Factors Affecting the Success of Ovum Pick-Up, In Vitro Production and Cryopreservation of Embryos in Cattle
Simple Summary
Abstract
1. Introduction
2. Methodology Applied for the Search and Selection of Articles
3. Factors Affecting Success of OPU-IVP
3.1. Donor-Dependent Factors
3.2. Superstimulation-Dependent Factors
3.3. Procedure-Dependent Factors
4. In Vitro Culture Conditions and OPU-IVP Outcomes
5. Impacts of Cryopreservation on IVP Embryos
6. Lipid Composition and Metabolism of In Vivo Versus In Vitro Embryos
7. Carnitine
8. Hippo Signaling Pathway
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daly, J.; Smith, H.; McGrice, H.A.; Kind, K.L.; Van Wettere, W.H.E.J. Towards Improving the Outcomes of Assisted Reproductive Technologies of Cattle and Sheep, with Particular Focus on Recipient Management. Animals 2020, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Rexroad, C.; Vallet, J.; Matukumalli, L.K.; Reecy, J.; Bickhart, D.; Blackburn, H.; Boggess, M.; Cheng, H.; Clutter, A.; Cockett, N.; et al. Genome to Phenome: Improving Animal Health, Production, and Well-Being—A New Usda Blueprint for Animal Genome Research 2018–2027. Front. Genet. 2019, 10, 327. [Google Scholar] [CrossRef]
- Davis, T.C.; White, R.R. Breeding Animals to Feed People: The Many Roles of Animal Reproduction in Ensuring Global Food Security. Theriogenology 2020, 150, 27–33. [Google Scholar] [CrossRef]
- Hansen, P.J. Some Challenges and Unrealized Opportunities toward Widespread Use of the in Vitro-Produced Embryo in Cattle Production. Animal 2023, 17, 100745. [Google Scholar] [CrossRef] [PubMed]
- Balmford, A.; Amano, T.; Bartlett, H.; Chadwick, D.; Collins, A.; Edwards, D.; Field, R.; Garnsworthy, P.; Green, R.; Smith, P.; et al. The Environmental Costs and Benefits of High-Yield Farming. Nat. Sustain. 2018, 1, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Humblot, P.; Le Bourhis, D.; Fritz, S.; Colleau, J.J.; Gonzalez, C.; Guyader Joly, C.; Malafosse, A.; Heyman, Y.; Amigues, Y.; Tissier, M.; et al. Reproductive Technologies and Genomic Selection in Cattle. Vet. Med. Int. 2010, 2010, 192787. [Google Scholar] [CrossRef] [PubMed]
- Bó, G.A.; Cedeño, A.; Mapletoft, R.J. Strategies to Increment in Vivo and in Vitro Embryo Production and Transfer in Cattle. Anim. Reprod. 2019, 16, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Demetrio, D.G.B.; Benedetti, E.; Demetrio, C.G.B.; Fonseca, J.; Oliveira, M.; Magalhaes, A.; Santos, R.M.D. How Can We Improve Embryo Production and Pregnancy Outcomes of Holstein Embryos Produced in Vitro? (12 Years of Practical Results at a California Dairy Farm). Anim. Reprod. 2020, 17, e20200053. [Google Scholar] [CrossRef]
- Soares, J.G.; Martins, C.M.; Carvalho, N.A.T.; Nicacio, A.C.; Abreu-Silva, A.L.; Campos Filho, E.P.; Torres Júnior, J.R.S.; Sá Filho, M.F.; Baruselli, P.S. Timing of Insemination Using Sex-Sorted Sperm in Embryo Production with Bos Indicus and Bos Taurus Superovulated Donors. Anim. Reprod. Sci. 2011, 127, 148–153. [Google Scholar] [CrossRef]
- Ferré, L.B.; Kjelland, M.E.; Strøbech, L.B.; Hyttel, P.; Mermillod, P.; Ross, P.J. Review: Recent Advances in Bovine in Vitro Embryo Production: Reproductive Biotechnology History and Methods. Animal 2020, 14, 991–1004. [Google Scholar] [CrossRef] [PubMed]
- Viana, J.H. 2021 Statistics of Embryo Production and Transfer in Domestic Farm Animals. Embryo Technol. Newsl. 2022, 40, 22–40. [Google Scholar]
- Greenwood, P.L. Review: An Overview of Beef Production from Pasture and Feedlot Globally, as Demand for Beef and the Need for Sustainable Practices Increase. Animal 2021, 15, 100295. [Google Scholar] [CrossRef]
- Cordeiro, M.R.C.; Mengistu, G.F.; Pogue, S.J.; Legesse, G.; Gunte, K.E.; Taylor, A.M.; Ominski, K.H.; Beauchemin, K.A.; McGeough, E.J.; Faramarzi, M.; et al. Assessing Feed Security for Beef Production within Livestock-Intensive Regions. Agric. Syst. 2022, 196, 103348. [Google Scholar] [CrossRef]
- Ferré, L.B.; Alvarez-Gallardo, H.; Romo, S.; Fresno, C.; Stroud, T.; Stroud, B.; Lindsey, B.; Kjelland, M.E. Transvaginal Ultrasound-guided Oocyte Retrieval in Cattle: State-of-the-art and Its Impact on the in Vitro Fertilization Embryo Production Outcome. Reprod. Domest. Anim. 2023, 58, 363–378. [Google Scholar] [CrossRef] [PubMed]
- Albarrán-Portillo, B.; Pollott, G.E. The Relationship between Fertility and Lactation Characteristics in Holstein Cows on United Kingdom Commercial Dairy Farms. J. Dairy Sci. 2013, 96, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Bezdíček, J.; Nesvadbová, A.; Makarevich, A.; Kubovičová, E. Relationship between the Animal Body Condition and Reproduction: The Biotechnological Aspects. Arch. Anim. Breed. 2020, 63, 203–209. [Google Scholar] [CrossRef]
- Serbetci, I.; González-Grajales, L.A.; Herrera, C.; Ibanescu, I.; Tekin, M.; Melean, M.; Magata, F.; Malama, E.; Bollwein, H.; Scarlet, D. Impact of Negative Energy Balance and Postpartum Diseases during the Transition Period on Oocyte Quality and Embryonic Development in Dairy Cows. Front. Vet. Sci. 2024, 10, 1328700. [Google Scholar] [CrossRef] [PubMed]
- Pascottini, O.B.; Leroy, J.L.M.R.; Opsomer, G. Metabolic Stress in the Transition Period of Dairy Cows: Focusing on the Prepartum Period. Animals 2020, 10, 1419. [Google Scholar] [CrossRef] [PubMed]
- Leroy, J.L.M.R.; Rizos, D.; Sturmey, R.; Bossaert, P.; Gutierrez-Adan, A.; Van Hoeck, V.; Valckx, S.; Bols, P.E.J. Intrafollicular Conditions as a Major Link between Maternal Metabolism and Oocyte Quality: A Focus on Dairy Cow Fertility. Reprod. Fertil. Dev. 2012, 24, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, E.S.; Gomes, G.; Greco, L.F.; Cerri, R.L.A.; Vieira-Neto, A.; Monteiro, P.L.J.; Lima, F.S.; Bisinotto, R.S.; Thatcher, W.W.; Santos, J.E.P. Carryover Effect of Postpartum Inflammatory Diseases on Developmental Biology and Fertility in Lactating Dairy Cows. J. Dairy Sci. 2016, 99, 2201–2220. [Google Scholar] [CrossRef]
