Chemical Composition of Newborn Piglets with Different Weights at Birth in Sows with a High Reproductive Performance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Farms, Piglets, and Placenta
2.2. Sample Preparation
2.3. Chemical Analysis
2.4. Statistical Analyses
3. Results
3.1. Chemical Body Composition of Piglets
3.2. Nutrient and Energy Contents of Piglets (Stillborn or Liveborn)
3.3. Mineral Content of Newborn Piglets
3.4. Nutrient and Energy Content of Placenta
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rutherford, K.; Baxter, E.; D’eath, R.; Turner, S.; Arnott, G.; Roehe, R.; Ask, B.; Sandøe, P.; Moustsen, V.; Thorup, F. The welfare implications of large litter size in the domestic pig I: Biological factors. Anim. Welf. 2013, 22, 199–218. [Google Scholar] [CrossRef]
- Kemp, B.; Da Silva, C.L.; Soede, N.M. Recent advances in pig reproduction: Focus on impact of genetic selection for female fertility. Reprod. Domest. Anim. 2018, 53, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Quiniou, N.; Dagorn, J.; Gaudré, D. Variation of piglets’ birth weight and consequences on subsequent performance. Livest. Prod. Sci. 2002, 78, 63–70. [Google Scholar] [CrossRef]
- Hawe, S.J.; Scollan, N.; Gordon, A.; Magowan, E. What is the current significance of low birthweight pigs on commercial farms in Northern Ireland in terms of impaired growth and mortality? Transl. Anim. Sci. 2020, 4, txaa147. [Google Scholar] [CrossRef] [PubMed]
- Farmer, C.; Edwards, S. Improving the performance of neonatal piglets. Animal 2022, 16, 100350. [Google Scholar] [CrossRef] [PubMed]
- Škorput, D.; Jančo, N.; Karolyi, D.; Kaić, A.; Luković, Z. Analysis of Early Growth of Piglets from Hyperprolific Sows Using Random Regression Coefficient. Animals 2023, 13, 2888. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S.; Baxter, E. Piglet mortality: Causes and prevention. In The Gestating and Lactating Sow; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 649–653. [Google Scholar]
- Quesnel, H.; Brossard, L.; Valancogne, A.; Quiniou, N. Influence of some sow characteristics on within-litter variation of piglet birth weight. Animal 2008, 2, 1842–1849. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, A.; Aalhus, J.; Williams, N.; Patience, J. Impact of piglet birth weight, birth order, and litter size on subsequent growth performance, carcass quality, muscle composition, and eating quality of pork. J. Anim. Sci. 2010, 88, 2767–2778. [Google Scholar] [CrossRef] [PubMed]
- Feldpausch, J.A.; Jourquin, J.; Bergstrom, J.R.; Bargen, J.L.; Bokenkroger, C.D.; Davis, D.L.; Gonzalez, J.M.; Nelssen, J.L.; Puls, C.L.; Trout, W.E. Birth weight threshold for identifying piglets at risk for preweaning mortality. Transl. Anim. Sci. 2019, 3, 633–640. [Google Scholar] [CrossRef]
- Baxter, E.; Schmitt, O.; Pedersen, L. Managing the litter from hyperprolific sows. In The Suckling and Weaned Piglet; Wageningen Academic Publishers: Wageningen, The Netherlands, 2020; pp. 347–356. [Google Scholar]
- Huting, A.M.; Middelkoop, A.; Guan, X.; Molist, F. Using nutritional strategies to shape the gastro-intestinal tracts of suckling and weaned piglets. Animals 2021, 11, 402. [Google Scholar] [CrossRef]
- Van Tichelen, K.; Prims, S.; Ayuso, M.; Van Bockstal, L.; Van Kerschaver, C.; Vandaele, M.; Degroote, J.; Van Cruchten, S.; Michiels, J.; Van Ginneken, C. The effect of drenching (very) low birth weight piglets with a dense, concentrated milk replacer at farms with differing farrowing management. Animals 2022, 13, 63. [Google Scholar] [CrossRef]
