Effects of Dietary Yeast (Saccharomyces cerevisia) Supplementation in Practical Diets of Tilapia (Oreochromis niloticus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Experimental Section
2.1. Fish and Husbandry Conditions
2.2. Experimental Diets
( a) | ||||||
Dietary yeast level (%) | ||||||
Ingredients | 0 | 10 | 15 | 20 | 30 | 40 |
Fishmeal 1 | 25.0 | 18.0 | 16.0 | 13.0 | 8.0 | 0.0 |
Dried yeast 2 | 0.0 | 12.0 | 16.0 | 19.0 | 27.0 | 38.0 |
Soya meal 3 | 15.7 | 18.6 | 19.0 | 21.9 | 24.4 | 28.5 |
Starch | 18.0 | 18.0 | 18.0 | 18.0 | 18.0 | 18.0 |
Soya oil | 2.7 | 3.6 | 3.8 | 4.2 | 4.8 | 5.2 |
Wheat | 29.5 | 20.0 | 17.1 | 13.6 | 6.9 | 0.0 |
Premix 4 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
Binder | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Fosforin 5 | 0.0 | 1.5 | 1.0 | 1.5 | 1.5 | 1.9 |
Cellulose | 4.7 | 3.9 | 4.6 | 4.4 | 4.8 | 3.6 |
L-lysine-HCL | 0.6 | 0.7 | 0.6 | 0.7 | 0.8 | 0.8 |
DL-methionine | 0.4 | 0.4 | 0.5 | 0.5 | 0.5 | 0.6 |
Cr2O3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Nutrient composition | ||||||
Dry matter | 97.0 | 96.9 | 95.6 | 96.6 | 96.3 | 95.8 |
Crude protein | 28.3 | 27.1 | 27.4 | 27.1 | 27.2 | 26.3 |
Crude fat | 9.8 | 10.3 | 10.3 | 11.1 | 11.4 | 11.9 |
Ash | 9.8 | 10.2 | 9.7 | 9.5 | 9.0 | 8.5 |
Phosphorus | 1.0 | 1.2 | 1.0 | 1.2 | 1.0 | 0.9 |
Gross energy (kJ·g−1) | 18.7 | 18.5 | 18.7 | 18.8 | 18.9 | 18.8 |
(b) | ||||||
Indispensable amino acids | ||||||
Arginine | 1.6 | 1.5 | 1.4 | 1.5 | 1.4 | 1.4 |
Histidine | 0.8 | 0.7 | 0.7 | 0.7 | 0.6 | 0.6 |
Isoleucine | 0.9 | 0.9 | 0.9 | 1.0 | 1.0 | 1.0 |
Leucine | 1.8 | 1.7 | 1.7 | 1.7 | 1.7 | 1.6 |
Lysine | 2.0 | 2.0 | 1.9 | 2.0 | 2.0 | 1.9 |
Valine | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 |
Phenylalanine | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9 |
Methionine | 0.8 | 0.8 | 0.8 | 0.9 | 0.8 | 0.9 |
Threonine | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Dispensable amino acids | ||||||
Alanine | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.3 |
Aspartic acid | 2.3 | 2.3 | 2.2 | 2.3 | 2.3 | 2.3 |
Cystine | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 |
Glycine | 1.5 | 1.3 | 1.3 | 1.2 | 1.1 | 1.0 |
Glutamic acid | 3.6 | 3.6 | 3.6 | 3.7 | 3.7 | 3.7 |
Serine | 1.0 | 1.1 | 1.1 | 1.1 | 1.1 | 0.9 |
Tyrosine | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.8 |
2.3. Sampling, Analytical Procedure and Measurements
2.4. Statistical Analyses
3. Results and Discussion
Dietary yeast level (%) | |||||||
---|---|---|---|---|---|---|---|