- Lopez, H.; Caraviello, D.Z.; Satter, L.D.; Fricke, P.M.; Wiltbank, M.C. Relationship between Level of Milk Production and Multiple Ovulations in Lactating Dairy Cows. J. Dairy Sci. 2005, 88, 2783–2793. [Google Scholar] [CrossRef] [PubMed]
- Wiltbank, M.; Lopez, H.; Sartori, R.; Sangsritavong, S.; Gümen, A. Changes in Reproductive Physiology of Lactating Dairy Cows Due to Elevated Steroid Metabolism. Theriogenology 2006, 65, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Missio, D.; Fritzen, A.; Cupper Vieira, C.; Germano Ferst, J.; Farias Fiorenza, M.; Guedes De Andrade, L.; Martins De Menezes, B.; Tomazele Rovani, M.; Gazieira Gasperin, B.; Dias Gonçalves, P.B.; et al. Increased β-Hydroxybutyrate (BHBA) Concentration Affect Follicular Growth in Cattle. Anim. Reprod. Sci. 2022, 243, 107033. [Google Scholar] [CrossRef] [PubMed]
- Argov, N.; Arav, A.; Sklan, D. Number of Oocytes Obtained from Cows by OPU in Early, but Not Late Lactation Increased with Plasma Insulin and Estradiol Concentrations and Expression of mRNA of the FSH Receptor in Granulosa Cells. Theriogenology 2004, 61, 947–962. [Google Scholar] [CrossRef] [PubMed]
- Matoba, S.; O’Hara, L.; Carter, F.; Kelly, A.K.; Fair, T.; Rizos, D.; Lonergan, P. The Association between Metabolic Parameters and Oocyte Quality Early and Late Postpartum in Holstein Dairy Cows. J. Dairy Sci. 2012, 95, 1257–1266. [Google Scholar] [CrossRef]
- Ponter, A.A.; Guyader-Joly, C.; Nuttinck, F.; Grimard, B.; Humblot, P. Oocyte and Embryo Production and Quality after OPU-IVF in Dairy Heifers given Diets Varying in Their n-6/n-3 Fatty Acid Ratio. Theriogenology 2012, 78, 632–645. [Google Scholar] [CrossRef]
- Velazquez, M.A. Nutritional Strategies to Promote Bovine Oocyte Quality for In Vitro Embryo Production: Do They Really Work? Vet. Sci. 2023, 10, 604. [Google Scholar] [CrossRef] [PubMed]
- Dantas, F.G.; Reese, S.T.; Filho, R.V.O.; Carvalho, R.S.; Franco, G.A.; Abbott, C.R.; Payton, R.R.; Edwards, J.L.; Russell, J.R.; Smith, J.K.; et al. Effect of Complexed Trace Minerals on Cumulus-Oocyte Complex Recovery and in Vitro Embryo Production in Beef Cattle1,2. J. Anim. Sci. 2019, 97, 1478–1490. [Google Scholar] [CrossRef]
- Tomita, K.; Ishii, T.; Endo, N.; Tanaka, T. Effects of Short-Term Dietary Supplementation on the Number of Ovarian Follicles, Quantity and Quality of Oocytes, and in Vitro Embryo Production in Japanese Black Cows. J. Reprod. Dev. 2023, 69, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, L.P.; Vonnahme, K.A. Livestock as Models for Developmental Programming. Anim. Front. 2017, 7, 12–17. [Google Scholar] [CrossRef]
- Abraham, M.C.; Ruete, A.; Brandt, Y.C.B. 260 Breed Influences Outcome of in Vitro Production of Embryos in Cattle. Reprod. Fertil. Dev. 2010, 22, 287. [Google Scholar] [CrossRef]
- Monteiro, C.A.S.; Saraiva, H.F.R.D.A.; Leal, G.R.; Camargo, A.J.D.R.; Serapião, R.V.; Ferreira, A.M.R.; Rodrigues, A.L.R.; Nogueira, L.A.G.; Oliveira, C.S. Breed Composition Does Not Influence the Performance of Holstein-Gyr Crossbred as Oocyte Donors for OPU/IVP. Anim. Reprod. 2017, 15, 71–74. [Google Scholar] [CrossRef]
- Sartori, R.; Monteiro, P.L.J.; Wiltbank, M.C. Endocrine and Metabolic Differences between Bos Taurus and Bos Indicus Cows Andimplications for Reproductive Management. Anim. Reprod. 2016, 13, 168–181. [Google Scholar] [CrossRef]
- Cooke, R.F.; Cardoso, R.C.; Cerri, R.L.A.; Lamb, G.C.; Pohler, K.G.; Riley, D.G.; Vasconcelos, J.L.M. Cattle Adapted to Tropical and Subtropical Environments: Genetic and Reproductive Considerations. J. Anim. Sci. 2020, 98, skaa015. [Google Scholar] [CrossRef] [PubMed]
- Baldrighi, J.; Sá Filho, M.; Batista, E.; Lopes, R.; Visintin, J.; Baruselli, P.; Assumpção, M. Anti-Mullerian Hormone Concentration and Antral Ovarian Follicle Population in Murrah Heifers Compared to Holstein and Gyr Kept Under the Same Management. Reprod. Domest. Anim. 2014, 49, 1015–1020. [Google Scholar] [CrossRef] [PubMed]
- Pontes, J.H.F.; Silva, K.C.F.; Basso, A.C.; Rigo, A.G.; Ferreira, C.R.; Santos, G.M.G.; Sanches, B.V.; Porcionato, J.P.F.; Vieira, P.H.S.; Faifer, F.S.; et al. Large-Scale in Vitro Embryo Production and Pregnancy Rates from Bos Taurus, Bos Indicus, and Indicus-Taurus Dairy Cows Using Sexed Sperm. Theriogenology 2010, 74, 1349–1355. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.F.; Souza, H.A.; Mingoti, R.D.; Ferreira, R.M.; Batista, E.O.S.; Dayan, A.; Watanabe, O.Y.; Meirelles, F.V.; Nogueira, M.F.G.; Ferraz, J.B.S.; et al. Number of Oocytes Retrieved per Donor during OPU and Its Relationship with in Vitro Embryo Production and Field Fertility Following Embryo Transfer. Anim. Reprod. 2017, 14, 635–644. [Google Scholar] [CrossRef]
- Batista, E.; Macedo, G.; Sala, R.; Ortolan, M.; Sá Filho, M.; Del Valle, T.; Jesus, E.; Lopes, R.; Rennó, F.; Baruselli, P. Plasma Antimullerian Hormone as a Predictor of Ovarian Antral Follicular Population in Bos indicus (Nelore) and Bos taurus (Holstein) Heifers. Reprod. Domest. Anim. 2014, 49, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, B.M.; Batista, E.O.S.; Vieira, L.M.; Sá Filho, M.F.; Rodrigues, C.A.; Castro Netto, A.; Silveira, C.R.A.; Bayeux, B.M.; Dias, E.A.R.; Monteiro, F.M.; et al. Plasma Anti-Mullerian Hormone: An Endocrine Marker for in Vitro Embryo Production from Bos Taurus and Bos Indicus Donors. Domest. Anim. Endocrinol. 2014, 49, 96–104. [Google Scholar] [CrossRef]
