Effect of Dietary Inulin Supplementation on Growth Performance, Carcass Traits, and Meat Quality in Growing–Finishing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Blood Analysis
2.3. Carcass Traits
2.4. Meat Quality
2.5. RNA Extraction and Real-Time RT-PCR
2.6. Statistical Analyses
3. Results
3.1. Growth Performance
3.2. Serum Metabolites, Hormones, and Antioxidant Capacity
3.3. Carcass Traits and Meat Quality
3.4. Expression of Genes Related to Metabolism
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roberfroid, M. Prebiotics: The concept revisited. J. Nutr. 2007, 137, 830S–837S. [Google Scholar] [CrossRef]
- Roberfroid, M.B.; Van, L.J.; Gibson, G.R. The bifidogenic nature of chicory inulin and its hydrolysis products. J. Nutr. 1998, 128, 11–19. [Google Scholar] [CrossRef]
- Meyer, D.; Stasse-Wolthuis, M. The bifidogenic effect of inulin and oligofructose and its consequences for gut health. Eur. J. Clin. Nutr. 2009, 63, 1277. [Google Scholar] [CrossRef]
- Shukla, G.; Bhatia, R.; Sharma, A. Prebiotic inulin supplementation modulates the immune response and restores gut morphology ingiardia duodenalis-infected malnourished mice. Parasitol. