, J. Echocardiographic evaluation of the effects of medetomidine and xylazine in dogs. Aust. Vet. J. 1996, 73, 41–44. [Google Scholar] [CrossRef]
- Saponaro, V.; Crovace, A.; DeMarzo, L.; Centonze, P.; Staffieri, F. Echocardiographic evaluation of the cardiovascular effects of medetomidine, acepromazine and their combination in healthy dogs. Res. Vet. Sci. 2013, 95, 687–692. [Google Scholar] [CrossRef]
- Kellihan, H.B.; Stepien, R.L.; Hassen, K.M.; Smith, L.J. Sedative and echocardiographic effects of dexmedetomidine combined with butorphanol in healthy dogs. J. Vet. Cardiol. 2015, 17, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Drees, R.; Johnson, R.A.; Stepien, R.L.; Munoz Del Rio, A.; François, C.J. Effects of two different anesthetic protocols on cardiac flow measured by two dimensional phase contrast magnetic resonance imaging. Vet. Radiol. Ultrasound 2015, 56, 168–175. [Google Scholar] [CrossRef]
- Fujinaka, W.; Shimizu, J.; Iribe, G.; Imaoka, T.; Oshima, Y.; Kiyooka, T.; Morita, K.; Mohri, S. Effects of propofol on left ventricular mechanoenergetics in the excised cross-circulated canine heart. Acta Med. Okayama 2012, 66, 435–442. [Google Scholar]
T0 | T1 | T2 | T3 | T4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
BM | BD | BM | BD | BM | BD | BM | BD | BM | BD | |
HR (bpm) | 110 (68–135) | 107 (54–144) | 43 (a) (30–95) | 43 (a) (25–90) | 53 (a) (20–85) | 42 (a) (26–80) | 61 (a) (26–80) | 55 (a) (31–81) | 53 (a) (34–83) | 52 (a) (30–74) |
SV (ml) | 21.3 (9.1–33.7) | 23.2 (12.3–42) | 20.5 (6.6–34.2) | 25.6 (7.1–38.4) | 18.8 (6.3–39.8) | 23.5 (8.1–33.6) | 21.9 (9.2–36.6) | 22.1 (10.6–43.6) | 17.3 (12.2–37.5) | 24.1 (16.2–42) |
CO (l/min) | 2.1 (0.8–3.2) | 2.1 (0.9–3.7) | 1.0 (a) (0.4–2.1) | 1.1 (a) (0.3–2.4) | 1.1 (a) (0.3–2.5) | 0.9 (a) (0.3–2.2) | 1.0 (a) (0.4–2.7) | 1.2 (a) (0.3–2.7) | 0.9 (a) (0.4–2.5) | 1.0 (a) (0.6–3.0) |
T0 | T1 | T2 | T3 | T4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
BM | BD | BM | BD | BM | BD | BM | BD | BM | BD | |
RVIDd (mm) | 10.3 (3.4–15.5) | 8.6 (4.4–18.1) | 12.4 (5.5–22) | 15.5 (4.5–19.4) | 11.9 (3.2–20.7) | 12.3 (2.9–23.3) | 11 (2.8–23.2) | 14.9 (3.2–24.6) | 10.1 (4.5–17) | 10 (3.2–19.4) |
LVIDd (mm) | 35.1 (31–42.6) | 37.9 (29.9–42.6) | 35.6 * (30.5–43.9) | 38.8 * (31.1–49.1) | 37.7 (31.7–43.3) | 39.4 (31.5–45.2) | 36 (25.2–45.2) | 39.1 (16.2–45.2) | 37.3 * (27.1–44.6) | 40.4 * (33–45.9) |
IVSs (mm) | 12.4 (9.6–16.8) | 13.6 (10.5–16.2) | 11 (8.5–15.3) | 11.6 (9–14.9) | 11.2 (7.3–16.4) | 12.1 (9–14.9) | 10.3 (7.9–14.2) | 11.3 (7.3–15.5) | 11.8 (6.2–16.2) | 12.3 (7.8–15.5) |