- Thundathil, J.; Dance, A.; Johnson, C.; Kastelic, J. Efficiency of Repeated Superstimulations on Ovum Pick-up and in Vitro Production (OPU-IVP) of Cattle Embryos and Donor Health. In Proceedings of the 19th International Congresson Animal Reproduction, Bologna, Italy, 26–30 June 2022. [Google Scholar]
- Landry, D.A.; Bellefleur, A.-M.; Labrecque, R.; Grand, F.-X.; Vigneault, C.; Blondin, P.; Sirard, M.-A. Effect of Cow Age on the in Vitro Developmental Competence of Oocytes Obtained after FSH Stimulation and Coasting Treatments. Theriogenology 2016, 86, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Xia, Y.; Xu, J.; Liu, Z.; Liu, Z.; Zhang, M.; Xu, G.; Xing, X.; Du, F. Effects of Donor Age and Reproductive History on Developmental Potential of Ovum Pickup Oocytes in Japanese Black Cattle (Wagyu). Theriogenology 2024, 221, 25–30. [Google Scholar] [CrossRef]
- Khatir, H.; Lonergan, P.; Carolan, C.; Mermillod, P. Prepubertal Bovine Oocyte: A Negative Model for Studying Oocyte Developmental Competence. Mol. Reprod. Dev. 1996, 45, 231–239. [Google Scholar] [CrossRef]
- Crowe, A.D.; Lonergan, P.; Butler, S.T. Invited Review: Use of Assisted Reproduction Techniques to Accelerate Genetic Gain and Increase Value of Beef Production in Dairy Herds. J. Dairy Sci. 2021, 104, 12189–12206. [Google Scholar] [CrossRef] [PubMed]
- Revel, F.; Mermillod, P.; Peynot, N.; Renard, J.P.; Heyman, Y. Low Developmental Capacity of in Vitro Matured and Fertilized Oocytes from Calves Compared with That of Cows. Reproduction 1995, 103, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Rizos, D.; Gutiérrez-Adán, A.; Pérez-Garnelo, S.; De La Fuente, J.; Boland, M.P.; Lonergan, P. Bovine Embryo Culture in the Presence or Absence of Serum: Implications for Blastocyst Development, Cryotolerance, and Messenger RNA Expression1. Biol. Reprod. 2003, 68, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Galli, C.; Duchi, R.; Crotti, G.; Turini, P.; Ponderato, N.; Colleoni, S.; Lagutina, I.; Lazzari, G. Bovine Embryo Technologies. Theriogenology 2003, 59, 599–616. [Google Scholar] [CrossRef] [PubMed]
- Chaubal, S.A.; Molina, J.A.; Ohlrichs, C.L.; Ferre, L.B.; Faber, D.C.; Bols, P.E.J.; Riesen, J.W.; Tian, X.; Yang, X. Comparison of Different Transvaginal Ovum Pick-up Protocols to Optimise Oocyte Retrieval and Embryo Production over a 10-Week Period in Cows. Theriogenology 2006, 65, 1631–1648. [Google Scholar] [CrossRef]
- Goodhand, K.L.; Staines, M.E.; Hutchinson, J.S.M.; Broadbent, P.J. In Vivo Oocyte Recovery and in Vitro Embryo Production from Bovine Oocyte Donors Treated with Progestagen, Oestradiol and FSH. Anim. Reprod. Sci. 2000, 63, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Blondin, P.; Bousquet, D.; Twagiramungu, H.; Barnes, F.; Sirard, M.-A. Manipulation of Follicular Development to Produce Developmentally Competent Bovine Oocytes1. Biol. Reprod. 2002, 66, 38–43. [Google Scholar] [CrossRef]
- Zangirolamo, A.F.; Morotti, F.; Silva, N.C.D.; Sanches, T.K.; Seneda, M.M. Ovarian Antral Follicle Populations and Embryo Production in Cattle. Anim. Reprod. 2018, 15, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Baruselli, P.S.; Souza, A.H.D.; Sá, M.F.D.; Marques, M.O.; Sales, J.N.D.S. Genetic Market in Cattle (Bull, Ai, Ftai, Moet and Ivp): Financial Payback Based on Reproductive Efficiency in Beef and Dairy Herds in Brazil. Anim. Reprod. 2018, 15, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Chasombat, J.; Nagai, T.; Parnpai, R.; Vongpralub, T. Ovarian Follicular Dynamics, Ovarian Follicular Growth, Oocyte Yield, In vitro Embryo Production and Repeated Oocyte Pick Up in Thai Native Heifers Undergoing Superstimulation. Asian-Australas. J. Anim. Sci. 2013, 26, 488–500. [Google Scholar] [CrossRef]
- Marshall, K.L.; Rivera, R.M. The Effects of Superovulation and Reproductive Aging on the Epigenome of the Oocyte and Embryo. Mol. Reprod. Dev. 2018, 85, 90–105. [Google Scholar] [CrossRef] [PubMed]
- Durocher, J.; Morin, N.; Blondin, P. Effect of Hormonal Stimulation on Bovine Follicular Response and Oocyte Developmental Competence in a Commercial Operation. Theriogenology 2006, 65, 102–115. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, F.; Ferreira, M.; Potiens, J.; Eberhardt, B.; Trinca, L.; Barros, C. Influence of Superovulatory Protocols on In Vitro Production of Nellore (Bos indicus) Embryos. Reprod. Domest. Anim. 2009, 45, 860–864. [Google Scholar] [CrossRef]
- Armstrong, D.T.; Irvine, B.J.; Earl, C.R.; McLean, D.; Seamark, R.F. Gonadotropin Stimulation Regimens for Follicular Aspiration and in Vitro Embryo Production from Calf Oocytes. Theriogenology 1994, 42, 1227–1236. [Google Scholar] [CrossRef]
- Currin, L.; Michalovic, L.; Bellefleur, A.-M.; Gutierrez, K.; Glanzner, W.; Schuermann, Y.; Bohrer, R.C.; Dicks, N.; Da Rosa, P.R.; De Cesaro, M.P.; et al. The Effect of Age and Length of Gonadotropin Stimulation on the in Vitro Embryo Development of Holstein Calf Oocytes. Theriogenology 2017, 104, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Taneja, M.; Bols, P.E.J.; De Velde, A.V.; Ju, J.-C.; Schreiber, D.; Tripp, M.W.; Levine, H.; Echelard, Y.; Riesen, J.; Yang, X. Developmental Competence of Juvenile Calf Oocytes In Vitro and In Vivo: Influence of Donor Animal Variation and Repeated Gonadotropin Stimulation1. Biol. Reprod. 2000, 62, 206–213. [Google Scholar] [CrossRef]
- Viana, J.H.M.; Silva, B.D.M.; Moura, R.M.D.; Féres, L.F.R.; Figueiredo, R.A. Oocyte Developmental Potential and Embryo Production before Puberty in Cattle. Anim. Reprod. 2024, 21, e20240069. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, T.S.; Viana, J.H.M.; Pontelo, T.P.; Franco, M.M.; De Faria, O.A.C.; Fidelis, A.A.G.; Vargas, L.N.; Figueiredo, R.A. Dynamics of the Reproductive Changes and Acquisition of Oocyte Competence in Nelore (Bos Taurus Indicus) Calves during the Early and Intermediate Prepubertal Periods. Animals 2022, 12, 2137. [Google Scholar] [CrossRef]