Performance | 0 | 10 | 15 | 20 | 30 | 40 | ANOVA P > F |
Final body weight (g) | 28.8 ± 1.5 ab | 26.5 ± 1.6 ab | 24.4 ± 1.8 bc | 21.8 ± 0.2 cd | 19.7 ± 0.7 de | 15.6 ± 1.5 e | 0.0001 |
DGC 1 | 2.11 ± 0.12 a | 2.08 ± 0.14 a | 1.87 ± 0.22 ab | 1.64 ± 0.04 bc | 1.42 ± 0.09 c | 1.02 ± 0.17 d | 0.0001 |
FCR 2 | 1.5 ± 0.1 a | 1.5 ± 0.1 a | 1.5 ± 0.2 a | 1.7 ± 0.1 ab | 1.8 ± 0.1 ab | 2.1 ± 0.0 b | 0.0001 |
VFI 3 | 3.14 ± 0.09 | 3.26 ± 0.37 | 2.98 ± 0.17 | 3.05 ± 0.14 | 2.92 ± 0.03 | 2.63 ± 0.38 | NS |
PER 4 | 1.9 ± 0.3 a | 2.4 ± 0.2 b | 2.5 ± 0.12 b | 2.5 ± 0.4 b | 2.2 ± 0.2 ab | 2.1 ± 0.1 a | 0.04 |
N gain 5 (mg·kg−1ABW·day−1) | 514.9 ± 12.4 a | 527.1 ± 35.4 a | 455.9 ± 55.8 ab | 424.8 ± 16.6 ab | 385.8 ± 24.3 bc | 312.4 ± 60.6 c | 0.0002 |
Retention 6 | |||||||
Dry matter | 19.6 ± 0.9 a,b | 20.1 ± 1.3 a | 19 ± 3.4ab | 17.6 ± 1.2 ab | 16.7 ± 0.9 ab | 15 ± 0.7 b | 0.02 |
Crude Protein | 36.3 ± 1.9 a | 37.4 ± 2.2 a | 35.1 ± 3.4a | 32.3 ± 2.5 ab | 30.4 ± 1.6 b | 28.2 ± 1.3 b | 0.02 |
Crude Lipid | 64.4 ± 4.1 a | 62.5 ± 4.3 ab | 59.4 ± 9.4ab | 56.4 ± 2.1 ab | 48 ± 7 b | 49.2 ± 2.3 b | 0.01 |
Gross Energy | 25.7 ± 1.1 | 26.1 ± 3.7 | 25.7 ± 3.4 | 23.4 ± 1.7 | 22.7 ± 1.9 | 21 ± 0.8 | NS |
Dietary yeast level (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Initial | 0 | 10 | 15 | 20 | 30 | 40 | ANOVA P > F | ||
Dry matter | 22.87a | 26.2 ± 0.3c | 27.2 ± 0.5c | 25.6 ± 0.7bc | 26.2 ± 0.2c | 26.3 ± 0.3c | 26.4 ± 1.1c | 0.0001 | |
Crude protein | 60.6a | 54.3 ± 0.2b | 52.7 ± 0.7bc | 53.4 ± 0.7b | 53.0 ± 0.2b | 53.5 ± 0.5b | 54.2 ± 0.8b | 0.0001 | |
Crude lipid | 17.9a | 25.3 ± 0.5c | 25.6 ± 1.9c | 24.3 ± 2.4c | 25.9 ± 0.7c | 24.4 ± 1.3c | 23.5 ± 1.7bc | 0.0001 | |
Ash (DM) | 16.4a | 13.3 ± 0.2c | 14.5 ± 1bc | 14.6 ± 1.5bc | 14.4 ± 1.3bc | 15.3 ± 1.8c | 15.6 ± 0.7c | 0.0001 | |
Gross energy (kJ·g−1) | 14.5a | 22.1 ± 0.3b | 21.8 ± 1.9b | 22.4 ± 0.4b | 21.9 ± 0.7b | 21.9 ± 0.7b | 21.1 ± 0.6b | 0.0001 | |
Apparent Digestibility (%) | |||||||||
Protein | 82.3 ± 2.3 | 81.3 ± 0.2 | 78.6 ± 3.0 | 78.1 ± 2.1 | 79.4 ± 2.3 | 78.3 ± 1.6 | NS | ||
Lipid | 87.3 ± 5.7 | 84.9 ± 3.1 | 87.2 ± 2.6 | 87.6 ± 2.2 | 89.7 ± 1.2 | 94.2 ± 1.6 | NS |
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.M.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Tacon, A.G.J.; Dominy, W.G. Overview of world aquaculture and aquafeed production. In Proceedings of World Aquaculture 1999: the Annual International Conference and Exposition of the World Aquaculture Society, Sidney, Australia, 26 April–2 May 1999; p. 853.
