Minimally Invasive Plate Osteosynthesis (MIPO) of Comminuted Radial Fractures Using a Locking Plate Contoured on a 3D-Printed Model of the Feline Antebrachium: A Cadaveric Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Development of 3D-Printed Bone Models
2.2. Contouring of the Bone Plates
2.3. Preparation of Surgical Specimens
2.4. Radiographic Assessment
2.5. Surgical Procedure
2.6. Statistical Analysis
3. Results
Surgical Procedure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harari, J. Treatments for feline long bone fractures. Vet. Clin. North. Am. Small Anim. Pract. 2002, 32, 927–9472. [Google Scholar] [CrossRef] [PubMed]
- Nolte, D.M.; Fusco, J.V.; Peterson, M.E. Incidence of and predisposing factors for nonunion of fractures involving the appendicular skeleton in cats: 18 cases (1998–2002). J. Am. Vet. Med. Assoc. 2005, 226, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, C.B.; Rahal, S.C.; Agostinho, F.S.; Mamprim, M.J.; Santos, R.R.; Ednaldo Filho, S.; Mortari, A.C.; Monteiro, F.O. Long bone fractures in cats: A retrospective study. Vet. Zootec. 2016, 23, 504–509. [Google Scholar]
- Zurita, M.; Craig, A. Feline diaphyseal fractures: Management and treatment options. J. Feline Med. Surg. 2022, 24, 662–674. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.J. Minimally invasive plate osteosynthesis. In The Elements of Fracture Fixation, 4th ed.; Elsevier: New Delhi, India, 2020; p. 441. [Google Scholar]
- Pozzi, A.; Lewis, D.D.; Scheuermann, L.M.; Castelli, E.; Longo, F. A review of minimally invasive fracture stabilization in dogs and cats. Vet. Surg. 2021, 50, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, A.; Risselada, M.; Winter, M.D. Assessment of fracture healing after minimally invasive plate osteosynthesis or open reduction and internal fixation of coexisting radius and ulna fractures in dogs via ultrasonography and radiography. J. Am. Vet. Med. Assoc. 2012, 24, 744–753. [Google Scholar] [CrossRef]
- Guiot, L.P.; Guillou, R.P.; Déjardin, L.M. Minimally invasive percutaneous medial plate-rod osteosynthesis for treatment of humeral shaft fractures in dog and cats: Surgical technique and prospective evaluation. Vet. Surg. 2019, 48, 41–51. [Google Scholar] [CrossRef]
- Guiot, L.P.; Déjardin, L.M. Prospective evaluation of minimally invasive plate osteosynthesis in 36 nonarticular tibial fractures in dogs and cats. Vet. Surg. 2011, 40, 171–182. [Google Scholar] [CrossRef]
- Dalton, C.L.; Kim Se Biedrzycki, A.H.; Mullen, K.M. Minimally invasive repair of acetabular fractures in dogs: Ex vivo feasibility study and case report. Vet. Surg. 2023, 52, 836–845. [Google Scholar] [CrossRef]
- Sakong, S.-y.; Cho, J.-W.; Kim, B.-S.; Park, S.-J.; Lim, E.-J.; Oh, J.-K. The Clinical Efficacy of Contouring Periarticular Plates on a 3D Printed Bone Model. J. Pers. Med. 2023, 13, 1145. [Google Scholar] [CrossRef]
- Townsend, S.; Lewis, D.D. Use of the minimally invasive reduction instrumentation system for facilitating alignment and reduction when performing minimally invasive plate osteosynthesis in three dogs. Case Rep. Vet. Med. 2018, 2018, 2976795. [Google Scholar] [CrossRef] [PubMed]