- Currin, L.; Baldassarre, H.; Bordignon, V. In Vitro Production of Embryos from Prepubertal Holstein Cattle and Mediterranean Water Buffalo: Problems, Progress and Potential. Animals 2021, 11, 2275. [Google Scholar] [CrossRef] [PubMed]
- Michalovic, L.; Currin, L.; Gutierrez, K.; Bellefleur, A.; Glanzner, W.G.; Schuermann, Y.; De Macedo, M.P.; Bohrer, R.C.; Dicks, N.; Lopez, R.; et al. Granulosa Cells of Prepubertal Cattle Respond to Gonadotropin Signaling and Upregulate Genes That Promote Follicular Growth and Prevent Cell Apoptosis. Mol. Reprod. Dev. 2018, 85, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Nivet, A.-L.; Bunel, A.; Labrecque, R.; Belanger, J.; Vigneault, C.; Blondin, P.; Sirard, M.-A. FSH Withdrawal Improves Developmental Competence of Oocytes in the Bovine Model. Reproduction 2012, 143, 165–171. [Google Scholar] [CrossRef]
- Petrovas, G.; Kosior, M.A.; Presicce, G.A.; Russo, M.; Zullo, G.; Albero, G.; Alkan, S.; Gasparrini, B. FSH Stimulation with Short Withdrawal Improves Oocyte Competence in Italian Mediterranean Buffalo (Bubalus bubalis). Animals 2020, 10, 1997. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.H.; Sanches, C.P.; Seddon, A.S.; Veras, M.B.; Lima, F.A.; Monteiro, P.L.J.; Wiltbank, M.C.; Sartori, R. Short Communication: Follicle Superstimulation before Ovum Pick-up for in Vitro Embryo Production in Holstein Cows. J. Dairy Sci. 2016, 99, 9307–9312. [Google Scholar] [CrossRef]
- Vieira, L.M.; Rodrigues, C.A.; Castro Netto, A.; Guerreiro, B.M.; Silveira, C.R.A.; Moreira, R.J.C.; Sá Filho, M.F.; Bó, G.A.; Mapletoft, R.J.; Baruselli, P.S. Superstimulation Prior to the Ovum Pick-up to Improve in Vitro Embryo Production in Lactating and Non-Lactating Holstein Cows. Theriogenology 2014, 82, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; Dufort, I.; Sirard, M.-A. Effect of Ovarian Stimulation on Oocyte Gene Expression in Cattle. Theriogenology 2012, 77, 1928–1938. [Google Scholar] [CrossRef] [PubMed]
- Mourot, M.; Dufort, I.; Gravel, C.; Algriany, O.; Dieleman, S.; Sirard, M. The Influence of Follicle Size, FSH-enriched Maturation Medium, and Early Cleavage on Bovine Oocyte Maternal mRNA Levels. Mol. Reprod. Dev. 2006, 73, 1367–1379. [Google Scholar] [CrossRef]
- Petyim, S.; Båge, R.; Madej, A.; Larsson, B. Ovum Pick-up in Dairy Heifers: Does It Affect Animal Well-being? Reprod. Domest. Anim. 2007, 42, 623–632. [Google Scholar] [CrossRef]
- Pieterse, M.C.; Kappen, K.A.; Kruip, T.A.M.; Taverne, M.A.M. Aspiration of Bovine Oocytes during Transvaginal Ultrasound Scanning of the Ovaries. Theriogenology 1988, 30, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Kruip, T.A.M.; Den Daas, J.H.G. In Vitro Produced and Cloned Embryos: Effects on Pregnancy, Parturition and Offspring. Theriogenology 1997, 47, 43–52. [Google Scholar] [CrossRef]
- Dogan, H.; Yenilmez, K. Factors Influencing Ovum Pick-up Technique Results in Cattle. J. Istanb. Vet. Sci. 2024, 8, 13–23. [Google Scholar] [CrossRef]
- Kruip, T.A.M.; Boni, R.; Wurth, Y.A.; Roelofsen, M.W.M.; Pieterse, M.C. Potential Use of Ovum Pick-up for Embryo Production and Breeding in Cattle. Theriogenology 1994, 42, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Dunning, K.R.; Robker, R.L. The Role of L-Carnitine during Oocyte in Vitro Maturation: Essential Co-Factor? Anim. Reprod. 2017, 14, 469–475. [Google Scholar] [CrossRef]
- Fischer, B.; Bavister, B.D. Oxygen Tension in the Oviduct and Uterus of Rhesus Monkeys, Hamsters and Rabbits. Reproduction 1993, 99, 673–679. [Google Scholar] [CrossRef]
- Sciorio, R.; Smith, G.D. Embryo Culture at a Reduced Oxygen Concentration of 5%: A Mini Review. Zygote 2019, 27, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Steptoe, P.; Edwards, R.; Purdy, J. Human Blastocysts Grown in Culture. Nature 1971, 229, 132–133. [Google Scholar] [CrossRef]
- Konstantogianni, O.; Panou, T.; Zikopoulos, A.; Skentou, C.; Stavros, S.; Asimakopoulos, B. Culture of Human Embryos at High and Low Oxygen Levels. J. Clin. Med. 2024, 13, 2222. [Google Scholar] [CrossRef]
- Varghese, J.; Link, B.; Wong, B.; Thundathil, J.C. Comparison of the Developmental Competence of in Vitro-Produced Mouse Embryos Cultured under 5 versus 2% O2 with in Vivo-Derived Blastocysts. J. Assist. Reprod. Genet. 2024, 41, 3089–3103. [Google Scholar] [CrossRef]
- Rizos, D.; Ward, F.; Boland, M.P.; Lonergan, P. Effect of Culture System on the Yield and Quality of Bovine Blastocysts as Assessed by Survival after Vitrification. Theriogenology 2001, 56, 30512220. [Google Scholar] [CrossRef]
- Gardner, D.K.; Lane, M. Development of Viable Mammalian Embryos in Vitro. In Principles of Cloning; Elsevier: Amsterdam, The Netherlands, 2002; pp. 187–213. ISBN 978-0-12-174597-4. [Google Scholar]
- Thompson, J.G.; Peterson, A.J. Bovine Embryo Culture in Vitro: New Developments and Post-Transfer Consequences. Hum. Reprod. 2000, 15, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Marsico, T.V.; Camargo, J.D.; Valente, R.S.; Sudano, M.J. Embryo Competence and Cryosurvival: Molecular and Cellular Features. Anim. Reprod. 2019, 16, 423–439. [Google Scholar] [CrossRef] [PubMed]
- Palasz, A.T.; Thundathil, J.; De La Fuente, J.; Mapletoft, R.J. Effect of Reduced Concentrations of Glycerol and Various Macromolecules on the Cryopreservation of Mouse and Cattle Embryos. Cryobiology 2000, 41, 35–42. [Google Scholar] [CrossRef]
