Sensory Reconstruction of the Fossil Lorisid Mioeuoticus: Systematic and Evolutionary Implications
Simple Summary
Abstract
1. Introduction
1.1. Vision
1.2. Olfaction
1.3. Audition and Proprioception
1.4. Phylogenetic Implications
1.5. Institutional Abbreviations
2. Methods
2.1. Vision
2.2. Olfaction
2.3. Audition
3. Results
3.1. Vision
3.2. Olfaction
3.2.1. Turbinals of the Left Nasal Cavity
3.2.2. Turbinals of the Right Nasal Cavity
3.2.3. Vomeronasal Groove
3.3. Audition
4. Discussion
4.1. Olfaction
4.1.1. Audition and Proprioception
4.1.2. Vision
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Torres, S.; Silcox, M.T. What We Know (and Don’t Know) About the Fossil Records of Lorisids. In Evolution, Ecology and Conservation of Lorises and Pottos; Cambridge University Press: Cambridge, UK, 2020; pp. 33–46. [Google Scholar]
- Burrows, A.M.; Nash, L.T.; Hartstone-Rose, A.; Selig, K.R.; Silcox, M.T.; López-Torres, S. What Role Did Gum-Feeding Play in the Evolution of the Lorises? Cambridge University Press: Cambridge, UK, 2020; 154p. [Google Scholar]
- Nekaris, A.; Bearder, S.K. The Lorisiform primates of Asia and mainland Africa. Primates Perspect. 2007, 236, 24–45. [Google Scholar]
- Nekaris, K.A.I.; Starr, C.R.; Collins, R.L.; Wilson, A. Comparative ecology of exudate feeding by lorises (Nycticebus, Loris) and pottos (Perodicticus, Arctocebus). In The Evolution of Exudativory in Primates; Springer: New York, NY, USA, 2010; pp. 155–168. [Google Scholar]
- Seiffert, E.R.; Simons, E.L.; Attia, Y. Fossil evidence for an ancient divergence of lorises and galagos. Nature 2003, 422, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Pickford, M.; Wanas, H.; Soliman, H. Indications for a humid climate in the Western Desert of Egypt 11–10 Myr ago: Evidence from Galagidae (Primates, Mammalia). C. R. Comptes Rendus Palevol 2006, 5, 935–943. [Google Scholar] [CrossRef]
- Walker, A.; Ryan, T.M.; Silcox, M.T.; Simons, E.L.; Spoor, F. The semicircular canal system and locomotion: The case of extinct lemuroids and lorisoids. Evol. Anthropol. Issues News Rev. Issues News Rev. 2008, 17, 135–145. [Google Scholar] [CrossRef]
- Fulwood, E.L.; Shan, S.; Winchester, J.M.; Gao, T.; Kirveslahti, H.; Daubechies, I.; Boyer, D.M. Reconstructing dietary ecology of extinct strepsirrhines (Primates, Mammalia) with new approaches for characterizing and analyzing tooth shape. Paleobiology 2021, 47, 612–631. [Google Scholar] [CrossRef]
- López-Torres, S.; Selig, K.R.; Burrows, A.M.; Silcox, M.T. The toothcomb of Karanisia clarki. In Evolution, Ecology and Conservation of Lorises and Pottos; Nekaris, K.A.I., Burrows, A.M., Eds.; Cambridge University Press: Cambridge, UK, 2020; pp. 67–75. [Google Scholar]
- MacPhee, R.D.E.; Jacobs, L.L. Nycticeboides simpsoni and the morphology, adaptations, and relationships of Miocene Siwalik Lorisidae. Vertebr. Phylogeny Philos. Contrib. Geological. Univ. Wyo. Spec. Pap. 1986, 3, 131–162. [Google Scholar]
- Selig, K.R.; López-Torres, S.; Burrows, A.M.; Silcox, M.T. Dental Topographic Analysis of Living and Fossil Lorisoids: Investigations into Markers of Exudate Feeding in Lorises and Galagos. Int. J. Primatol. 2024, 8, 951–971. [Google Scholar] [CrossRef]
- Selig, K.R.; López-Torres, S.; Burrows, A.M.; Silcox, M.T.; Meng, J. Dental caries in living and extinct strepsirrhines with insights into diet. Anat. Rec. 2024, 307, 1995–2006. [Google Scholar]
- Flynn, L.J.; Morgan, M.E. New lower primates from the Miocene Siwaliks of Pakistan. In Interpreting the Past: Essays on Human, Primate, and Mammal Evolution in Honor of David Pilbeam; Lieberman, D., Smith, R.W., Kelley, J., Eds.; Brill Academic Publishers: Boston, MA, USA, 2005; pp. 81–102. [Google Scholar]
- Harrison, T. Later Tertiary Lorisiformes. Cenozoic Mamm. Afr. 2010, 333, 349. [Google Scholar]
- Phillips, E.M.; Walker, A. A new species of fossil lorisid from the Miocene of East Africa. Primates 2000, 41, 367–372. [Google Scholar] [CrossRef]
- Spoor, F.; Garland Jr, T.; Krovitz, G.; Ryan, T.M.; Silcox, M.T.; Walker, A. The primate semicircular canal system and locomotion. Proc. Natl. Acad. Sci. USA 2007, 104, 10808–10812. [Google Scholar] [CrossRef] [PubMed]
- Kay, R.F.; Kirk, E.C. Osteological evidence for the evolution of activity pattern and visual acuity in primates. Am. J. Phys. Anthropol. Off. Publ. Am. Assoc. Phys. Anthropol. 2000, 113, 235–262. [Google Scholar] [CrossRef]
- Crompton, R. Visual predation, habitat structure, and the ancestral primate niche. In Creatures of the Dark: The Nocturnal Prosimians; Springer: Boston, MA, USA, 1995; pp. 11–30. [Google Scholar]
- Dominy, N.J.; Ross, C.F.; Smith, T.D. Evolution of the special senses in primates: Past, present, and future. Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. Off. Publ. Am. Assoc. Anat. 2004, 281, 1078–1082. [Google Scholar] [CrossRef]
- Bearder, S.K.; Nekaris, K.A.I.; Curtis, D.J. A re-evaluation of the role of vision in the activity and communication of nocturnal primates. Folia Primatol. 2006, 77, 50–71. [Google Scholar] [CrossRef]
- Kirk, E.C.; Kay, R.F. The evolution of high visual acuity in the Anthropoidea. In Anthropoid Origins: New Visions; Springer: Boston, MA, USA, 2004; pp. 539–602. [Google Scholar]
- Kremers, J. (Ed.) The Primate Visual System: A Comparative Approach; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Nekaris, K.A.I. Foraging behaviour of the slender loris (Loris lydekkarianus lydekkarianus): Implications for theories of primate origins. J. Hum. Evol. 2005, 49, 289–300. [Google Scholar] [CrossRef]
- Barton, R.A. Olfactory evolution and behavioural ecology in primates. Am. J. Primatol. Off. J. Am. Soc. Primatol. 2006, 68, 545–558. [Google Scholar]
- Brennan, P.A.; Kendrick, K.M. Mammalian social odours: Attraction and individual recognition. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 2061–2078. [Google Scholar] [CrossRef]
- Sanchez-Andrade, G.; Kendrick, K.M. The main olfactory system and social learning in mammals. Behav. Brain Res. 2009, 200, 323–335. [Google Scholar] [CrossRef]
- Hoover, K.C. Smell with inspiration: The evolutionary significance of olfaction. Am. J. Phys. Anthropol. 2010, 143, 63–74. [Google Scholar] [CrossRef]
- Nevo, O.; Heymann, E.W. Led by the nose: Olfaction in primate feeding ecology. Evol. Anthropol. Issues News Rev. 2015, 24, 137–148. [Google Scholar] [CrossRef]
- Schwambergová, D.; Třebická Fialová, J.; Havlíček, J. Olfaction-Mediated Pathogen Avoidance in Mammals. In Symposium of Chemical Signals in Vertebrates; Springer International Publishing: Cham, Switzerland, 2021; pp. 207–232. [Google Scholar]
- Smith, T.D.; Bhatnagar, K.P.; Tuladhar, P.; Burrows, A.M. Distribution of olfactory epithelium in the primate nasal cavity: Are “microsmia” and “macrosmia” valid morphological concepts? Anat. Rec. 2004, 281, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.D.; Bhatnagar, K.P.; Rossie, J.B.; Docherty, B.A.; Burrows, A.M.; Cooper, G.M.; Mooney, M.P.; Siegel, M.I. Scaling of the first ethmoturbinal in nocturnal strepsirrhines: Olfactory and respiratory surfaces. Anat. Rec. Adv. Integr. Anat. Evol. Biol. Adv. Integr. Anat. Evol. Biol. 2007, 290, 215–237. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.D.; Rossie, J.B.; Bhatnagar, K.P. Evolution of the nose and nasal skeleton in primates. Evol. Anthropol. Issues News Rev. 2007, 16, 132–146. [Google Scholar] [CrossRef]
- Laska, M.; Salazar, L.T.H. Olfaction in nonhuman primates. Handb. Olfaction Gustation 2015, 27, 605–622. [Google Scholar]
- Døving, K.B.; Trotier, D. Structure and function of the vomeronasal organ. J. Exp. Biol. 1998, 201, 2913–2925. [Google Scholar] [CrossRef]
- Halpern, M.; Martínez-Marcos, A. Structure and function of the vomeronasal system: An update. Prog. Neurobiol. 2003, 70, 245–318. [Google Scholar] [CrossRef]
- Smith, T.; Rose, K.D.; Gingerich, P.D. Rapid Asia-Europe-North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene-Eocene thermal maximum. Proc. Natl. Acad. Sci. USA 2006, 103, 11223–11227. [Google Scholar] [CrossRef]
- Smith, T.D.; Eiting, T.P.; Bonar, C.J.; Craven, B.A. Nasal morphometry in marmosets: Loss and redistribution of olfactory surface area. Anat. Rec. 2014, 297, 2093–2104. [Google Scholar] [CrossRef]
- Lundeen, I.K. Internal nasal morphology of the Eocene primate Rooneyia viejaensis and extant Euarchonta: Using μCT scan data to understand and infer patterns of nasal fossa evolution in primates. J. Hum. Evol. 2019, 132, 137–173. [Google Scholar] [CrossRef]
- Maier, W.; Ruf, I. Morphology of the Nasal Capsule of Primates—With Special Reference to Daubentonia and Homo. Anat. Rec. 2014, 297, 1985–2006. [Google Scholar] [CrossRef]
- Smith, T.D.; Martell, M.C.; Rossie, J.B.; Bonar, C.J.; Deleon, V.B. Ontogeny and microanatomy of the nasal turbinals in Lemuriformes. Anat. Rec. 2016, 299, 1492–1510. [Google Scholar] [CrossRef] [PubMed]
- Lundeen, I.K. Making scents of olfactory sensitivity in lorises and pottos. In Behaviour, Ecology and Evolutionary Biology of Lorises and Pottos; Cambridge University Press: Cambridge, UK, 2020; pp. 97–112. [Google Scholar]
- Lundeen, I.K.; Kay, R.F. Unique nasal turbinal morphology reveals Homunculus patagonicus functionally converged on modern platyrrhine olfactory sensitivity. J. Hum. Evol. 2022, 167, 103184. [Google Scholar] [CrossRef] [PubMed]
- Dittus, W.P.J. Toque macaque food calls: Semantic communication concerning food distribution in the environment. Anim. Behav. 1984, 32, 470–477. [Google Scholar] [CrossRef]
- Goerlitz, H.R.; Siemers, B.M. Sensory ecology of prey rustling sounds: Acoustical features and their classification by wild grey mouse lemurs. Funct. Ecol. 2007, 21, 143–153. [Google Scholar] [CrossRef]
- Blumstein, D.T. The evolution of functionally referential alarm communication: Multiple adaptations; multiple constraints. Evol. Commun. 2002, 3, 135–147. [Google Scholar] [CrossRef]
- Zuberbühler, K. Monkey alarm calls. In Monkeys of the Taï Forest: An African Primate Community; McGraw, S., Zuberbühler, K., Noë, R., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 194–220. [Google Scholar]
- Semple, S.; McComb, K. Perception of female reproductive state from vocal cues in a mammal species. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000, 267, 707–712. [Google Scholar] [CrossRef]
- Ramsier, M.A.; Cunningham, A.J.; Finneran, J.J.; Dominy, N.J. Social drive and the evolution of primate hearing. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1860–1868. [Google Scholar] [CrossRef]
- Berlin, E.G. Form and function of the mammalian inner ear. J. Anat. 2016, 228, 324–337. [Google Scholar]
- Kirk, E.C.; Gosselin-Ildari, A.D. Cochlear labyrinth volume and hearing abilities in primates. Anat. Rec. Adv. Integr. Anat. Evol. Biol. Adv. Integr. Anat. Evol. Biol. 2009, 292, 765–776. [Google Scholar] [CrossRef]
- Urciuoli, A.; Zanolli, C.; Beaudet, A.; Dumoncel, J.; Santos, F.; Moya-Sola, S.; Alba, D.M. The evolution of the vestibular apparatus in apes and humans. Elife 2020, 9, e51261. [Google Scholar] [CrossRef]
- Spoor, F.; Wood, B.; Zonneveld, F. Implications of early hominid labyrinthine morphology for evolution of human bipedal locomotion. Nature 1994, 369, 645–648. [Google Scholar] [CrossRef] [PubMed]
- Spoor, F.; Zonneveld, F. Morphometry of the primate bony labyrinth: A new method based on high-resolution computed tomography. J. Anat. 1995, 186, 271. [Google Scholar] [PubMed]
- Spoor, F.; Wood, B.; Zonneveld, F. Evidence for a link between human semicircular canal size and bipedal behaviour. J. Hum. Evol. 1996, 30, 183–187. [Google Scholar] [CrossRef]
- Jeffery, N.; Ryan, T.M.; Spoor, F. The primate subarcuate fossa and its relationship to the semicircular canals part II: Adult interspecific variation. J. Hum. Evol. 2008, 55, 326–339. [Google Scholar] [CrossRef]
- Spoor, F.; Hublin, J.J.; Braun, M.; Zonneveld, F. The bony labyrinth of Neanderthals. J. Hum. Evol. 2003, 44, 141–165. [Google Scholar] [CrossRef]
- Rook, L.; Bondioli, L.; Casali, F.; Rossi, M.; Kohler, M.; Sola, S.M.; Macchiarelli, R. The bony labyrinth of Oreopithecus bambolii. J. Hum. Evol. 2004, 46, 349–356. [Google Scholar] [CrossRef]
- Silcox, M.T.; Dalmyn, C.K.; Bloch, J.I. Virtual endocast of Ignacius graybullianus (Paromomyidae, Primates) and brain evolution in early primates. Proc. Natl. Acad. Sci. USA 2009, 106, 10987–10992. [Google Scholar] [CrossRef]
- Gonzales, L.A.; Malinzak, M.D.; Kay, R.F. Intraspecific variation in semicircular canal morphology—A missing element in adaptive scenarios? Am. J. Phys. Anthropol. 2019, 168, 10–24. [Google Scholar] [CrossRef]
- Smith, T.D.; Rossie, J.B. Nasal fossa of mouse and dwarf lemurs (Primates, Cheirogaleidae). Anat. Rec. 2008, 291, 895–915. [Google Scholar] [CrossRef]
- Lebrun, R.; De León, M.P.; Tafforeau, P.; Zollikofer, C. Deep evolutionary roots of strepsirrhine primate labyrinthine morphology. J. Anat. 2010, 216, 368–380. [Google Scholar] [CrossRef]
- Perier, A.; Lebrun, R.; Marivaux, L. Different level of intraspecific variation of the bony labyrinth morphology in slow-versus fast-moving primates. J. Mamm. Evol. 2016, 23, 353–368. [Google Scholar] [CrossRef]
- Jacobson, L. Anatomisk Beskrivelse over et nyt Organ i Huusdyrenes Næse. Veterinær-Selsk. Skr. 1813, 2, 209–246. [Google Scholar]
- Bhatnagar, K.P.; Meisami, E. Vomeronasal organ in bats and primates: Extremes of structural variability and its phylogenetic implications. Microsc. Res. Technol. 1998, 43, 465–475. [Google Scholar] [CrossRef]
- Keverne, E.B. The vomeronasal organ. Science 1999, 286, 716–720. [Google Scholar] [CrossRef]
- Garrett, E.C.; Dennis, J.C.; Bhatnagar, K.P.; Durham, E.L.; Burrows, A.M.; Bonar, C.J.; Steckler, N.K.; Morrison, E.E.; Smith, T.D. The vomeronasal complex of nocturnal strepsirrhines and implications for the ancestral condition in primates. Anat. Rec. 2013, 296, 1881–1894. [Google Scholar] [CrossRef]
- Frets, G.P. On the external nose of Primates. In Proceedings of Koninklijke Nederlandse Akademie van Wetenschappen; KNAW: Amsterdam, The Netherlands, 1912; Volume 15, pp. 129–134. Available online: www.dwc.knaw.nl (accessed on 19 December 2024).
- Loo, S.K.; Kanagasunteram, R. The vomeronasal organ in tree shrew and slow loris. J. Anat. 1972, 112, 165. [Google Scholar]
- Maier, W. Nasal structures in Old and New World primates. In Evolutionary Biology of the New World Monkeys and Continental Drift; Springer: Boston, MA, USA, 1980; pp. 219–241. [Google Scholar]
- Schilling, A. L’organe de Jacobson du lemurien malgache Microcebus murinus (Miller, 1977). Mem. Du Mus. Natl. D’histoire Nat. (Ser. A) 1970, 61, 203–280. [Google Scholar]
- Hedewig, R. Vergleichende anatomische untersuchungen an den Jacobsonschen organen von Nycticebus coucang (Boddaert, 1785) (Prosimiae, Lorisidae) und Galago crassicaudatus (E. Geoffroy, 1812) (Prosimiae, Lorisidae). II. Galago crassicaudatus. Gegenbaurs Morphol. Jahrbuche 1980, 126, 676–722. [Google Scholar]
- Hedewig, R. Vergleichende anatomische untersuchungen an den Jacobsonschen organen von Nycticebus coucang (Boddaert, 1785) (Prosimiae, Lorisidae) und Galago crassicaudatus. (E. Geoffroy, 1812) (Prosimiae, Lorisidae).I. Nycticebus coucang. Gegenbaurs Morphol. Jahrbuche 1980, 126, 543–593. [Google Scholar]
- Smith, T.D.; Bhatnagar, K.P.; Burrows, A.M.; Shimp, K.L.; Dennis, J.C.; Smith, M.A.; Maico-Tan, L.; Morrison, E.E. The vomeronasal organ of greater bushbabies (Otolemur spp.): Species, sex, and age differences. J. Neurocytol. 2005, 34, 135–147. [Google Scholar] [CrossRef]
- Smith, T.D.; Garrett, E.C.; Bhatnagar, K.P.; Bonar, C.J.; Bruening, A.E.; Dennis, J.C.; Kinznger, J.H.; Johnson, E.W.; Morrison, E.E. The vomeronasal organ of New World monkeys (Platyrrhini). Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2011, 294, 2158–2178. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.D.; Muchlinski, M.N.; Bhatnagar, K.P.; Durham, E.L.; Bonar, C.J.; Burrows, A.M. The vomeronasal organ of Lemur catta. Am. J. Primatol. 2015, 77, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Garrett, E.C. Was There a Sensory Trade-Off in Primate Evolution? The Vomeronasal Groove as a Means of Understanding the Vomeronasal System in the Fossil Record; City University of New York: New York, NY, USA, 2015. [Google Scholar]
- Smith, T.D.; Rossie, J.B. Primate olfaction: Anatomy and evolution. In Olfaction and the Brain: Window to the Mind; Cambridge University Press: Cambridge, UK, 2006; pp. 135–166. [Google Scholar]
- Eiting, T.P.; Smith, T.D.; Perot, J.B.; Dumont, E.R. The role of the olfactory recess in olfactory airflow. J. Exp. Biol. 2014, 217, 1799–1803. [Google Scholar] [CrossRef] [PubMed]
- Craven, B.A.; Paterson, E.G.; Settles, G.S. The fluid dynamics of canine olfaction: Unique nasal airflow patterns as an explanation of macrosmia. J. R. Soc. Interface 2010, 7, 933–943. [Google Scholar] [CrossRef]
- Muchlinski, M.N. Ecological correlates of infraorbital foramen area in primates. Am. J. Phys. Anthropol. Off. Publ. Am. Assoc. Phys. Anthropol. 2010, 141, 131–141. [Google Scholar] [CrossRef]
- Benoit, J.; Marzougui, W.; Ammar, H.K.; Lebrun, R.; Tabuce, R.; Marivaux, L. New insights into the ear region anatomy and cranial blood supply of advanced stem Strepsirhini: Evidence from three primate petrosals from the Eocene of Chambi, Tunisia. J. Hum. Evol. 2013, 65, 551–572. [Google Scholar] [CrossRef]
- Lebrun, R.; Godinot, M.; Couette, S.; Tafforeau, P.; Zollikofer, C. The labyrinthine morphology of Pronycticebus gaudryi (Primates, Adapiformes). Palaeobiodiversity Palaeoenvironments 2012, 92, 527–537. [Google Scholar] [CrossRef]
- Spoor, F.; Zonneveld, F. Comparative review of the human bony labyrinth. Am. J. Phys. Anthropol. Off. Publ. Am. Assoc. Phys. Anthropol. 1998, 107, 211–251. [Google Scholar] [CrossRef]
- Malinzak, M.D.; Kay, R.F.; Hullar, T.E. Locomotor head movements and semicircular canal morphology in primates. Proc. Natl. Acad. Sci. USA 2012, 109, 17914–17919. [Google Scholar] [CrossRef]
- Berlin, J.C.; Kirk, E.C.; Rowe, T.B. Functional implications of ubiquitous semicircular canal non-orthogonality in mammals. PLoS ONE 2013, 8, 79585. [Google Scholar] [CrossRef]
- Bernardi, M.; Couette, S. Eocene paleoecology of Adapis parisiensis (Primate, Adapidae): From inner ear to lifestyle. Anat. Rec. 2017, 300, 1576–1588. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, R.; Bertrand, O.C.; Silcox, M.T. Evolution of arboreality and fossoriality in squirrels and aplodontid rodents: Insights from the semicircular canals of fossil rodents. J. Anat. 2021, 238, 96–112. [Google Scholar] [CrossRef] [PubMed]
- Silcox, M.T.; Bloch, J.I.; Boyer, D.M.; Godinot, M.; Ryan, T.M.; Spoor, F.; Walker, A. Semicircular canal system in early primates. J. Hum. Evol. 2009, 56, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Ryan, T.M.; Silcox, M.T.; Walker, A.; Mao, X.; Begun, D.R.; Benefit, B.R.; Gingerich, P.D.; Köhler, M.; Kordos, L.; McCrossin, M.L.; et al. Evolution of locomotion in Anthropoidea: The semicircular canal evidence. Proc. R. Soc. B 2012, 279, 3467–3475. [Google Scholar] [CrossRef]
- Mein, P.; Ginsburg, L. Les mammifères du gisement miocène inférieur de Li Mae Long, Thaïlande: Systématique, biostratigraphie et paléoenvironnement. Geodiversitas 1997, 19, 783–844. [Google Scholar]
- Harrison, T. Galagidae (Lorisoidea, Primates). In Paleontology and Geology of Laetoli: Human Evolution in Context: Fossil Hominins and the Associated Fauna, 2nd ed.; Harrison, T., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 75–81. [Google Scholar]
Left Nasoturbinal | Right Nasoturbinal | Left Frontoturbinal | Right Frontoturbinal | Left Interturbinal | Right Interturbinal | Left Ethmoturbinal I | Right Ethmoturbinal I | Left Ethmoturbinal II | Right Ethmoturbinal II | Left Ethmoturbinal III | Right Ethmoturbinal III | Left Nasolacrimal canal | Left Maxilloturbinal | Right Maxilloturbinal | Right Nasolacrimal Canal | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Medial length | 8.79 | 8.58 | 5.52 | 5.16 | 3.62 | 3.62 | 5.7 | 8.67 | 8.97 | 7.8 | 5.64 | 4.41 | 3.84 | 17.5 | 18.02 | 3.28 |
Lateral length | 8.06 | 7.88 | 6.09 | 5.39 | 3.62 | 3.62 | 4.02 | 8.14 | 8.69 | 8.85 | 10.3 | 6.91 | 3.84 | 17.5 | 18.02 | 3.28 |
Anterior width | 4.72 | 3.12 | 3.93 | 3.69 | 0.16 | 0.16 | 8.65 | 8.21 | 1.45 | 1.07 | 5.67 | 6.59 | 4.7 | / | / | 2.01 |
Posterior width | 3.59 | 3.93 | 2.3 | 3.77 | 0.16 | 0.16 | 5.55 | 1.44 | 11.26 | 3.54 | 4.41 | 6.61 | 4.7 | / | / | 2.01 |
Scrolled portion | 7.81 | 7.81 | / | / | / | / | 2.05 | 2.04 | 3.45 | 2.46 | 1.28 | 1.52 | / | 1.08 | / | / |
Scroll maximum diameter | 3.32 | 2.57 | / | / | / | / | 2.19 | 4.59 | 2.4 | 2.57 | 3.7 | 4.94 | / | 3.5 | / | / |
Anterior height | 3.87 | 2.73 | 5.73 | 4.84 | 1.28 | 1.28 | 4.61 | 2.98 | 9.1 | 3.12 | 2.35 | 6.52 | / | / | / | / |
Posterior height | 12.13 | 12.57 | 1.29 | 1.74 | 0.05 | 0.05 | 0.85 | 0.95 | 2.74 | 1.48 | 2.76 | 2.57 | / | / | / | / |
Bulla portion | / | / | / | / | / | / | 1.54 | 1.28 | 0.27 | / | / | / | / | 2.7 | / | / |
Bulla cross-section | / | / | / | / | / | / | 3.22 | 7.02 | 2.4 | / | / | / | / | 3.5 | / | / |
Anterior lateral contact points | / | / | / | / | / | / | 0.8 | 1.06 | / | / | 2.35 | 6.52 | / | / | / | / |
Posterior lateral contact points | / | / | / | / | / | / | / | / | / | / | 1.63 | 1.73 | / | / | / | / |
Turbinal | Surface Area (mm2) |
---|---|
Maxilloturbinal (left) | 151.36 |
Maxilloturbinal (right) | 134.52 |
Nasoturbinal (left) | 77.07 |
Nasoturbinal (right) | 83.38 |
Ethmoturbinal I (left) | 111.13 |
Ethmoturbinal I (right) | 119.18 |
Frontoturbinal (left) | 35.68 |
Frontoturbinal (right) | 31.06 |
Ethmoturbinal II (left) | 111.72 |
Ethmoturbinal II (right) | 84.89 |
Interturbinal (left) | 6.21 |
Interturbinal (right) | 7.36 |
Ethmoturbinal III (left) | 65.58 |
Ethmoturbinal III (right) | 55.95 |
Fragments (left) | 17.74 |
Fragments (right) | 17.09 |
Total | 1109.92 |
LSC-ASC | LSC-PSC | ASC-PSC | |
---|---|---|---|
Left inner ear | 101° | 101° | 105° |
Right inner ear | 102° | 102° | 105° |
Deviation from orthogonality | 11.5° | 11.5° | 15° |
Height | Width | |
---|---|---|
Left | ||
Lateral semicircular canal | 2.94 | 3.3 |
Posterior semicircular canal | 2.34 | 3.05 |
Anterior semicircular canal | 3.61 | 3.25 |
Right | ||
Lateral semicircular canal | 2.93 | 2.92 |
Posterior semicircular canal | 2.65 | 2.95 |
Anterior semicircular canal | 3.38 | 3.19 |
Species | Specimen ID | Publication Reference |
---|---|---|
Nycticebus coucang | MCZ-BOM-5118 | Lundeen and Kirk [38] |
Loris tardigradus | BAA-0006 | Lundeen and Kirk [38] |
Perodicticus potto | MCZ-25831 | Lundeen and Kirk [38] |
Rooneyia viejaensis | TMM 40688-7 | Lundeen and Kirk [38] |
Arctocebus calabarensis | YPM-Mam-014402 | Lundeen [41] |
Mioeuoticus shipmani | KNM-RU 2052 | Current study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, H.E.; Lis, A.; Lundeen, I.; Silcox, M.T.; López-Torres, S. Sensory Reconstruction of the Fossil Lorisid Mioeuoticus: Systematic and Evolutionary Implications. Animals 2025, 15, 345. https://doi.org/10.3390/ani15030345
Anderson HE, Lis A, Lundeen I, Silcox MT, López-Torres S. Sensory Reconstruction of the Fossil Lorisid Mioeuoticus: Systematic and Evolutionary Implications. Animals. 2025; 15(3):345. https://doi.org/10.3390/ani15030345
Chicago/Turabian StyleAnderson, Holly E., Adam Lis, Ingrid Lundeen, Mary T. Silcox, and Sergi López-Torres. 2025. "Sensory Reconstruction of the Fossil Lorisid Mioeuoticus: Systematic and Evolutionary Implications" Animals 15, no. 3: 345. https://doi.org/10.3390/ani15030345
APA StyleAnderson, H. E., Lis, A., Lundeen, I., Silcox, M. T., & López-Torres, S. (2025). Sensory Reconstruction of the Fossil Lorisid Mioeuoticus: Systematic and Evolutionary Implications. Animals, 15(3), 345. https://doi.org/10.3390/ani15030345