Impact of Dietary-Forage-to-Concentrate Ratio on Podolian Young Bulls’ Performance and Nutritional Properties of Meat
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animal Management
2.2. Performance and Post-Slaughter Measurements
2.3. Meat Chemical Composition and Fatty Acid Methyl Esters Profile
2.4. Creatine, Creatinine, Carnosine, and Anserine Determination
2.5. Determination of a-Tocopherol from Muscular Tissue and of Oxidative Stability
2.6. Statistical Analysis
3. Results and Discussion
3.1. Animal Performance and Beef Production
3.2. Fatty Acids (FAs) Composition of Longissimus Thoracis Muscle
3.3. Creatine, Creatinine, Carnosine, and Anserine Contents of Longissimus Thoracis Muscle
3.4. α Tocopherol Content and Oxidative Stability of Longissimus Thoracis Muscle
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Toldrá, F. Lawrie’s Meat Science, 8th ed.; Elsevier: Duxford, UK, 2017. [Google Scholar]
- French, P.; O_Riordan, E.G.; Monahan, F.J.; Caffrey, P.J.; Vidal, M.; Mooney, M.T.; Troy, D.; Moloney, A. Meat quality of steers finished on autumn grass, grass silage or concentrate-based diets. Meat Sci. 2000, 56, 173–180. [Google Scholar] [CrossRef]
- Janssen, J.; Cammack, K.; Legako, J.; Cox, R.; Grubbs, J.; Underwood, K.; Hansen, J.; Kruse, C.; Blair, A. Influence of Grain- and Grass-Finishing Systems on Carcass Characteristics, Meat Quality, Nutritional Composition, and Consumer Sensory Attributes of Bison. Foods 2021, 10, 1060. [Google Scholar] [CrossRef]
- ANABIC. Available online: http://www.anabic.it (accessed on 24 November 2024).
- Marino, R.; Albenzio, M.; Girolami, A.; Muscio, A.; Sevi, A.; Braghieri, A. Effect of forage to concentrate ratio on growth performance, and on carcass and meat quality of Podolian young bulls. Meat Sci. 2006, 72, 415–424. [Google Scholar] [CrossRef]
- Marino, R.; Albenzio, M.; della Malva, A.; Braghieri, A.; Sevi, A. Nutraceutical properties of meat from grazing Podolian young bulls. Food Nutr. Sci. 2014, 5, 618–625. [Google Scholar] [CrossRef]
- Costa-Roura, S.; Balcells, J.; de la Fuente, G.; Mora-Gil, J.; Llanes, N.; Villalba, D. Nutrient utilization efficiency, ruminal fermentation and microbial community in Holstein bulls fed concentrate-based diets with different forage source. Anim. Feed Sci. Technol. 2020, 269, 114662. [Google Scholar] [CrossRef]
- Langlie, J. Influence of Cattle Backgrounding Systems on Carcass Characteristics and Meat Quality. Retrieved from the University of Minnesota Digital Conservancy. 2020, pp. 11–118. Available online: https://conservancy.umn.edu/server/api/core/bitstreams/65c3ca30-19e9-4e52-a6dc-525c104947c8/content (accessed on 24 November 2024).
- Santos-Silva, J.; Alves, S.P.; Francisco, A.; Portugal, A.P.; Dentinho, M.T.; Almeida, J.; da Silva, J.L.R.; Fialho, L.; Cachucho, L.; Jerónimo, E.; et al. Forage Based Diet as an Alternative to a High Concentrate Diet for Finishing Young Bulls—Effects on Growth Performance, Greenhouse Gas Emissions and Meat Quality. Meat Sci. 2023, 198, 109098. [Google Scholar] [CrossRef]
- Pogorzelska-Nowicka, E.; Atanasov, G.A.; Horbanczuk, J.; Wierzbicka, A. Bioactive Compounds in Functional Meat Products. Molecules 2018, 23, 307. [Google Scholar] [CrossRef]