- Edidin, M. Lipids on the Frontier: A Century of Cell-Membrane Bilayers. Nat. Rev. Mol. Cell Biol. 2003, 4, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Tharasanit, T.; Thuwanut, P. Oocyte Cryopreservation in Domestic Animals and Humans: Principles, Techniques and Updated Outcomes. Animals 2021, 11, 2949. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Mal, G.; Gautam, S.K.; Mukesh, M. Advances in Animal Biotechnology; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-21308-4. [Google Scholar]
- Choi, H.-W.; Jang, H. Application of Nanoparticles and Melatonin for Cryopreservation of Gametes and Embryos. Curr. Issues Mol. Biol. 2022, 44, 4028–4044. [Google Scholar] [CrossRef]
- Murray, K.A.; Gibson, M.I. Chemical Approaches to Cryopreservation. Nat. Rev. Chem. 2022, 6, 579–593. [Google Scholar] [CrossRef] [PubMed]
- Sareen, S.; Talwar, P. Overview of Cryobiology in ART. J. South Asian Fed. Obstet. Gynaecol. 2010, 2, 11–17. [Google Scholar] [CrossRef]
- Takahashi, T.; Inaba, Y.; Somfai, T.; Kaneda, M.; Geshi, M.; Nagai, T.; Manabe, N. Supplementation of Culture Medium with L-Carnitine Improves Development and Cryotolerance of Bovine Embryos Produced in Vitro. Reprod. Fertil. Dev. 2013, 25, 589. [Google Scholar] [CrossRef] [PubMed]
- Lonergan, P.; Rizos, D.; Ward, F.; Boland, M.P. Factors Influencing Oocyte and Embryo Quality in Cattle. Reprod. Nutr. Dev. 2001, 41, 427–437. [Google Scholar] [CrossRef]
- Wrenzycki, C. Gene Expression Analysis and in Vitro Production Procedures for Bovine Preimplantation Embryos: Past Highlights, Present Concepts and Future Prospects. Reprod. Domest. Anim. 2018, 53, 14–19. [Google Scholar] [CrossRef]
- De Andrade Melo-Sterza, F.; Poehland, R. Lipid Metabolism in Bovine Oocytes and Early Embryos under in Vivo, in Vitro, and Stress Conditions. Int. J. Mol. Sci. 2021, 22, 3421. [Google Scholar] [CrossRef] [PubMed]
- Keane, J.A.; Ealy, A.D. An Overview of Reactive Oxygen Species Damage Occurring during In Vitro Bovine Oocyte and Embryo Development and the Efficacy of Antioxidant Use to Limit These Adverse Effects. Animals 2024, 14, 330. [Google Scholar] [CrossRef]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell. Longev. 2016, 2016, 1245049. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.R.; Silva, J.R.V. Mechanisms of Action of Non-Enzymatic Antioxidants to Control Oxidative Stress during in Vitro Follicle Growth, Oocyte Maturation, and Embryo Development. Anim. Reprod. Sci. 2023, 249, 107186. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Añez, J.C.; Henning, H.; Lucas-Hahn, A.; Baulain, U.; Aldag, P.; Sieg, B.; Hensel, V.; Herrmann, D.; Niemann, H. Melatonin Improves Rate of Monospermic Fertilization and Early Embryo Development in a Bovine IVF System. PLoS ONE 2021, 16, e0256701. [Google Scholar] [CrossRef] [PubMed]
- Salzano, A.; Albero, G.; Zullo, G.; Neglia, G.; Abdel-Wahab, A.; Bifulco, G.; Zicarelli, L.; Gasparrini, B. Effect of Resveratrol Supplementation during Culture on the Quality and Cryotolerance of Bovine in Vitro Produced Embryos. Anim. Reprod. Sci. 2014, 151, 91–96. [Google Scholar] [CrossRef]
- Soto-Heras, S.; Paramio, M.-T. Impact of Oxidative Stress on Oocyte Competence for in Vitro Embryo Production Programs. Res. Vet. Sci. 2020, 132, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Di Emidio, G.; Rea, F.; Placidi, M.; Rossi, G.; Cocciolone, D.; Virmani, A.; Macchiarelli, G.; Palmerini, M.G.; D’Alessandro, A.M.; Artini, P.G.; et al. Regulatory Functions of L-Carnitine, Acetyl, and Propionyl L-Carnitine in a PCOS Mouse Model: Focus on Antioxidant/Antiglycative Molecular Pathways in the Ovarian Microenvironment. Antioxidants 2020, 9, 867. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Lee, J.E.; Kang, J.W.; Oqani, R.K.; Cho, E.S.; Kim, S.B.; Il Jin, D. Melatonin Supplementation during Prolonged in Vitro Maturation Improves the Quality and Development of Poor-quality Porcine Oocytes via Anti-oxidative and Anti-apoptotic Effects. Mol. Reprod. Dev. 2018, 85, 665–681. [Google Scholar] [CrossRef] [PubMed]
- Pero, M.E.; Zullo, G.; Esposito, L.; Iannuzzi, A.; Lombardi, P.; De Canditiis, C.; Neglia, G.; Gasparrini, B. Inhibition of Apoptosis by Caspase Inhibitor Z-VAD-FMK Improves Cryotolerance of in Vitro Derived Bovine Embryos. Theriogenology 2018, 108, 127–135. [Google Scholar] [CrossRef]
- Dias, L.R.O.; Leme, L.O.; Sprícigo, J.F.W.; Pivato, I.; Dode, M.A.N. Effect of Delipidant Agents during in Vitro Culture on the Development, Lipid Content, Gene Expression and Cryotolerance of Bovine Embryos. Reprod. Domest. Anim. 2020, 55, 11–20. [Google Scholar] [CrossRef]
- Aizawa, R.; Ibayashi, M.; Tatsumi, T.; Yamamoto, A.; Kokubo, T.; Miyasaka, N.; Sato, K.; Ikeda, S.; Minami, N.; Tsukamoto, S. Synthesis and Maintenance of Lipid Droplets Are Essential for Mouse Preimplantation Embryonic Development. Development 2019, 146, dev181925. [Google Scholar] [CrossRef]
- Brown, D.A. Lipid Droplets: Proteins Floating on a Pool of Fat. Curr. Biol. 2001, 11, R446–R449. [Google Scholar] [CrossRef] [PubMed]
- Paczkowski, M.; Silva, E.; Schoolcraft, W.B.; Krisher, R.L. Comparative Importance of Fatty Acid Beta-Oxidation to Nuclear Maturation, Gene Expression, and Glucose Metabolism in Mouse, Bovine, and Porcine Cumulus Oocyte Complexes. Biol. Reprod. 2013, 88, 111. [Google Scholar] [CrossRef]
- Sturmey, R.; Reis, A.; Leese, H.; McEvoy, T. Role of Fatty Acids in Energy Provision During Oocyte Maturation and Early Embryo Development. Reprod. Domest. Anim. 2009, 44, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Kajdasz, A.; Warzych, E.; Derebecka, N.; Madeja, Z.E.; Lechniak, D.; Wesoly, J.; Pawlak, P. Lipid Stores and Lipid Metabolism Associated Gene Expression in Porcine and Bovine Parthenogenetic Embryos Revealed by Fluorescent Staining and RNA-Seq. Int. J. Mol. Sci. 2020, 21, 6488. [Google Scholar] [CrossRef]