- Declerck, I.; Dewulf, J.; Decaluwé, R.; Maes, D. Effects of energy supplementation to neonatal (very) low birth weight piglets on mortality, weaning weight, daily weight gain and colostrum intake. Livest. Sci. 2016, 183, 48–53. [Google Scholar] [CrossRef]
- Manzke, N.E.; Gomes, B.K.; Xavier, E.G.; de Lima, G.J.M.M. Efficacy of energy supplementation on growth performance and immune response of suckling pigs. J. Anim. Sci. 2018, 96, 4723–4730. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, O.; Baxter, E.M.; Lawlor, P.G.; Boyle, L.A.; O’Driscoll, K. A single dose of fat-based energy supplement to light birth weight pigs shortly after birth does not increase their survival and growth. Animals 2019, 9, 227. [Google Scholar] [CrossRef]
- Camp Montoro, J.; Manzanilla, E.G.; Solà-Oriol, D.; Muns, R.; Gasa, J.; Clear, O.; Calderón Díaz, J.A. Predicting productive performance in grow-finisher pigs using birth and weaning body weight. Animals 2020, 10, 1017. [Google Scholar] [CrossRef]
- Van Tichelen, K.; Prims, S.; Ayuso, M.; Van Kerschaver, C.; Vandaele, M.; Degroote, J.; Van Cruchten, S.; Michiels, J.; Van Ginneken, C. Drenching bovine colostrum, quercetin or fructo-oligosaccharides has no effect on health or survival of low birth weight piglets. Animals 2021, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Van Tichelen, K.; Prims, S.; Ayuso, M.; Van Kerschaver, C.; Vandaele, M.; Degroote, J.; Van Cruchten, S.; Michiels, J.; Van Ginneken, C. Handling associated with drenching does not impact survival and general health of low birth weight piglets. Animals 2021, 11, 404. [Google Scholar] [CrossRef]
- Blavi, L.; Solà-Oriol, D.; Llonch, P.; López-Vergé, S.; Martín-Orúe, S.M.; Pérez, J.F. Management and feeding strategies in early life to increase piglet performance and welfare around weaning: A review. Animals 2021, 11, 302. [Google Scholar] [CrossRef]
- Kirkden, R.; Broom, D.; Andersen, I. Invited review: Piglet mortality: Management solutions. J. Anim. Sci. 2013, 91, 3361–3389. [Google Scholar] [CrossRef]
- Gonzalez-Bulnes, A.; Astiz, S.; Ovilo, C.; Lopez-Bote, C.; Torres-Rovira, L.; Barbero, A.; Ayuso, M.; Garcia-Contreras, C.; Vazquez-Gomez, M. Developmental Origins of Health and Disease in swine: Implications for animal production and biomedical research. Theriogenology 2016, 86, 110–119. [Google Scholar] [CrossRef]
- Ji, Y.; Wu, Z.; Dai, Z.; Wang, X.; Li, J.; Wang, B.; Wu, G. Fetal and neonatal programming of postnatal growth and feed efficiency in swine. J. Anim. Sci. Biotechnol. 2017, 8, 1–15. [Google Scholar] [CrossRef]
- Villagómez-Estrada, S.; Pérez, J.F.; Melo-Durán, D.; Gonzalez-Solè, F.; D’Angelo, M.; Pérez-Cano, F.J.; Solà-Oriol, D. Body weight of newborn and suckling piglets affects their intestinal gene expression. J. Anim. Sci. 2022, 100, skac161. [Google Scholar] [CrossRef] [PubMed]
- Andretta, I.; Pomar, C.; Kipper, M.; Hauschild, L.; Rivest, J. Feeding behavior of growing–finishing pigs reared under precision feeding strategies. J. Anim. Sci. 2016, 94, 3042–3050. [Google Scholar] [CrossRef]
- Directive, C. Council Directive 2008/120/EC of 18 December 2008 Laying Down Minimum Standards for the Protection of Pigs. Off. J. Eur. Union. 2009 L47:5–13. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32008L0120 (accessed on 22 December 2020).