- Wu, G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 2020, 52, 329–360. [Google Scholar] [CrossRef] [PubMed]
- Feehan, J.; Hariharan, R.; Buckenham, T.; Handley, C.; Bhatnagar, A.; Baba, S.P.; de Courten, B. Carnosine as a potential therapeutic for the management of peripheral vascular disease. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 2289–2296. [Google Scholar] [CrossRef]
- Mukherjee, P.; Roy, S.; Ghosh, D.; Nandi, S.K. Role of animal models in biomedical research: A review. Lab. Anim. Res. 2022, 38, 18. [Google Scholar] [CrossRef] [PubMed]
- Bessa, R.J.B.; Alves, S.P.; Santos-Silva, J. Constraints and potentials for the nutritional modulation of the fatty acid composition of ruminant meat. Eur. J. Lipid Sci. Technol. 2015, 117, 1325–1344. [Google Scholar] [CrossRef]
- Marino, R.; Albenzio, M.; della Malva, A.; Santillo, A.; Loizzo, P.; Sevi, A. Proteolytic Pattern of Myofibrillar Protein and Meat Tenderness as Affected by Breed and Aging Time. Meat Sci. 2013, 95, 281–287. [Google Scholar] [CrossRef] [PubMed]
- I.N.R.A. Alimentation des Bovins Ovins and Caprins; Jarrige, R., Ed.; Institut National de la Recherche Agronomique: Paris, France, 2010. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fibre, neutral detergent fibre, and no starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists. Official Methods of Analysis, 16th ed.; AOAC: Arlington, VA, USA, 1995; Volume 2. [Google Scholar]
- Sukhija, P.S.; Palmquist, D.L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 1988, 36, 1202–1206. [Google Scholar] [CrossRef]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- Marino, R.; della Malva, A.; De Palo, P.; Maggiolino, A.; d’Angelo, F.; Lorenzo, J.M.; Sevi, A.; Albenzio, M. Nutritional profile of donkey and horse meat: Effect of muscle and aging time. Animals 2022, 12, 746. [Google Scholar] [CrossRef] [PubMed]
- Marino, R.; Caroprese, M.; della Malva, A.; Santillo, A.; Sevi, A.; Albenzio, M. Role of whole linseed and sunflower seed on the nutritional andorganoleptic properties of Podolian x Limousine meat. Ital. J. Anim. Sci. 2024, 23, 868–879. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Mugnai, C.; Ruggeri, S.; Mattioli, S.; Castellini, C. Fatty acid composition of meat and estimated indices of lipid metabolism in different poultry genotypes reared under organic system. Poultry Sci. 2012, 91, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
- Mateescu, R.G.; Garmyn, A.J.; O’Neil, M.A.; Tait, R.G.; Abuzaid, A.; Mayes, M.S.; Garrick, D.J.; Van Eenennaam, A.L.; Vanverbeke, D.L.; Hilton, G.G.; et al. Genetic parameters for carnitine, creatine, creatinine, carnosine, and anserine concentration in longissimus muscle and their association with palatability traits in Angus cattle. J. Anim. Sci. 2012, 90, 4248–4255. [Google Scholar] [CrossRef] [PubMed]
- Piironen, V.; Syvaoja, E.; Varo, P.; Salminem, K.; Koivistoinen, P. Tocopherols and tocotienols in Finnish foods: Meat and meat products. J. Agric. Food Chem. 1985, 33, 1215–1218. [Google Scholar] [CrossRef]
- Salih, A.M.; Smith, D.M.; Price, J.F.; Dawson, L.E. Modified extraction 2-thiobarbituric acid method for measuring oxidation in poultry. Poultry Sci. 1987, 66, 1483–1488. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, K.; Sagai, M. Species differences in lipid peroxide levels in lung tissue and investigation of their determining factors. Lipids 1986, 21, 769–775. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute. SAS enterprise guide: Statistics; Version 9.4; SAS Institute Inc: Cary, NC, USA, 2013. [Google Scholar]
