Mitochondria-Rich Cells: A Novel Type of Concealed Cell in the Small Intestine of Chinese Soft-Shelled Turtles (Pelodiscus Sinensis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Tissue Blocks Preparation
2.2. Periodic Acid Schiff (PAS) Staining
2.3. Transmission Electron Microscopy (TEM)
2.4. Immunohistochemistry (IHC)
2.5. Immunofluorescence (IF)
2.6. Statistical Analysis
3. Results
3.1. Light Microscopy
3.2. Transmission Electron Microcopy
3.3. Immunohistochemistry and Immunofluorescence
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Putterill, J.; Soley, J. General Morphology of the oral cavity of the Nile crocodile, Crocodylus niloticus (Laurenti, 1768). I. Palate and gingivae. Onderst. J. Vet. Res. 2003, 70, 281–297. [Google Scholar] [CrossRef]
- Parsons, T.S.; Cameron, J.E. Internal relief of the digestive tract. Biol. Rept. 1977, 6, 159–223. [Google Scholar]
- Ghishan, F.K.; Kiela, P.R. Small intestinal ion transport. Curr. Opin. Gastroenterol. 2012, 28, 130. [Google Scholar] [CrossRef] [PubMed]
- Elbrønd, V.S.; Dantzer, V.; Skadhauge, E. Differences in epithelial morphology correlate to Na+-transport: A study of the proximal, mid, and distal regions of the coprodeum from hens on high and low NaCl diet. J. Morphol. 1999, 239, 75–86. [Google Scholar] [CrossRef]
- Ura, K.; Soyano, K.; Omoto, N.; Adachi, S.; Yamauchi, K. Localization of Na+, K+-ATPase in tissues of rabbit and teleosts using an antiserum directed against a partial sequence of the α-subunit. Zool. Sci. 1996, 13, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, K.; Hiroi, J.; Kaneko, T.; Matsuda, M.; Hirano, T.; Mori, T. In vitro effects of environmental salinity and cortisol on chloride cell differentiation in embryos of Mozambique tilapia, Oreochromis mossambicus, measured using a newly developed ‘yolk-ball’incubation system. J. Exp. Biol. 2001, 204, 1883–1888. [Google Scholar]
- Nebel, C.; Romestand, B.; Nègre-Sadargues, G.; Grousset, E.; Aujoulat, F.; Bacal, J.; Bonhomme, F.; Charmantier, G. Differential freshwater adaptation in juvenile sea-bass Dicentrarchus labrax: Involvement of gills and urinary system. J. Exp. Biol. 2005, 208, 3859–3871. [Google Scholar] [CrossRef]
- Elbrønd, V.S.; Jones, C.J.; Skadhauge, E. Localization, morphology and function of the mitochondria-rich cells in relation to transepithelial Na+-transport in chicken lower intestine (coprodeum). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2004, 137, 683–696. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Chen, Q.; Su, Z.; Qin, J.; Xu, C.; Arencibia, A.; Rodríguez-Ponce, E.; Jaber, J. The study of microanatomy of intestinal epithelium in the Chinese soft-shelled turtle (Pelodiscus sinensis). Iran. J. Vet. Res. 2017, 18, 282. [Google Scholar] [PubMed]
- Keys, A.; Willmer, E. ‘Chloride secreting cells’ in the gills of fishes, with special reference to the common eel. J. Physiol. 1932, 76, 368–378. [Google Scholar] [CrossRef]
- Kaneko, T.; Watanabe, S.; Lee, K.M. Functional Morphology of Mitochondrion-Rich Cells in Euryhaline and Stenohaline Teleosts; Citeseer: Tokyo, Japan, 2008; pp. 1–62. [Google Scholar]
- Jonz, M.G.; Nurse, C.A. Epithelial mitochondria-rich cells and associated innervation in adult and developing zebrafish. J. Comp. Neurol. 2006, 497, 817–832. [Google Scholar] [CrossRef]
- Foskett, J.K.; Scheffey, C. The chloride cell: Definitive identification as the salt-secretory cell in teleosts. Science 1982, 215, 164–166. [Google Scholar] [CrossRef]
- Karnaky, K.J., Jr. Structure and function of the chloride cell of Fundulus heteroclitus and other teleosts. Am. Zool. 1986, 26, 209–224. [Google Scholar] [CrossRef]