- Sastre, D.; Costa, N.N.D.; Sá, A.L.A.D.; Conceição, S.D.B.; Chiaratti, M.R.; Adona, P.R.; Guemra, S.; Meirelles, F.V.; Santos, S.D.S.D.; Sena, L.; et al. Expression of PLIN2 and PLIN3 during Oocyte Maturation and Early Embryo Development in Cattle. Theriogenology 2014, 81, 326–331. [Google Scholar] [CrossRef]
- Schwarz, K.R.L.; De Castro, F.C.; Schefer, L.; Botigelli, R.C.; Paschoal, D.M.; Fernandes, H.; Leal, C.L.V. The Role of cGMP as a Mediator of Lipolysis in Bovine Oocytes and Its Effects on Embryo Development and Cryopreservation. PLoS ONE 2018, 13, e0191023. [Google Scholar] [CrossRef]
- Prates, E.G.; Nunes, J.T.; Pereira, R.M. A Role of Lipid Metabolism during Cumulus-Oocyte Complex Maturation: Impact of Lipid Modulators to Improve Embryo Production. Mediators Inflamm. 2014, 2014, 692067. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Sirard, M.-A. Metabolism of Fatty Acids in Follicular Cells, Oocytes, and Blastocysts. Reprod. Fertil. 2022, 3, R96–R108. [Google Scholar] [CrossRef] [PubMed]
- Janati Idrissi, S.; Le Bourhis, D.; Lefevre, A.; Emond, P.; Le Berre, L.; Desnoës, O.; Joly, T.; Buff, S.; Maillard, V.; Schibler, L.; et al. Lipid Profile of Bovine Grade-1 Blastocysts Produced Either in Vivo or in Vitro before and after Slow Freezing Process. Sci. Rep. 2021, 11, 11618. [Google Scholar] [CrossRef]
- Arroyave-Ospina, J.C.; Wu, Z.; Geng, Y.; Moshage, H. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy. Antioxidants 2021, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef] [PubMed]
- Del Collado, M.; Saraiva, N.Z.; Lopes, F.L.; Gaspar, R.C.; Padilha, L.C.; Costa, R.R.; Rossi, G.F.; Vantini, R.; Garcia, J.M. Influence of Bovine Serum Albumin and Fetal Bovine Serum Supplementation during in Vitro Maturation on Lipid and Mitochondrial Behaviour in Oocytes and Lipid Accumulation in Bovine Embryos. Reprod. Fertil. Dev. 2016, 28, 1721. [Google Scholar] [CrossRef] [PubMed]
- Koch, E.; Hopmann, C.; Fröhlich, L.; Schebb, N.H. Fatty Acid and Oxylipin Concentration Differ Markedly between Different Fetal Bovine Serums: A Cautionary Note. Lipids 2021, 56, 613–616. [Google Scholar] [CrossRef]
- Reis, A.; Rooke, J.A.; McCallum, G.J.; Staines, M.E.; Ewen, M.; Lomax, M.A.; McEvoy, T.G. Consequences of Exposure to Serum, with or without Vitamin E Supplementation, in Terms of the Fatty Acid Content and Viability of Bovine Blastocysts Produced in Vitro. Reprod. Fertil. Dev. 2003, 15, 275. [Google Scholar] [CrossRef] [PubMed]
- Nonogaki, T.; Noda, Y.; Goto, Y.; Kishi, J.; Mori, T. Developmental Blockage of Mouse Embryos Caused by Fatty Acids. J. Assist. Reprod. Genet. 1994, 11, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, S.; Nader, N.; Machaca, K. Lipid Signaling During Gamete Maturation. Front. Cell Dev. Biol. 2022, 10, 814876. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kinoshita, M.; Ohnishi, M.; Fukui, Y. Lipid and Fatty Acid Analysis of Fresh and Frozen–Thawed Immature and in Vitro Matured Bovine Oocytes. Reproduction 2001, 122, 131–138. [Google Scholar] [CrossRef]
- Zeron, Y.; Sklan, D.; Arav, A. Effect of Polyunsaturated Fatty Acid Supplementation on Biophysical Parameters and Chilling Sensitivity of Ewe Oocytes. Mol. Reprod. Dev. 2002, 61, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.R.; Redel, B.K.; Kerns, K.C.; Spate, L.D.; Prather, R.S. Challenges and Considerations during In Vitro Production of Porcine Embryos. Cells 2021, 10, 2770. [Google Scholar] [CrossRef]
- Nagashima, H.; Kashiwazaki, N.; Ashman, R.J.; Grupen, C.G.; Seamark, R.F.; Nottle, M.B. Removal of Cytoplasmic Lipid Enhances the Tolerance of Porcine Embryos to Chilling. Biol. Reprod. 1994, 51, 618–622. [Google Scholar] [CrossRef]
- Li, R.; Murphy, C.N.; Spate, L.; Wax, D.; Isom, C.; Rieke, A.; Walters, E.M.; Samuel, M.; Prather, R.S. Production of Piglets after Cryopreservation of Embryos Using a Centrifugation-Based Method for Delipation Without Micromanipulation1. Biol. Reprod. 2009, 80, 563–571. [Google Scholar] [CrossRef]
- Pereira, R.M.; Marques, C.C. Animal Oocyte and Embryo Cryopreservation. Cell Tissue Bank. 2008, 9, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Panyaboriban, S.; Tharasanit, T.; Chankitisakul, V.; Swangchan-Uthai, T.; Techakumphu, M. Treatment with Chemical Delipidation Forskolin Prior to Cryopreservation Improves the Survival Rates of Swamp Buffalo (Bubalus bubalis) and Bovine (Bos indicus) in Vitro Produced Embryos. Cryobiology 2018, 84, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Leal, C.L.V.; Cañón-Beltrán, K.; Cajas, Y.N.; Hamdi, M.; Yaryes, A.; Millán De La Blanca, M.G.; Beltrán-Breña, P.; Mazzarella, R.; Da Silveira, J.C.; Gutiérrez-Adán, A.; et al. Extracellular Vesicles from Oviductal and Uterine Fluids Supplementation in Sequential in Vitro Culture Improves Bovine Embryo Quality. J. Anim. Sci. Biotechnol. 2022, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- Mazzarella, R.; Cañón-Beltrán, K.; Cajas, Y.N.; Hamdi, M.; González, E.M.; Da Silveira, J.C.; Leal, C.L.V.; Rizos, D. Extracellular Vesicles-Coupled miRNAs from Oviduct and Uterus Modulate Signaling Pathways Related to Lipid Metabolism and Bovine Early Embryo Development. J. Anim. Sci. Biotechnol. 2024, 15, 51. [Google Scholar] [CrossRef]
- Lonergan, P.; Rizos, D.; Gutierrez-Adan, A.; Fair, T.; Boland, M. Oocyte and Embryo Quality: Effect of Origin, Culture Conditions and Gene Expression Patterns. Reprod. Domest. Anim. 2003, 38, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhao, H. Role of Carnitine in Non-Alcoholic Fatty Liver Disease and Other Related Diseases: An Update. Front. Med. 2021, 8, 689042. [Google Scholar] [CrossRef]