- Serra, A.; Conte, G.; Giannessi, E.; Casarosa, L.; Lenzi, C.; Baglini, A.; Ciucci, F.; Cappucci, A.; Mele, M. Histological Characteristics, Fatty Acid Composition of Lipid Fractions, and Cholesterol Content of Semimembranosus and Triceps Brachii Muscles in Maremmana and Limousine Bovine Breeds. Front. Vet. Sci. 2017, 4, 1–8. [Google Scholar] [CrossRef]
- Brown, M.S.; Ponce, C.H.; Pulikanti, R. Adaptation of beef cattle to high-concentrate diets: Performance and ruminal metabolism. J. Anim. Sci. 2006, 84, E25–E33. [Google Scholar] [CrossRef]
- Boukal, D.S.; Dieckmann, U.; Enberg, K.; Heino, M.; Jorgensen, C. Life-history implications of the allometric scaling of growth. J. Theor. Biol. 2014, 359, 199–207. [Google Scholar] [CrossRef]
- Alqaisi, O.; Ali, H.; Al-Abri, M.; Johnson, E.H.; Al-Marzooq, I.W. Effect of dietary concentrate content on feed intake, feed efficiency, and meat quality of Holstein steers fattened in a hot environment. Anim. Sci. J. 2021, 92, 13547. [Google Scholar] [CrossRef] [PubMed]
- Ogata, T.; Makino, H.; Ishizuka, N.; Iwamoto, E.; Masaki, T.; Ikuta, K.; Kim, Y.H.; Sato, S. Long-term high-grain diet altered the ruminal pH, fermentation, and composition and functions of the rumen bacterial community, leading to enhanced lactic acid production in Japanese Black beef cattle during fattening. PLoS ONE 2019, 14, 11. [Google Scholar] [CrossRef]
- Astrup, A.; Bertram, H.C.; Bonjour, J.-P.; De Groot, L.C.; Otto, M.C.D.O.; Feeney, E.L.; Garg, M.L.; Givens, I.; Kok, F.J.; Krauss, R.M.; et al. WHO draft guidelines on dietary saturated and trans fatty acids: Time for a new approach? BMJ 2019, 366, l4137. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Zhang, G.N.; Li, Y.; Zhang, Y.G. Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in Cow Rumen. Animals 2020, 10, 223. [Google Scholar] [CrossRef]
- Alvarez-Rodrguez, J.; Urrutia, O.; Lobon, S.; Ripoll, G.; Bertoln, J.R.; Joy, M. Insights into the role of major bioactive dietary nutrients in lamb meat quality: A review. J. Anim. Sci. Biotechnol. 2022, 13, 20. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Hopkins, D.L.; Jacobs, J.L. Increasing omega-3 levels in meat from ruminants under pasture-based systems. Rev. Sci. Techn. 2018, 37, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Bermingham, E.N.; Watkins, P.J.; Proctor, S.D.; Dugan, M.E.R. Bioactivity and health effects of ruminant meat lipids. Invited review. Meat Sci. 2020, 165, 108114. [Google Scholar] [CrossRef] [PubMed]
- Lands, W.E. Biochemistry and physiology of n-3 fatty acids. FASEB J. 1992, 6, 2530–2536. [Google Scholar] [CrossRef]
- WHO. Diet, Nutrition and the Prevention of Chronic Diseases; WHO Technical Report Series 916; WHO: Geneva, Switzerland, 2002; Available online: www.fao.org/docrep/005/AC911E/AC911E00.HTM#Contents (accessed on 24 November 2024).
- Johnson, D.R.; Decker, E.A. The Role of Oxygen in Lipid Oxidation Reactions: A Review. Annu. Rev. Food Sci. Technol. 2015, 6, 171–190. [Google Scholar] [CrossRef] [PubMed]