- Cabassu, J. Minimally invasive plate osteosynthesis using fracture reduction under the plate without intraoperative fluoroscopy to stabilize diaphyseal fractures of the tibia and femur in dogs and cats. Vet. Comp. Orthop. Traumatol. 2019, 32, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Hudson, C.C.; Pozzi, A.; Lewis, D.D. Minimally invasive plate osteosynthesis: Applications and techniques in dogs and cats. Vet. Comp. Orthop. Traumatol. 2009, 22, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Peirone, B.; Rovesti, G.L.; Baroncelli, A.B.; Piras, L.A. Minimally invasive plate osteosynthesis fracture reduction techniques in small animals. Vet. Clin. Small Anim. 2020, 50, 23–47. [Google Scholar] [CrossRef] [PubMed]
- Schmierer, P.A.; Pozzi, A. Guidelines for surgical approaches for minimally invasive plate osteosynthesis in cats. Vet. Comp. Orthop. Traumatol. 2017, 30, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Maritato, K.C.; Schmierer, P.; Pozzi, A. Unique differences of minimally invasive fracture repair in the feline. Vet. Clin. Small Anim. 2020, 50, 263–271. [Google Scholar] [PubMed]
- Choi, Y.; Pilton, J.; Foo, T.; Malik, R.; Haase, B. Feline skeletal reference guide: A cadaveric radiographic measurement on lower limb extremities. Vet. Comp. Orthop. Traumatol. 2021, 34, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Kornmayer, M.; Amort, K.; Failing, K.; Kramer, M. Medullary cavity diameter of metacarpal and metatarsal bones in cats. A cadaveric radiographic and computed tomographic analysis. Vet. Comp. Orthop. Traumatol. 2014, 27, 447–452. [Google Scholar] [PubMed]
- Simpson, D.; Goldsmid, S. Pancarpal arthrodesis in a cat: A case report and anatomical study. Vet. Comp. Orthop. Traumatol. 1994, 7, 45–50. [Google Scholar]
- Boonsri, B.; Pitakarnnop, T.; Buddhachat, K.; Phanupong, C.; Nganvogpanit, K. Can feline (Felis catus) flat and long bone morphometry predict sex or skull shape? Anat. Sci. Int. 2019, 94, 245–256. [Google Scholar] [CrossRef]
- De Lima Dantas, B.; Durand, A.; Parkin, T.; Broome, C. Establishment of normal anatomical radial angles in cats. Vet. Comp. Orthop. Traumatol. 2016, 29, 320–324. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2010; p. 126. [Google Scholar]
- Unger, M.; Montavon, P.M.; Heim, U.F.A. Classification of fractures of long bones in the dog and cat: Introduction and clinical application. Vet. Comp. Orthop. Traumatol. 1990, 3, 41–50. [Google Scholar] [CrossRef]
- Schütz, M.; Müller, M.; Krettek, C.; Höntzsch, D.; Regazzoni, P.; Ganz, R.; Haas, N. Minimally invasive fracture stabilization of distal femoral fractures with the LISS: A prospective multicenter study results of a clinical study with special emphasis on difcult cases. Injury 2001, 32, 48–54. [Google Scholar] [CrossRef]
- Garofolo, S.; Pozzi, A. Effect of plating technique on periosteal vasculature of the radius in dogs: A cadaveric study. Vet. Surg. 2013, 42, 255–261. [Google Scholar] [CrossRef]
- Hudson, C.C.; Lewis, D.D.; Pozzi, A. Minimally invasive plate osteosynthesis: Radius and ulna. Vet. Clin. N. Am. Small Anim. Pract. 2020, 50, 135–153. [Google Scholar] [CrossRef]
- Guiot, L.P.; Dejardin, L.M. Perioperative imaging in minimally invasive osteosynthesis. Vet. Clin. Small Anim. 2020, 50, 49–66. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Nanda, R.; Bajwa, A.S.; Candal-Couto, J.; Green, S.; Hui, A.C. Biomechanical testing of the locking compression plate: When does the distance between bone and implant significantly reduce construct stability? Injury 2007, 38, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Larsen, C.G.; Sleasman, B.; Chudik, S.C. A biomechanical and clinical comparison of midshaft clavicle plate fixation. Orthop. J. Sport. Med. 2017, 5. [Google Scholar] [CrossRef]