- Vdlufa, H.D.L.V.-U. Untersuchungsmethodik (VDLUFA-Methodenbuch), Bd. III Die Chemische Untersuchung von Futtermitteln; Erg: Genoa, Italy, 2012; Volume 8. [Google Scholar]
- Gericke, S.; Kurmies, B. The Colorimetric Determination of Phosphorus with Ammonium Vanadate Molybdate and Its Application in Plant Analysis. Z. Für Pflanzenernährung Und Bodenkd. 1953, 59, 235–247. [Google Scholar]
- Kamphues, J.; Wolf, P.; Coenen, M.; Eder, K.; Iben, C.; Kienzle, E.; Liesegang, A.; Männer, K.; Zebeli, Q.; Zentek, J. Supplemente zur Tierernährung für Studium und Praxis; Schlütersche: London, UK, 2014. [Google Scholar]
- Becker, K. Zur heutigen Kenntnis des Stoff und Energie Ansatzes von Schweinefoeten und von Ferkeln in der fruhen postnatalen Entwicklungsphase. Ubersichten Zur Tierernahr. 1976, 4, 167–195. [Google Scholar]
- Beyer, M.; Jentsch, W.; Hoffmann, L.; Schiemann, R.; Klein, M. Studies on energy and nitrogen metabolism of pregnant and lactating sows and sucking piglets. 4. Chemical composition and energy content of the conception products, the reproductive organs as well as liveweight gains or losses of pregnant and lactating sows. Arch. Anim. Nutr. 1995, 46, 7–36. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.; Kamphues, J. Anatomische und Physiologische Grundlagen des Neugeborenen in: Neugeborenen-und Säuglingskunde der Tiere, K. Walser und H. Bostedt; Ferdinant Enke Verlag Stuttgart: Stuttgart, Germany, 1990. [Google Scholar]
- Sagel, B. Untersuchungen uber die Korper-(Glykogen, Fett, Eisen, Kupfer) und Blutzusammensetzung (Glukose, Fruktose, Laktat, Haematokrit) neugeborener Ferkel in Abhangigkeit von Geburtsgewicht und maternaler Kohlenhydratversorgung; Tierarztliche Hochschule: Hannover, Germany, 1975. [Google Scholar]
- Wu, G.; Ott, T.L.; Knabe, D.A.; Bazer, F.W. Amino acid composition of the fetal pig. J. Nutr. 1999, 129, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Pond, W.G.; Mersmann, H.J. Biology of the Domestic Pig; JSTOR: New York, NY, USA, 2001. [Google Scholar]
- Anthony, R.; Pratt, S.; Liang, R.; Holland, M. Placental-fetal hormonal interactions: Impact on fetal growth. J. Anim. Sci. 1995, 73, 1861–1871. [Google Scholar] [CrossRef]
- Allen, L.H. Biological mechanisms that might underlie iron’s effects on fetal growth and preterm birth. J. Nutr. 2001, 131, 581S–589S. [Google Scholar] [CrossRef]
- Fall, C.H.; Yajnik, C.S.; Rao, S.; Davies, A.A.; Brown, N.; Farrant, H.J. Micronutrients and fetal growth. J. Nutr. 2003, 133, 1747S–1756S. [Google Scholar] [CrossRef]
- Pilcher, C.; Jones, C.; Schroyen, M.; Severin, A.; Patience, J.; Tuggle, C.; Koltes, J. Transcript profiles in longissimus dorsi muscle and subcutaneous adipose tissue: A comparison of pigs with different postweaning growth rates. J. Anim. Sci. 2015, 93, 2134–2143. [Google Scholar] [CrossRef] [PubMed]
- Moehn, S.; Ball, R.O.; Fuller, M.F.; Gillis, A.M.; de Lange, C.F. Growth potential, but not body weight or moderate limitation of lysine intake, affects inevitable lysine catabolism in growing pigs. J. Nutr. 2004, 134, 2287–2292. [Google Scholar] [CrossRef] [PubMed]
- McPherson, R.; Ji, F.; Wu, G.; Blanton Jr, J.; Kim, S. Growth and compositional changes of fetal tissues in pigs. J. Anim. Sci. 2004, 82, 2534–2540. [Google Scholar] [CrossRef] [PubMed]
- Mahan, D.; Watts, M.; St-Pierre, N. Macro-and micromineral composition of fetal pigs and their accretion rates during fetal development. J. Anim. Sci. 2009, 87, 2823–2832. [Google Scholar] [CrossRef] [PubMed]
- Brooks, C.; Fontenot, J.; Vipperman Jr, P.; Thomas, H.; Graham, P. Chemical composition of the young pig carcass. J. Anim. Sci. 1964, 23, 1022–1026. [Google Scholar] [CrossRef]
- Theil, P.K.; Nielsen, M.; Sørensen, M.; Lauridsen, C. Lactation, milk and suckling. In Nutritional physiology of pigs: With emphasis on Danish production conditions; Knudsen, K.E.B., Kjeldsen, N.J., Poulsen, H.D., Jensen, B.B., Eds.; Videncenter for Svineproduktion, Landbrug & Fødevarer: Charlotte, North Carolina, 2012; pp. 1–50. Available online: https://static-curis.ku.dk/portal/files/40935196/Chapter_17.pdf (accessed on 22 December 2020).