- Perry, S.F. The chloride cell: Structure and function in the gills of freshwater fishes. Annu. Rev. Plant Physiol. 1997, 59, 325–347. [Google Scholar] [CrossRef]
- Devuyst, O.; Beaujean, V.; Crabbé, J. Effects of environmental conditions on mitochondrial-rich cell density and chloride transport in toad skin. Pflügers Arch. 1991, 417, 577–581. [Google Scholar] [CrossRef]
- Perry, S.F. Relationships between branchial chloride cells and gas transfer in freshwater fish. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 1998, 119, 9–16. [Google Scholar] [CrossRef]
- Evans, D.H.; Piermarini, P.M.; Potts, W. Ionic transport in the fish gill epithelium. J. Exp. Zool. 1999, 283, 641–652. [Google Scholar] [CrossRef]
- COSTA, O.T.D.; Ramos, C.A.; Duncan, W.P.; Lameiras, J.L.; Fernandes, M.N. Mitochondria-rich cells changes induced by nitrite exposure in tambaqui (Colossoma macropomum Cuvier, 1818). An. Acad. Bras. Ciênc. 2017, 89, 965–972. [Google Scholar] [CrossRef] [Green Version]
- Carmo, T.L.; Azevedo, V.C.; Siqueira, P.R.; Galvão, T.D.; Santos, F.A.; Martinez, C.B.; Appoloni, C.R.; Fernandes, M.N. Mitochondria-rich cells adjustments and ionic balance in the Neotropical fish Prochilodus lineatus exposed to titanium dioxide nanoparticles. Aquat. Toxicol. 2018, 200, 168–177. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, H. Cytochemical studies on the formation of multivesicular bodies in Leydig cells. Shiyan J. Biol. 1990, 23, 453–463. [Google Scholar]
- Hu, G.; Gong, A.-Y.; Roth, A.L.; Huang, B.Q.; Ward, H.D.; Zhu, G.; LaRusso, N.F.; Hanson, N.D.; Chen, X.-M. Release of luminal exosomes contributes to TLR4-mediated epithelial antimicrobial defense. PLoS Pathog. 2013, 9, e1003261. [Google Scholar] [CrossRef]
- Hwang, P.-P.; Lee, T.-H.; Weng, C.-F.; Fang, M.-J.; Cho, G.-Y. Presence of Na-K-ATPase in mitochondria-rich cells in the yolk-sac epithelium of larvae of the teleost Oreochromis mossambicus. Physiol. Biochem. Zool. 1999, 72, 138–144. [Google Scholar] [CrossRef] [PubMed]
- McBride, B.; Kelly, J. Energy cost of absorption and metabolism in the ruminant gastrointestinal tract and liver: A review. J. Anim. Sci. 1990, 68, 2997–3010. [Google Scholar] [CrossRef] [PubMed]
- Mallegol, J.; Van Niel, G.; Lebreton, C.; Lepelletier, Y.; Candalh, C.; Dugave, C.; Heath, J.K.; Raposo, G.; Cerf–Bensussan, N.; Heyman, M. T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology 2007, 132, 1866–1876. [Google Scholar] [CrossRef] [PubMed]
- Cocucci, E.; Racchetti, G.; Meldolesi, J. Shedding microvesicles: Artefacts no more. Trends Cell Boil. 2009, 19, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, A.M.; Specker, J.L. Metamorphosis in the summer flounder Paralichthys dentatus: Changes in gill mitochondria-rich cells. J. Exp. Biol. 1999, 202, 2475–2484. [Google Scholar]
- Yang, S.H.; Tsai, J.D.; Kang, C.K.; Yang, W.K.; Kung, H.N.; Lee, T.H. The ultrastructural characterization of mitochondria-rich cells as a response to variations in salinity in two types of teleostean pseudobranch: Milkfish (Chanos chanos) and Mozambique tilapia (Oreochromis mossambicus). J. Morphol. 2017, 278, 390–402. [Google Scholar] [CrossRef]
- Lin, H.-C.; Sung, W.-T. The distribution of mitochondria-rich cells in the gills of air-breathing fishes. Phys. Biol. Zool. 2003, 76, 215–228. [Google Scholar] [CrossRef]
- Kanakasabapathy, I.; Rajakumari, S.J.; Subramani, S.; Rao, P.J. Mitochondria-rich Cells in South Indian Green Pond Frog (euphlyctishexadactylus)-A Light and Electron Microscopic Study. J. Anat. Soc. India 2009, 58, 126–129. [Google Scholar]