LVPWs (mm) | 12.6 (9.6–16.7) | 11.6 (9–16.2) | 10.3 (7.8–14.5) | 11 (6.8–14.2) | 11.7 (7.9–17.4) | 12.3 (9.7–14.2) | 11.5 (7.3–13.6) | 12.3 (8.4–14.2) | 11.3 (7.3–18.1) | 12.3 (8.4–15.5) |
IVSd (mm) | 9 (7.3–13.1) | 9.7 (7.7–12.3) | 9.6 (6.3–17) | 8.4 (6.8–1.3) | 9 (6.5–12.4) | 9 (5.8–13.6) | 9.2 (7.8–15.5) | 9.7 (6.1–13.6) | 9.4 (7.3–11.6) | 9 (5.8–12.3) |
LVPWd (mm) | 7.3 (5.1–10.9) | 7.8 (5.8–10.3) | 7.9 (5.7–12.9) | 7.1 (5.8–9.7) | 7.9 (5.1–13.8) | 7.8 (6.3–9.7) | 8.4 (4.8–10.7) | 7.8 (5.8–12.3) | 8.2 (5.1–11.3) | 8.4 (6.5–10.3) |
LVIDs (mm) | 24.3 (18.1–29.1) | 26.5 (22.6–31) | 30.4 (18.7–37.5) | 30.4 (26–38.1) | 29.6 (18.7–37.5) | 29.1 (24.2–40.1) | 27.8 (25.2–37.5) | 30.1 (23.3–39.4) | 26.3 (20.4–32.2) | 27.8 (21.8–38.1) |
T0 | T1 | T2 | T3 | T4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
BM | BD | BM | BD | BM | BD | BM | BD | BM | BD | |
LVOT Vmax (m/s) | 0.94 (0.67–1.16) | 0.85 (0.59–1.25) | 0.64 (a) (0.28–1.19) | 0.57 (a) (0.4–1.08) | 0.42 (a) (0.29–0.88) | 0.57 (a) (0.29–0.95) | 0.5 (a) (0.1–0.95) | 0.55 (a) (0.34–0.91) | 0.55 (a) (0.4–0.83) | 0.65 (a) (0.44–0.83) |
LVOT Vmax PG (mmHg) | 3.5 (1.8–5.4) | 2.9 (1.4–6.2) | 1.6 (a) (0.4–5.7) | 1.3 (a) (0.6–4.7) | 0.8 (a) (0.3–3.1) | 1.3 (a) (0.3–3.6) | 1 (a) (0.5–3.6) | 1.2 (a) (0.5–3.3) | 1.15 (a) (0.6–2.8) | 1.7 (a) (0.8–2.8) |
MV E Vel (m/s) | 0.65 (0.45–0.8) | 0.66 (0.46–0.86) | 0.5 (0.23–0.76) | 0.58 (0.4–0.72) | 0.47 (a) (0.29–0.74) | 0.46 (a) (0.25–0.8) | 0.45 (a) (0.24–0.59) | 0.45 (a) (0.22–0.75) | 0.54 (0.39–0.77) | 0.54 (0.37–0.91) |
MV A Vel (m/s) | 0.44 (0.28–0.64) | 0.44 (0.24–0.77) | 0.3 (a) (0.16–0.53) | 0.27 (a) (0.2–0.51) | 0.29 (0.21–0.54) | 0.29 (0.21–0.45) | 0.29 * (0.2–0.52) | 0.15 * (0.13–0.34) | 0.25 (0.15–0.49) | 0.24 (0.17–0.46) |
MV E/A | 1.42 (1.06–2.14) | 1.41 (1–3) | 1.74 (1–3.08) | 1.74 (0.95–3.25) | 1.59 (0.84–3.24) | 1.78 (0.67–2.78) | 1.65 (0.84–2.27) | 1.88 (1.06–3) | 1.78 (1.14–2.94) | 1.95 (1.05–3.1) |
MV Dec Time (ms) | 100 (44–148) | 124 (76–184) | 106 (58–180) | 92 (72–172) | 114 (52–152) | 106 (76–152) | 84 (38–204) | 96 (64–224) | 91 (44–192) | 106 (72–197) |
TV E Vel (m/s) | 0.5 (0.37–0.75) | 0.48 (0.35–0.67) | 0.36 * (0.19–0.61) | 0.42 * (0.29–0.74) | 0.39 * (0.27–0.58) | 0.38 * (0.23–0.57) | 0.37 (0.24–0.55) | 0.39 (0.21–0.55) | 0.45 (0.25–0.6) | 0.36 (0.25–0.56) |
TV E/A | 1.4 (0.69–2.75) | 1.7 (1.26–2.35) | 1.56 (0.83–4.83) | 2.15 (0.96–2.76) | 1.32 (0.72–2.17) | 1.39 (0.89–3) | 1.26 (0.68–2.08) | 1.54 (0.85–2.59) | 1.9 (1.09–2.67) | 1.6 (0.74–2.79) |
TV E Dec Time (ms) | 118 (52–184) | 100 (72–148) | 114 (60–188) | 144 (84–192) | 128 (66–236) | 136 (72–272) | 120 (64–216) | 172 (60–256) | 144 (104–232) | 156 (72–232) |
T0 | T1 | T2 | T3 | T4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