- Sharma, B.; Schmidt, L.; Nguyen, C.; Kiernan, S.; Dexter-Meldrum, J.; Kuschner, Z.; Ellis, S.; Bhatia, N.D.; Agriantonis, G.; Whittington, J.; et al. The Effect of L-Carnitine on Critical Illnesses Such as Traumatic Brain Injury (TBI), Acute Kidney Injury (AKI), and Hyperammonemia (HA). Metabolites 2024, 14, 363. [Google Scholar] [CrossRef]
- Rebouche, C.J. Kinetics, Pharmacokinetics, and Regulation of l-Carnitine and Acetyl-l-carnitine Metabolism. Ann. N. Y. Acad. Sci. 2004, 1033, 30–41. [Google Scholar] [CrossRef]
- Agarwal, A.; Sengupta, P.; Durairajanayagam, D. Role of L-Carnitine in Female Infertility. Reprod. Biol. Endocrinol. 2018, 16, 5. [Google Scholar] [CrossRef]
- Montjean, D.; Entezami, F.; Lichtblau, I.; Belloc, S.; Gurgan, T.; Menezo, Y. Carnitine Content in the Follicular Fluid and Expression of the Enzymes Involved in Beta Oxidation in Oocytes and Cumulus Cells. J. Assist. Reprod. Genet. 2012, 29, 1221–1225. [Google Scholar] [CrossRef] [PubMed]
- Placidi, M.; Di Emidio, G.; Virmani, A.; D’Alfonso, A.; Artini, P.G.; D’Alessandro, A.M.; Tatone, C. Carnitines as Mitochondrial Modulators of Oocyte and Embryo Bioenergetics. Antioxidants 2022, 11, 745. [Google Scholar] [CrossRef]
- Liang, Y.; Yoisungnern, T.; Huang, Y.; Parnpai, R. Effects of L-Carnitine on Embryo Development of Vitrified Swamp Buffalo Oocytes Following in Vitro Fertilization. Livest. Sci. 2020, 232, 103933. [Google Scholar] [CrossRef]
- Dunning, K.R.; Akison, L.K.; Russell, D.L.; Norman, R.J.; Robker, R.L. Increased Beta-Oxidation and Improved Oocyte Developmental Competence in Response to L-Carnitine During Ovarian In Vitro Follicle Development in Mice. Biol. Reprod. 2011, 85, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Imai, H.; Yamada, M. Beneficial effects of acetyl-L-carnitine treatment during IVM on post-fertilization development of bovine oocytes in vitro. Reprod. Fertil. Dev. 2006, 18, 280. [Google Scholar] [CrossRef]
- Arduini, A.; Dottori, S.; Sciarroni, A.F.; Corsico, N.; Morabito, E.; Arrigoni-Martelli, E.; Calvani, M. Effect of Propionyl-L-Carnitine Treatment on Membrane Phospholipid Fatty Acid Turnover in Diabetic Rat Erythrocytes. Mol. Cell. Biochem. 1995, 152, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Arenas, J.; Rubio, J.C.; Martín, M.A.; Campos, Y. Biological Roles of L-Carnitine in Perinatal Metabolism. Early Hum. Dev. 1998, 53, S43–S50. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, L.; Weng, J.; Yin, T.; Yang, J.; Feng, H.L. Biological Roles of L-Carnitine in Oocyte and Early Embryo Development. Mol. Reprod. Dev. 2021, 88, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Arduini, A.; Denisova, N.; Virmani, A.; Avrova, N.; Federici, G.; Arrigoni-Martelli, E. Evidence for the Involvement of Carnitine-Dependent Long-Chain Acyltransferases in Neuronal Triglyceride and Phospholipid Fatty Acid Turnover. J. Neurochem. 1994, 62, 1530–1538. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.-Y.; Geng, S.-S.; Li, T.-T.; Fu, Q.; Lu, S.-S.; Liang, X.-W.; Lu, Y.-Q.; Zhang, M.; Yang, X.-G.; Lu, K.-H. Maturation of Buffalo Oocytes in Vitro with Acetyl-L-Carnitine Improves Cryotolerance Due to Changes in Mitochondrial Function and the Membrane Lipid Profile. Reprod. Fertil. Dev. 2019, 31, 386. [Google Scholar] [CrossRef] [PubMed]
- Nagao, B.; Kobayashi, A.; Yamazaki, N. Effects of L-Carnitine on Phospholipids in the Ischemic Myocardium. Jpn. Heart J. 1987, 28, 243–251. [Google Scholar] [CrossRef]
- Ghanem, N.; Fakruzzaman, M.; Batawi, A.H.; Kong, I.-K. Post-Thaw Viability, Developmental and Molecular Deviations in in Vitro Produced Bovine Embryos Cultured with l-Carnitine at Different Levels of Fetal Calf Serum. Theriogenology 2022, 191, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Antenos, M.; Madan, P. A Comparative Analysis of Hippo Signaling Pathway Components during Murine and Bovine Early Mammalian Embryogenesis. Genes 2021, 12, 281. [Google Scholar] [CrossRef] [PubMed]
- Sonnen, K.F.; Janda, C.Y. Signalling Dynamics in Embryonic Development. Biochem. J. 2021, 478, 4045–4070. [Google Scholar] [CrossRef]
- Yu, F.-X.; Zhao, B.; Panupinthu, N.; Jewell, J.L.; Lian, I.; Wang, L.H.; Zhao, J.; Yuan, H.; Tumaneng, K.; Li, H.; et al. Regulation of the Hippo-YAP Pathway by G-Protein-Coupled Receptor Signaling. Cell 2012, 150, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Rausch, V.; Hansen, C.G. The Hippo Pathway, YAP/TAZ, and the Plasma Membrane. Trends Cell Biol. 2020, 30, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Y.; Chen, B.; Chan, W.N.; Mui, C.W.; Cheung, A.H.K.; Zhang, J.; Wong, K.Y.; Yu, J.; Kang, W.; et al. Targeting the Hippo Pathway in Gastric Cancer and Other Malignancies in the Digestive System: From Bench to Bedside. Biomedicines 2022, 10, 2512. [Google Scholar] [CrossRef] [PubMed]
- Negrón-Pérez, V.M.; Zhang, Y.; Hansen, P.J. Single-Cell Gene Expression of the Bovine Blastocyst. Reproduction 2017, 154, 627–644. [Google Scholar] [CrossRef]
- Sharma, J.; Madan, P. Differential Regulation of Hippo Signaling Pathway Components between 8-cell and Blastocyst Stages of Bovine Preimplantation Embryogenesis. Mol. Reprod. Dev. 2022, 89, 146–161. [Google Scholar] [CrossRef]
- Hansen, C.G.; Moroishi, T.; Guan, K.-L. YAP and TAZ: A Nexus for Hippo Signaling and Beyond. Trends Cell Biol. 2015, 25, 499–513. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Van Tol, H.T.A.; Oei, C.H.Y.; Stout, T.A.E.; Roelen, B.A.J. Lysophosphatidic Acid Accelerates Bovine In Vitro-Produced Blastocyst Formation through the Hippo/YAP Pathway. Int. J. Mol. Sci. 2021, 22, 5915. [Google Scholar] [CrossRef]