- Cramp, R.L.; Kayes, S.M.; Meyer, E.A.; Franklin, C.E. Ups and downs of intestinal function with prolonged fasting during aestivation in the burrowing frog, Cyclorana alboguttata. J. Exp. Biol. 2009, 212, 3656–3663. [Google Scholar] [CrossRef]
- Lucu, Č.; Towle, D.W. Na++ K+-ATPase in gills of aquatic crustacea. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2003, 135, 195–214. [Google Scholar] [CrossRef]
- Wood, C.M.; Shuttleworth, T.J. Cellular and Molecular Approaches to Fish Ionic Regulation; Academic Press: New York, NY, USA, 1995; Volume 14, p. 352. [Google Scholar]
- Klöhn, P.C.; Castro-Seoane, R.; Collinge, J. Exosome release from infected dendritic cells: A clue for a fast spread of prions in the periphery? J. Infect. 2013, 67, 359–368. [Google Scholar] [CrossRef]
- Johnstone, R.M. Exosomes biological significance: A concise review. Blood Cells Mol. Dis. 2006, 36, 315–321. [Google Scholar] [CrossRef]
- Fritsche, C.; Kleinman, J.; Bain, J.; Heinen, R.; Riley, D. Carbonic anhydrase in turtle bladder mitochondrial-rich luminal and subluminal cells. Am. J. Physiol. Renal Physiol. 1991, 260, F431–F442. [Google Scholar] [CrossRef]
- Lai, K.P.; Li, J.-W.; Gu, J.; Chan, T.-F.; Tse, W.K.F.; Wong, C.K.C. Transcriptomic analysis reveals specific osmoregulatory adaptive responses in gill mitochondria-rich cells and pavement cells of the Japanese eel. BMC Genom. 2015, 16, 1072. [Google Scholar] [CrossRef]
- Benjamin, J.L.; Sumpter, R., Jr.; Levine, B.; Hooper, L.V. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe 2013, 13, 723–734. [Google Scholar] [CrossRef]
- Ferreira, F.F.; Nazari, E.M.; Müller, Y.M. MeHg Causes Ultrastructural Changes in Mitochondria and Autophagy in the Spinal Cord Cells of Chicken Embryo. J. Toxicol. 2018, 2018, 12. [Google Scholar] [CrossRef]
Cytological Parameters | MRC | AEC | GC |
---|---|---|---|
Cytoplasmic density | +++ | + | + |
Mitochondria | |||
Overall amount | +++ | + | + |
Morphological heterogeneity | ++ | ++ | ++ |
Vacuolization | + | − | − |
MVB | + | + | − |
Lysosome | + | + | + |
Tubular system (TS) | |||
Dilated TS | +++ | − | − |
Small TS | ++ | − | − |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali Vistro, W.; Liu, Y.; Xu, M.; Yang, P.; Haseeb, A.; Huang, Y.; Bai, X.; Yu, L.; Gandahi, N.S.; Tarique, I.; et al. Mitochondria-Rich Cells: A Novel Type of Concealed Cell in the Small Intestine of Chinese Soft-Shelled Turtles (Pelodiscus Sinensis). Animals 2019, 9, 717. https://doi.org/10.3390/ani9100717
Ali Vistro W, Liu Y, Xu M, Yang P, Haseeb A, Huang Y, Bai X, Yu L, Gandahi NS, Tarique I, et al. Mitochondria-Rich Cells: A Novel Type of Concealed Cell in the Small Intestine of Chinese Soft-Shelled Turtles (Pelodiscus Sinensis). Animals. 2019; 9(10):717. https://doi.org/10.3390/ani9100717
Chicago/Turabian StyleAli Vistro, Waseem, Yifei Liu, Mengdi Xu, Ping Yang, Abdul Haseeb, Yufei Huang, Xuebing Bai, Liang Yu, Noor Samad Gandahi, Imran Tarique, and et al. 2019. "Mitochondria-Rich Cells: A Novel Type of Concealed Cell in the Small Intestine of Chinese Soft-Shelled Turtles (Pelodiscus Sinensis)" Animals 9, no. 10: 717. https://doi.org/10.3390/ani9100717
APA StyleAli Vistro, W., Liu, Y., Xu, M., Yang, P., Haseeb, A., Huang, Y., Bai, X., Yu, L., Gandahi, N. S., Tarique, I., & Chen, Q. (2019). Mitochondria-Rich Cells: A Novel Type of Concealed Cell in the Small Intestine of Chinese Soft-Shelled Turtles (Pelodiscus Sinensis). Animals, 9(10), 717. https://doi.org/10.3390/ani9100717