- Gingras, A.A.; White, P.J.; Chouinard, P.Y.; Julien, P.; Davis, T.A.; Dombrowski, L. Long-chain n-3 PUFA fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt–mTOR–S6 K1pathway and insulin sensitivity. J. Physiol. 2007, 579, 269–284. [Google Scholar] [CrossRef]
- Fusaro, I.; Cavallini, D.; Giammarco, M.; Manetta, A.C.; Martuscelli, M.; Mammi, L.M.E.; Lanzoni, L.; Formigoni, A.; Vignola, G. Oxidative Status of Marchigiana Beef Enriched in n-3 Fatty Acids and Vitamin, E.; Treated With a Blend of Oregano and Rosemary Essential Oils. Front. Vet. Sci. 2021, 8, 662079. [Google Scholar] [CrossRef]
- Campo, M.M.; Nute, G.R.; Hughes, S.I.; Enser, M.; Wood, J.D.; Richardson, R.I. Flavour perception of oxidation in beef. Meat Sci. 2006, 72, 303–311. [Google Scholar] [CrossRef]
Diet | ||
---|---|---|
HF:C | LF:C | |
Ingredients, % | ||
Alfalfa hay | 65 | 45 |
Concentrate 1 | 30 | 50 |
Soybean meal | 3.8 | 3.8 |
Sodium bicarbonate | 0.5 | 0.5 |
Vitamin and mineral mix 2 | 0.7 | 0.7 |
Chemical composition (% DM) | ||
CP | 12.65 | 12.58 |
Ether extract | 3.15 | 3.38 |
NDF | 43.15 | 32.05 |
ADF | 20.11 | 14.15 |
Starch | 20.94 | 37.85 |
ME (MJ/kg DM) | 10.05 | 12.11 |
Fatty acids composition (% of total fatty acids) | ||
C14:0 | 0.35 | 0.25 |
C16:0 | 15.25 | 18.75 |
C18:0 | 4.89 | 4.55 |
C18:1 | 21.75 | 18.88 |
C18:2n-6 | 35.66 | 47.89 |
C18:3n-3 | 22.54 | 11.55 |
Forage:Concentrate | ||||
---|---|---|---|---|
HF:C (n = 10) | LF:C (n = 10) | SEM | Effect, p | |
In vita | ||||
Initial live weight (kg) | 327 | 325 | 19.43 | 0.841 |
Final live weight (kg) | 470 | 476 | 21.23 | 0.758 |
A.D.G. (kg/d) | 1.01 | 1.06 | 0.04 | 0.655 |
D.M.I. (kg dm) | 7.25 | 7.78 | 0.22 | 0.711 |
Feed efficiency (MFU/kg gain) | 4.78 | 4.55 | 0.15 | 0.612 |
Post mortem | ||||
Carcass weight (kg) | 261 | 266 | 11.93 | 0.345 |
Dressing percentage (%) | 55.53 | 55.88 | 0.47 | 0.212 |
Forage:Concentrate | |||||||
---|---|---|---|---|---|---|---|
HF:C (n = 10) | LF:C (n = 10) | p, Effects | |||||
Aging Time (d) | 11 | 18 | 11 | 18 | SEM | Diet | Aging |
C12:0 | 0.19 | 0.23 | 0.35 | 0.36 | 0.05 | 0.551 | 0.624 |
C14:0 | 1.71 | 1.74 | 3.15 | 2.95 | 0.35 | 0.006 | 0.422 |
C15:0 | 0.31 | 0.35 | 0.21 | 0.23 | 0.03 | 0.412 | 0.775 |
C16:0 | 20.25 | 20.41 | 22.75 | 22.61 | 0.54 | 0.018 | 0.722 |
C17:0 | 0.92 | 0.91 | 0.99 | 0.97 | 0.05 | 0.851 | 0.766 |
C18:0 | 18.87 | 18.76 | 17.75 | 17.87 | 0.68 | 0.755 | 0.688 |
C20:0 | 0.31 | 0.33 | 0.59 | 0.55 | 0.07 | 0.433 | 0.762 |
C14:1 | 0.18 | 0.17 | 0.15 | 0.16 | 0.05 | 0.358 | 0.465 |
C15:1 | 0.18 | 0.19 | 0.21 | 0.22 | 0.06 | 0.588 | 0.608 |
C16:1 | 1.25 | 1.19 | 0.98 | 0.91 | 0.08 | 0.041 | 0.483 |
C18:1 | 32.31 | 32.45 | 31.48 | 31.66 | 0.58 | 0.444 | 0.843 |
C18:1t10 | 1.12 | 1.14 | 1.22 | 1.24 | 0.05 | 0.755 | 0.442 |
C18:1t11 | 0.95 | 0.97 | 0.66 | 0.63 | 0.07 | 0.028 | 0.343 |
C20:1 | 0.22 | 0.21 | 0.18 | 0.19 | 0.05 | 0.954 | 0.555 |
C20:2 | 0.29 | 0.28 | 0.23 | 0.24 | 0.04 | 0.855 | 0.321 |
C18:2n-6 cis | 10.84 | 10.78 | 11.11 | 11.26 | 0.66 | 0.688 | 0.781 |
C18:2c9,t11 | 0.52 | 0.49 | 0.25 | 0.24 | 0.07 | 0.022 | 0.483 |
C20:3n-6 | 0.72 | 0.68 | 0.48 | 0.45 | 0.07 | 0.588 | 0.921 |
C20:4n-6 | 3.64 | 3.58 | 4.02 | 3.95 | 0.18 | 0.672 | 0.883 |
C22:4n-6 | 0.28 | 0.32 | 0.21 | 0.19 | 0.03 | 0.544 | 0.495 |