- Han, H.; Qi, R.; Zhou, J.J.; Ta, A.P.; Yang, B.; Nakaoka, H.J.; Seo, G.; Guan, K.-L.; Luo, R.; Wang, W. Regulation of the Hippo Pathway by Phosphatidic Acid-Mediated Lipid-Protein Interaction. Mol. Cell 2018, 72, 328–340.e8. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.-S.; Meng, Z.; Kim, Y.C.; Park, H.W.; Hansen, C.G.; Kim, S.; Lim, D.-S.; Guan, K.-L. Cellular Energy Stress Induces AMPK-Mediated Regulation of YAP and the Hippo Pathway. Nat. Cell Biol. 2015, 17, 500–510. [Google Scholar] [CrossRef]
- DeRan, M.; Yang, J.; Shen, C.-H.; Peters, E.C.; Fitamant, J.; Chan, P.; Hsieh, M.; Zhu, S.; Asara, J.M.; Zheng, B.; et al. Energy Stress Regulates Hippo-YAP Signaling Involving AMPK-Mediated Regulation of Angiomotin-like 1 Protein. Cell Rep. 2014, 9, 495–503. [Google Scholar] [CrossRef]
- Santinon, G.; Pocaterra, A.; Dupont, S. Control of YAP/TAZ Activity by Metabolic and Nutrient-Sensing Pathways. Trends Cell Biol. 2016, 26, 289–299. [Google Scholar] [CrossRef]
- Foretz, M.; Even, P.C.; Viollet, B. AMPK Activation Reduces Hepatic Lipid Content by Increasing Fat Oxidation In Vivo. Int. J. Mol. Sci. 2018, 19, 2826. [Google Scholar] [CrossRef] [PubMed]
- Shahouzehi, B.; Fallah, H.; Masoumi-Ardakani, Y.I. L-Carnitine Administration Effects on AMPK, APPL1 and PPAR? Genes Expression in the Liver and Serum Adiponectin Levels and HOMA-IR in Type 2 Diabetes Rat Model Induced by STZ and Nicotinamide. Ukr. Biochem. J. 2020, 92, 33–40. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Y.; Jiang, T.; Liu, B.; Sun, H.; Zhang, Y.; Fan, B.; Li, X.; Qin, X.; Zheng, Q. Enhancing Fatty Acids Oxidation via L-Carnitine Attenuates Obesity-Related Atrial Fibrillation and Structural Remodeling by Activating AMPK Signaling and Alleviating Cardiac Lipotoxicity. Front. Pharmacol. 2021, 12, 771940. [Google Scholar] [CrossRef]
- Sue, Y.-M.; Chou, H.-C.; Chang, C.-C.; Yang, N.-J.; Chou, Y.; Juan, S.-H. L-Carnitine Protects against Carboplatin-Mediated Renal Injury: AMPK- and PPARα-Dependent Inactivation of NFAT3. PLoS ONE 2014, 9, e104079. [Google Scholar] [CrossRef]
- Clark, K.L.; George, J.W.; Przygrodzka, E.; Plewes, M.R.; Hua, G.; Wang, C.; Davis, J.S. Hippo Signaling in the Ovary: Emerging Roles in Development, Fertility, and Disease. Endocr. Rev. 2022, 43, 1074–1096. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, G.; Ruggeri, N.; Specchia, V.; Cordenonsi, M.; Mano, M.; Dupont, S.; Manfrin, A.; Ingallina, E.; Sommaggio, R.; Piazza, S.; et al. Metabolic Control of YAP and TAZ by the Mevalonate Pathway. Nat. Cell Biol. 2014, 16, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Guerra, B.; Recio, C.; Aranda-Tavío, H.; Guerra-Rodríguez, M.; García-Castellano, J.M.; Fernández-Pérez, L. The Mevalonate Pathway, a Metabolic Target in Cancer Therapy. Front. Oncol. 2021, 11, 626971. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Y.; Wang, H.; Zhang, Y.; Mei, L.; Fang, X.; Zhang, X.; Zhang, F.; Chen, H.; Liu, Y.; et al. Interplay of Mevalonate and Hippo Pathways Regulates RHAMM Transcription via YAP to Modulate Breast Cancer Cell Motility. Proc. Natl. Acad. Sci. USA 2014, 111, E89–E98. [Google Scholar] [CrossRef] [PubMed]
- Ortega, Á.; Vera, I.; Diaz, M.; Navarro, C.; Rojas, M.; Torres, W.; Parra, H.; Salazar, J.; De Sanctis, J.; Bermúdez, V. The YAP/TAZ Signaling Pathway in the Tumor Microenvironment and Carcinogenesis: Current Knowledge and Therapeutic Promises. Int. J. Mol. Sci. 2021, 23, 430. [Google Scholar] [CrossRef]
- Kashiwagi, A.; Kanno, T.; Arita, K.; Ishisaka, R.; Utsumi, T.; Utsumi, K. Suppression of T3- and Fatty Acid-Induced Membrane Permeability Transition by l-Carnitine. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2001, 130, 411–418. [Google Scholar] [CrossRef] [PubMed]
Cow (No. Trials) | No. Follicles | No. Oocytes | Cleavage (%) | Blastocyst Rate (%) |
---|---|---|---|---|
A (2) | 56.0 ± 1.0 a | 17.5 ± 3.5 a | 54.5 ± 16.5 | 20.0 ± 1 a |
B (4) | 24.7 ± 5.6 b | 9.5 ± 2.3 ab | 70 ± 15.9 | 52.5 ± 18.3 ab |
C (4) | 9.0 ± 1.2 c | 4 ± 0.8 b | 89 ± 6.2 | 78 ± 7.7 b |
Trial | No. Follicles | No. Oocytes | Cleavage (%) | Blastocyst Rate (%) |
---|---|---|---|---|
1 | 14 ± 2.8 | 6 ± 1.7 | 66 ± 15 | 31 ± 14.2 |
2 | 14 ± 3.5 | 6 ± 1.1 | 67 ± 5.5 | 20 ± 13.3 |
3 | 19 ± 2.4 | 11 ± 2.1 | 68 ± 7.9 | 20 ± 7.1 |
4 | 16 ± 2.0 | 9 ± 1.1 | 56 ± 8.2 | 23 ± 11.5 |
5 | 14 ± 2.9 | 5 ± 2.1 | 42 ± 17 | 39 ± 13.1 |
6 | 11 ± 2.1 | 5 ± 1.1 | 34 ± 16.2 | 18 ± 10.2 |
7 | 13 ± 2.1 | 7 ± 1.8 | 27 ± 13 | 5.5 ± 3.7 |
8 | 12 ± 2.4 | 6 ± 2.5 | 44 ± 12.1 | 15 ± 7.1 |
9 | 12 ± 2.4 | 6 ± 1.2 | 33 ± 17.1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salek, F.; Guest, A.; Johnson, C.; Kastelic, J.P.; Thundathil, J. Factors Affecting the Success of Ovum Pick-Up, In Vitro Production and Cryopreservation of Embryos in Cattle. Animals 2025, 15, 344. https://doi.org/10.3390/ani15030344
Salek F, Guest A, Johnson C, Kastelic JP, Thundathil J. Factors Affecting the Success of Ovum Pick-Up, In Vitro Production and Cryopreservation of Embryos in Cattle. Animals. 2025; 15(3):344. https://doi.org/10.3390/ani15030344
Chicago/Turabian StyleSalek, Farzaneh, Alysha Guest, Chinju Johnson, John P. Kastelic, and Jacob Thundathil. 2025. "Factors Affecting the Success of Ovum Pick-Up, In Vitro Production and Cryopreservation of Embryos in Cattle" Animals 15, no. 3: 344. https://doi.org/10.3390/ani15030344
APA StyleSalek, F., Guest, A., Johnson, C., Kastelic, J. P., & Thundathil, J. (2025). Factors Affecting the Success of Ovum Pick-Up, In Vitro Production and Cryopreservation of Embryos in Cattle. Animals, 15(3), 344. https://doi.org/10.3390/ani15030344