BM | BD | BM | BD | BM | BD | BM | BD | BM | BD | |
RVOT Diam (mm) | 19 (12.1–25.5) | 19.3 (16–23.4) | 19.5 (10.2–25.8) | 20.2 (17.4–25.9) | 19 (10.9–22.8) | 21 (16.8–23.6) | 19.4 (12–23.3) | 20.9 (16.7–22.5) | 19.1 (13.1–23.7) | 20.5 (17.4–23.4) |
LVOT Diam (mm) | 17.1 (12.5–20.6) | 18.2 (14.1–21.7) | 17.4 (10.9–21.9) | 18.4 (14.2–21.2) | 16.3 (12.5–22.5) | 18.2 (15.3–20.6) | 16.9 (13–19.7) | 18.2 (15.8–21.8) | 16.4 (12.7–20.3) | 17.3 (15–20.5) |
Ao Diam (mm) | 20.15 (16.2–24.4) | 20.45 (17.2–24.2) | 19.6 (13.7–25) | 21.6 (17.3–25.2) | 20.2 (12.2–24.1) | 21.4 (17.6–25.4) | 20.2 (15.1–25.4) | 21.4 (17.9–23.3) | 19.3 (14.3–22.6) | 21 (18.3–24.5) |
LA Diam (mm) | 23.7 (19–33.2) | 25.6 (21.9–34.5) | 28.3 * (19.7–34.6) | 29.4 * (19.8–36) | 27.9 (20.6–34.4) | 29.5 (19.8–26.8) | 27.1 (20.3–34.5) | 29.6 (22.9–32.3) | 24.9 * (19.1–31) | 28.6 * (18.9–34.9) |
LA/Ao | 1.22 (1.07–1.62) | 1.32 (1.02–1.65) | 1.45 (1.09–1.88) | 1.42 (1.09–1.61) | 1.41 (1.06–1.98) | 1.39 (1.1–1.58) | 1.34 (1.19–1.61) | 1.36 (1.25–1.53) | 1.33 (1.02–1.51) | 1.41 (1.02–1.61) |
T0 | T1 | T2 | T3 | T4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
BM | BD | BM | BD | BM | BD | BM | BD | BM | BD | |
MR | 0 | 0 | 6 (33%) | 9 (50%) | 6 (33%) | 4 (22%) | 4 (22%) | 5 (28%) | 2 (11%) | 4 (22%) |
TR | 0 | 0 | 1 (6%) | 6 (33%) | 4 (22%) | 4 (22%) | 5 (28%) | 3 (17%) | 2 (11%) | 1 (6%) |
AR | 0 | 0 | 0 | 0 | 0 | 1 (6%) | 0 | 0 | 0 | 0 |
PR | 0 | 0 | 0 | 0 | 0 | 1 (6%) | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bočkay, A.; Agudelo, C.F.; Figurová, M.; Vargová, N.; Trbolová, A. Effect of Butorphanol-Medetomidine and Butorphanol-Dexmedetomidine on Echocardiographic Parameters during Propofol Anaesthesia in Dogs. Animals 2024, 14, 1379. https://doi.org/10.3390/ani14091379
Bočkay A, Agudelo CF, Figurová M, Vargová N, Trbolová A. Effect of Butorphanol-Medetomidine and Butorphanol-Dexmedetomidine on Echocardiographic Parameters during Propofol Anaesthesia in Dogs. Animals. 2024; 14(9):1379. https://doi.org/10.3390/ani14091379
Chicago/Turabian StyleBočkay, Andrej, Carlos Fernando Agudelo, Mária Figurová, Nela Vargová, and Alexandra Trbolová. 2024. "Effect of Butorphanol-Medetomidine and Butorphanol-Dexmedetomidine on Echocardiographic Parameters during Propofol Anaesthesia in Dogs" Animals 14, no. 9: 1379. https://doi.org/10.3390/ani14091379
APA StyleBočkay, A., Agudelo, C. F., Figurová, M., Vargová, N., & Trbolová, A. (2024). Effect of Butorphanol-Medetomidine and Butorphanol-Dexmedetomidine on Echocardiographic Parameters during Propofol Anaesthesia in Dogs. Animals, 14(9), 1379. https://doi.org/10.3390/ani14091379