- Siddhuraju, P.; Becker, K. Preliminary nutritional evaluation of Mucuna seed meal (Mucuna pruriens var. utilis) in common carp (Cyprinus carpio L.): An assessment by growth performance and feed utilization. Aquaculture 2001, 196, 105–123. [Google Scholar] [CrossRef]
- Schulz, E.; Oslage, H.J. Composition and nutritive value of single-cell protein SCP. Anim. Feed Sci. Technol. 1976, 1, 9–24. [Google Scholar] [CrossRef]
- Essa, M.A.; Mabrouk, H.A.; Mohamed, R.A.; Michael, F.R. Evaluating different additive levels of yeast, Saccharomyces cerevisiae, on the growth and production performances of a hybrid of two populations of Egyptian African catfish, Clarias gariepinus. Aquaculture 2011, 320, 137–141. [Google Scholar] [CrossRef]
- Li, P.; Gatlin, D.M. Evaluation of brewers yeast (Saccharomyces cerevisiae) as a feed supplement for hybrid striped bass (Morone chrysops × M. saxatilis). Aquaculture 2003, 219, 681–692. [Google Scholar] [CrossRef]
- De la Huiguera, M.; Sanchez-Muniz, F.J.; Mataix, F.J.; Varela, G. Nitrogen utilization by rainbow trout Salmo gairdneri fed on the yeast Hansenula anomala. Compar. Physiol. Biochem. 1981, 69A, 583–586. [Google Scholar]
- Rumsey, G.L.; Kinsella, J.E.; Shetty, K.J.; Hughes, S.G. Effect of high dietary concentrations of brewer’s dried yeast on growth performance and liver uricase in rainbow trout (Oncorhynchus mykiss). Anim. Feed Sci. Technol. 1991, 33, 177–183. [Google Scholar] [CrossRef]
- Rumsey, G.L.; Winfree, R.A.; Hughes, S.G. Nutritional-value of dietary nucleic-acids and purine-bases to rainbow-trout (Oncorhynchus-mykiss). Aquaculture 1992, 108, 97–110. [Google Scholar] [CrossRef]
- Baccarin, A.E.; Pezzato, L.E.; Urbinati, E.C. Efeito da alimentação com levedura desidratada de álcool na glicemia e nos níveis de glicogênio e lipídeos totais hepáticos da tilápia do Nilo (Oreochromis niloticus). Boletim do Instituto de Pesca 2000, 26, 163–167. [Google Scholar]
- Oliva-Teles, A.; Goncalves, P. Partial replacement of fishmeal by brewers yeast (Saccaromyces cerevisae) in diets for sea bass (Dicentrarchus labrax) juveniles. Aquaculture 2001, 202, 269–278. [Google Scholar] [CrossRef]
- Ozório, R.O.A.; Turini, B.G.S.; Moro, G.; Oliveira, L.S.T.; Portz, L.; Cyrino, J.E.P. Growth, nitrogen gain and indispensable amino acid retention of pacu (Piaractus mesopotamicus, Holmberg 1887) fed different brewers yeast (Saccharomyces cerevisiae) levels. Aquacult. Nutr. 2010, 16, 276–283. [Google Scholar]
- Furukawa, A.; Tsukahara, H. On the acid digestion method for the determination of chromic oxide as an index substance in the study of digestibility of fish feed. Bull. Jpn. Soc. Sci. Fish. 1966, 32, 503–506. [Google Scholar]
- Cho, C.Y.; Slinger, S.J.; Bayley, H.S. Bioenergetics of salmonid fishes: Energy intake, expenditure and productivity. Compend. Biochem. Phys. 1982, 73B, 25–41. [Google Scholar]
- Cho, C.Y.; Kaushik, S.J. Nutritional energetics in fish: Energy and protein utilization in rainbow trout (Salmo gairdneri). World Rev. Nutr. Diet. 1990, 61, 132–172. [Google Scholar] [PubMed]
- Zar, J.H. Biostatistical Analysis, 3rd ed.; 1996; p. 718. Prentice-Hall International Editions: Englewood Cliffs, NJ, USA. [Google Scholar]