- Noblet, J.; Etienne, M.; Blanchard, A.; Fillaut, M.; Meziere, N.; Vachot, C.; Dubois, S. Body composition, metabolic rate and utilization of milk nutrients in suckling piglets. Reprod. Nutr. Dev. 1987, 27, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Widdowson, E.M. Chemical composition of newly born mammals. Nature 1950, 166, 626–628. [Google Scholar] [CrossRef] [PubMed]
- Weniger, J.; Funk, K. Untersuchungen über den Calcium-und Phosphorgehalt ganzer Schweinekörper. Arch. Für Tierernährung 1953, 3, 325–341. [Google Scholar] [CrossRef]
- Miles, J.R.; Vallet, J.; Ford, J.; Freking, B.A.; Cushman, R.; Oliver, W.T.; Rempel, L.A. Contributions of the maternal uterine environment and piglet genotype on weaning survivability potential: I. Development of neonatal piglets after reciprocal embryo transfers between Meishan and White crossbred gilts. J. Anim. Sci. 2012, 90, 2181–2192. [Google Scholar] [CrossRef]
- Hurley, W. Composition of sow colostrum and milk. In The Gestating and Lactating Sow; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 115–127. [Google Scholar]
- Buffler, M.; Becker, C.; Windisch, W.M. Effects of different iron supply to pregnant sows (Sus scrofa domestica L.) on reproductive performance as well as iron status of new-born piglets. Arch. Anim. Nutr. 2017, 71, 219–230. [Google Scholar] [CrossRef]
- Père, M.-C.; Etienne, M. Uterine blood flow in sows: Effects of pregnancy stage and litter size. Reprod. Nutr. Dev. 2000, 40, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Noblet, J.; Dourmad, J.-Y.; Etienne, M.; Le Dividich, J. Energy metabolism in pregnant sows and newborn pigs. J. Anim. Sci. 1997, 75, 2708–2714. [Google Scholar] [CrossRef] [PubMed]
- Noblet, J.; Close, W.; Heavens, R.; Brown, D. Studies on the energy metabolism of the pregnant sow: 1. Uterus and mammary tissue development. Br. J. Nutr. 1985, 53, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Derking, S. Feldstudie an hochproduktiven Sauen zu Fütterungseinflüssen auf die Entwicklung der Körpermasse und Rückenspeckdicke in der Laktation sowie auf die Leistung der Ferkel (Wurfzuwachs). Ph.D. Thesis, Tierärztliche Hochschule, Hannover, Germany, 2015. Available online: https://elib.tiho-hannover.de/receive/etd_mods_00000504 (accessed on 22 December 2020).
- GfE. Gesellschaft für Ernährungsphysiologie/Ausschuß für Bedarfsnormen; Deutsche Landwirtschafts-Gesellschaft Verlag Frankfurt aM: Frankfurt, Germany, 2006; Volume 247. [Google Scholar]
Parameter (g/kg Dry Matter) | Body Weight (kg) | |||
---|---|---|---|---|
<0.8 (n = 5) | 0.8–1.2 (n = 5) | >1.2–1.6 (n = 10) | >1.6 (n = 5) | |
Dry matter (g/kg fresh basis) | 183 b ± 14.2 | 200 a ± 6.83 | 191 ab ± 7.68 | 187 ab ± 13.6 |
Crude ash | 232 a ± 29.0 | 187 b ± 4.69 | 187 b ± 14.2 | 185 b ± 1.92 |
Crude protein | 646 a ± 39.9 | 617 ab ± 15.9 | 597 b ± 16.6 | 597 b ± 29.6 |
Crude fat | 60.1 b ± 4.61 | 74.1 a ± 10.3 | 71.6 ab ± 17.0 | 69.4 ab ± 16.7 |
Nitrogen-free extract | 61.7 b ± 35.7 | 122 a ± 23.2 | 145 a ± 25.9 | 148 a ± 44.4 |
Gross energy (MJ/kg DM) | 18.9 b ± 0.709 | 19.8 a ± 0.365 | 19.6 a ± 0.593 | 19.6 a ± 0.579 |