- Palierne, S.; Froidefond, B.; Swider, P.; Autefage, A. Biomechanical comparison of two locking plate construct under cyclic loading in four-point bending in a fracture gap model: Two screws versus three screws per fragment. Vet. Comp. Orthop. Traumatol. 2019, 32, 59–66. [Google Scholar] [CrossRef]
- Wallace, A.M.; De La Puerta, B.; Trayhorn, D.; Moores, A.P.; Langley-Hobbs, S.J. Feline combined diaphyseal radial and ulnar fractures A retrospective study of 28 cases. Vet. Comp. Orthop. Traumatol. 2009, 22, 38–46. [Google Scholar] [CrossRef]
- Gilbert, E.D.; Lewis, D.D.; Townsend, S.; Kim, S.E. Comparison of two external fixator systems for fracture reduction during minimally invasive plate osteosynthesis in simulated antebrachial fractures. Vet. Surg. 2017, 46, 971–980. [Google Scholar] [PubMed]
- Preston, T.J.; Glyde, M.; Hosgood, G.; Day, R.E. Dual bone fixation: A biomechanical comparison of 3 implant constructs in a mid-diaphyseal fracture model of the feline radius and ulna. Vet. Surg. 2016, 45, 289–294. [Google Scholar] [CrossRef] [PubMed]
Radial Bone Characteristics | Males (n = 11) | Females (n = 10) | Mean Difference between Males and Females (CI 95%) a | p-Value | ||
---|---|---|---|---|---|---|
Mean ± SD (Range) | CV (CI 95%) | Mean ± SD (Range) | CV (CI 95%) | |||
Length of left radial bone [mm] | 104.4 ± 1.3 (103.0–107.5) | 1.3% (0.7%, 1.8%) | 94.4 ± 2.1 (92.0–98.0) | 2.3% (1.2%, 3.3%) | 10.0 ± 1.8 (8.4, 11.7) | <0.001 |
Length of right radial bone [mm] | 104.4 ± 0.9 (103.3–106.2) | 0.9% (0.5%, 1.3%) | 94.2 ± 2.1 (92.0–97.8) | 2.2% (1.2%, 3.3%) | 10.2 ± 1.6 (8.7, 11.7) | <0.001 |
aLDRA left [°] | 91.7 ± 1.5 (89.8–94.2) | 1.6% (0.9%, 2.3%) | 93.4 ± 1.4 (91.3–94.9) | 1.5% (0.8%, 2.1%) | - | 0.073 |
aLDRA right [°] | 92.1 ± 1.4 (90.5–94.4) | 1.5% (0.8%, 2.2%) | 93.4 ± 1.3 (91.3–95.0) | 1.4% (0.8%, 2.1%) | - | 0.225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trębacz, P.; Frymus, J.; Pawlik, M.; Barteczko, A.; Kurkowska, A.; Czopowicz, M. Minimally Invasive Plate Osteosynthesis (MIPO) of Comminuted Radial Fractures Using a Locking Plate Contoured on a 3D-Printed Model of the Feline Antebrachium: A Cadaveric Study. Animals 2024, 14, 1381. https://doi.org/10.3390/ani14091381
Trębacz P, Frymus J, Pawlik M, Barteczko A, Kurkowska A, Czopowicz M. Minimally Invasive Plate Osteosynthesis (MIPO) of Comminuted Radial Fractures Using a Locking Plate Contoured on a 3D-Printed Model of the Feline Antebrachium: A Cadaveric Study. Animals. 2024; 14(9):1381. https://doi.org/10.3390/ani14091381
Chicago/Turabian StyleTrębacz, Piotr, Jan Frymus, Mateusz Pawlik, Anna Barteczko, Aleksandra Kurkowska, and Michał Czopowicz. 2024. "Minimally Invasive Plate Osteosynthesis (MIPO) of Comminuted Radial Fractures Using a Locking Plate Contoured on a 3D-Printed Model of the Feline Antebrachium: A Cadaveric Study" Animals 14, no. 9: 1381. https://doi.org/10.3390/ani14091381
APA StyleTrębacz, P., Frymus, J., Pawlik, M., Barteczko, A., Kurkowska, A., & Czopowicz, M. (2024). Minimally Invasive Plate Osteosynthesis (MIPO) of Comminuted Radial Fractures Using a Locking Plate Contoured on a 3D-Printed Model of the Feline Antebrachium: A Cadaveric Study. Animals, 14(9), 1381. https://doi.org/10.3390/ani14091381