- Lara-Flores, M.; Olvera-Novoa, M.A.; Guzmán-Méndez, B.E.; López-Madrid, W. Use of bacteria Streptococus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia Oreochromis niloticus. Aquaculture 2003, 216, 193–201. [Google Scholar] [CrossRef]
- Craig, S.R.; McLean, E. Nutrigenomics in aquaculture research: A key in the Aquanomic revolution. In Nutritional Biotechnology in the Food and Feed Industry; Jacques, K., Lyons, P., Eds., Eds.; 2006; Nottingham University Press: Nottingham, UK. [Google Scholar]
- Paulsen, S.M.; Lunde, H.; Engstad, R.E.; Robertsen, B. In vivo effects of beta-glucan and LPS on regulation of lysozyme activity and mRNA expression in Atlantic salmon (Salmo salar L.). Fish Shellfish Immunol. 2003, 14, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Rumsey, G.L.; Anderson, D.P.; Siwicki, A.K. Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet. Immunol. Immunopathol. 1994, 41, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.P.; Siwicki, A.K.; Rumsey, G.L. Injection or immersion delivery of selected immunostimulants to trout demonstrate enhancement of non-specific defence mechanisms and protective immunity. In Diseases in Asian Aquaculture: II Fish Health Section; Shariff, M., Arthur, J.R., Subasinghe, R.P., Eds.; Asian Fisheries Society: Manila, Philippines, 1995; pp. 413–426. [Google Scholar]
- Yoshida, T.; Kruger, R.; Inglis, V. Augmentation of nonspecific protection in african catfish, Clarias-gariepinus (Burchell), by the long-term oral-administration of immunostimulants. J. Fish Dis. 1995, 18, 195–198. [Google Scholar] [CrossRef]
- Bedford, M.R.; Classen, H.L. Reduction of intestinal viscosity through manipulation of dietary rye and pentosanase concentration is effected through changes in the carbohydrate composition of the intestinal aqueous phase and results in improved growth rate and food conversion efficiency of broiler chicks. J. Nutr. 1992, 122, 560–569. [Google Scholar] [PubMed]
- Olvera-Novoa, M.A.; Martinez-Palacios, C.A.; Olivera-Castillo, L. Utilization of torula yeast (Candida utilis) as a protein source in diets for tilapia (Oreochromis mossambicus Peters) fry. Aquacult. Nutr. 2002, 8, 257–264. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ozório, R.O.A.; Portz, L.; Borghesi, R.; Cyrino, J.E.P. Effects of Dietary Yeast (Saccharomyces cerevisia) Supplementation in Practical Diets of Tilapia (Oreochromis niloticus). Animals 2012, 2, 16-24. https://doi.org/10.3390/ani2010016
Ozório ROA, Portz L, Borghesi R, Cyrino JEP. Effects of Dietary Yeast (Saccharomyces cerevisia) Supplementation in Practical Diets of Tilapia (Oreochromis niloticus). Animals. 2012; 2(1):16-24. https://doi.org/10.3390/ani2010016
Chicago/Turabian StyleOzório, Rodrigo O. A., Leandro Portz, Ricardo Borghesi, and José E. P. Cyrino. 2012. "Effects of Dietary Yeast (Saccharomyces cerevisia) Supplementation in Practical Diets of Tilapia (Oreochromis niloticus)" Animals 2, no. 1: 16-24. https://doi.org/10.3390/ani2010016
APA StyleOzório, R. O. A., Portz, L., Borghesi, R., & Cyrino, J. E. P. (2012). Effects of Dietary Yeast (Saccharomyces cerevisia) Supplementation in Practical Diets of Tilapia (Oreochromis niloticus). Animals, 2(1), 16-24. https://doi.org/10.3390/ani2010016