Parameter (g/kg Dry Matter) | Stillborn Piglets (n = 3) | Liveborn Piglets (n = 7) |
---|---|---|
Dry matter (g/kg fresh basis) | 187 a ± 6.66 | 193 a ± 7.80 |
Crude ash | 189 a ± 8.89 | 186 a ± 16.6 |
Crude protein | 591 a ± 18.0 | 599 a ± 16.7 |
Crude fat | 60.9 a ± 1.17 | 76.2 a ± 18.7 |
Nitrogen-free extract | 160 a ± 12.7 | 139 a ± 28.3 |
Gross energy (MJ/kg DM) | 19.3 a ± 0.208 | 19.8 a ± 0.668 |
Parameter | Unit | Body Weight (kg) | |||
---|---|---|---|---|---|
<0.8 (n = 5) | 0.8–1.2 (n = 5) | >1.2–1.6 (n = 10) | >1.6 (n = 5) | ||
Calcium | g/kg DM | 64.2 a ± 8.18 | 48.4 b ± 3.41 | 48.0 b ± 4.02 | 51.0 b ± 1.80 |
Magnesium | 1.71 a ± 0.402 | 1.33 b ± 0.115 | 1.30 b ± 0.130 | 1.29 b ± 0.054 | |
Phosphorus | 37.3 a ± 4.61 | 29.7 b ± 1.99 | 29.1 b ± 1.78 | 30.1 b ± 1.22 | |
Sodium | 12.7 a ± 0.536 | 9.77 b ± 0.723 | 9.83 b ± 1.17 | 9.38 b ± 0.554 | |
Potassium | 9.78 a ± 0.794 | 8.18 b ± 1.18 | 8.28 b ± 0.706 | 8.30 b ± 0.411 | |
Chloride | 13.2 a ± 1.53 | 10.0 b ± 0.490 | 10.7 b ± 0.789 | 10.6 b ± 0.583 | |
Sulfur | 6.95 a ± 0.369 | 6.53 b ± 0.168 | 6.37 b ± 0.269 | 6.37 b ± 0.333 | |
Copper | mg/kg DM | 15.0 a ± 4.25 | 14.5 a ± 0.926 | 11.8 a ± 2.98 | 12.3 a ± 3.95 |
Zinc | 90.3 a ± 12.2 | 83.4 a ± 1.67 | 74.3 b ± 11.2 | 74.2 b ± 12.9 | |
Manganese | 6.81 a ± 2.14 | 6.09 a ± 0.715 | 6.23 a ± 1.14 | 5.44 a ± 1.86 | |
Selenium | 0.475 a ± 0.073 | 0.454 a ± 0.055 | 0.402 a ± 0.148 | 0.503 a ± 0.111 |
Parameter | Unit | Placenta |
---|---|---|
Dry matter (DM) | g/kg fresh basis | 72.2 ± 8.13 |
Crude ash | g/kg DM | 128 ± 11.5 |
Crude protein | 742 ± 16.8 | |
Crude fat | 65.1 ± 3.58 | |
Nitrogen-free extract | 64.4 ± 14.4 | |
Gross energy | MJ/kg DM | 21.5 ± 0.281 |
Calcium | g/kg DM | 7.10 ± 1.10 |
Magnesium | 1.07 ± 0.118 | |
Phosphorus | 7.90 ± 0.731 | |
Sodium | 32.3 ± 4.69 | |
Potassium | 10.0 ± 1.28 | |
Chloride | 42.1 ± 6.42 | |
Sulfur | 9.43 ± 0.499 | |
Copper | mg/kg DM | 12.8 ± 4.24 |
Zinc | 55.0 ± 5.64 | |
Iron | 367 ± 60.5 | |
Manganese | 6.80 ± 2.33 | |
Selenium | 1.23 ± 0.171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonczyk, C.; Ratert, C.; Schwennen, C.; Kamphues, J.; Abd El-Wahab, A. Chemical Composition of Newborn Piglets with Different Weights at Birth in Sows with a High Reproductive Performance. Animals 2024, 14, 1380. https://doi.org/10.3390/ani14091380
Antonczyk C, Ratert C, Schwennen C, Kamphues J, Abd El-Wahab A. Chemical Composition of Newborn Piglets with Different Weights at Birth in Sows with a High Reproductive Performance. Animals. 2024; 14(9):1380. https://doi.org/10.3390/ani14091380
Chicago/Turabian StyleAntonczyk, Carina, Christine Ratert, Cornelia Schwennen, Josef Kamphues, and Amr Abd El-Wahab. 2024. "Chemical Composition of Newborn Piglets with Different Weights at Birth in Sows with a High Reproductive Performance" Animals 14, no. 9: 1380. https://doi.org/10.3390/ani14091380
APA StyleAntonczyk, C., Ratert, C., Schwennen, C., Kamphues, J., & Abd El-Wahab, A. (2024). Chemical Composition of Newborn Piglets with Different Weights at Birth in Sows with a High Reproductive Performance. Animals, 14(9), 1380. https://doi.org/10.3390/ani14091380