C18:3n-3 | 1.88 | 1.85 | 0.85 | 0.81 | 0.15 | 0.005 | 0.684 |
C20:5n-3 EPA | 0.81 | 0.78 | 0.36 | 0.34 | 0.05 | 0.005 | 0.321 |
C22:5n-3 DPA | 1.26 | 1.22 | 0.89 | 0.84 | 0.11 | 0.005 | 0.455 |
C22:6n-3 DHA | 1.22 | 1.18 | 0.86 | 0.81 | 0.12 | 0.022 | 0.666 |
SFAs | 42.75 | 42.98 | 46.04 | 45.96 | 0.85 | <0.001 | 0.711 |
MUFAs | 36.31 | 36.44 | 34.95 | 35.15 | 0.41 | 0.019 | 0.355 |
PUFA n-3 | 5.17 | 5.03 | 2.96 | 2.8 | 0.38 | <0.001 | 0.211 |
PUFA n-6 | 15.77 | 15.64 | 16.05 | 16.09 | 0.45 | 0.433 | 0.475 |
CLA | 0.66 | 0.64 | 0.32 | 0.31 | 0.11 | 0.015 | 0.881 |
PUFA | 20.94 | 20.67 | 19.01 | 18.89 | 0.53 | <0.001 | 0.395 |
Δ5-plusΔ6-desaturase | 38.65 | 38.28 | 36.05 | 35.5 | 0.48 | 0.026 | 0.431 |
Forage:Concentrate | |||||||
---|---|---|---|---|---|---|---|
HF:C (n = 10) | LF:C (n = 10) | p, Effects | |||||
Aging Time (d) | 11 | 18 | 11 | 18 | SEM | Diet | Aging |
Qualitative indices | |||||||
P/S | 0.49 | 0.48 | 0.41 | 0.41 | 0.02 | 0.033 | 0.338 |
n6/n3 | 3.05 | 3.11 | 5.42 | 5.75 | 0.25 | <0.001 | 0.466 |
EPA + DHA (%) | 2.03 | 1.96 | 1.22 | 1.15 | 0.18 | 0.004 | 0.511 |
Unsaturation index | 97.55 | 96.6 | 88 | 87.24 | 0.35 | 0.041 | 0.285 |
Nutritional indices | |||||||
Atherogenic index | 0.48 | 0.48 | 0.66 | 0.64 | 0.04 | 0.023 | 0.611 |
Thrombogenic index | 0.97 | 0.99 | 1.26 | 1.27 | 0.04 | 0.017 | 0.387 |
Hypocholesterolemic/hypercholesterolemic | 2.63 | 2.59 | 2.17 | 2.15 | 0.08 | 0.022 | 0.421 |
Forage:Concentrate | |||||||
---|---|---|---|---|---|---|---|
HF:C (n = 10) | LF:C (n = 10) | p, Effects | |||||
Aging Time (d) | 11 | 18 | 11 | 18 | SEM | Diet | Aging |
Creatine (mg/g) | 3.15 | 3.28 | 2.83 | 2.88 | 0.11 | <0.001 | 0.421 |
Carnosine (mg/g) | 3.68 | 3.77 | 2.31 | 2.45 | 0.14 | 0.003 | 0.385 |
Anserine (mg/g) | 1.25 | 1.23 | 1.11 | 1.09 | 0.04 | 0.021 | 0.457 |
Creatinine (mg/g) | 0.44 | 0.39 | 0.36 | 0.39 | 0.03 | 0.444 | 0.657 |
Forage:Concentrate | |||||||
---|---|---|---|---|---|---|---|
HF:C (n = 10) | LF:C (n = 10) | p, Effects | |||||
Aging Time (d) | 11 | 18 | 11 | 18 | SEM | Diet | Aging |
MDA (mg/kg) | 0.15 | 0.17 | 0.14 | 0.16 | 0.10 | 0.288 | 0.427 |
Peroxidability index | 45.84 | 44.18 | 33.77 | 32.57 | 0.58 | 0.008 | 0.584 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marino, R.; Caroprese, M.; Santillo, A.; Sevi, A.; Albenzio, M. Impact of Dietary-Forage-to-Concentrate Ratio on Podolian Young Bulls’ Performance and Nutritional Properties of Meat. Animals 2025, 15, 166. https://doi.org/10.3390/ani15020166
Marino R, Caroprese M, Santillo A, Sevi A, Albenzio M. Impact of Dietary-Forage-to-Concentrate Ratio on Podolian Young Bulls’ Performance and Nutritional Properties of Meat. Animals. 2025; 15(2):166. https://doi.org/10.3390/ani15020166
Chicago/Turabian StyleMarino, Rosaria, Mariangela Caroprese, Antonella Santillo, Agostino Sevi, and Marzia Albenzio. 2025. "Impact of Dietary-Forage-to-Concentrate Ratio on Podolian Young Bulls’ Performance and Nutritional Properties of Meat" Animals 15, no. 2: 166. https://doi.org/10.3390/ani15020166
APA StyleMarino, R., Caroprese, M., Santillo, A., Sevi, A., & Albenzio, M. (2025). Impact of Dietary-Forage-to-Concentrate Ratio on Podolian Young Bulls’ Performance and Nutritional Properties of Meat. Animals, 15(2), 166. https://doi.org/10.3390/ani15020166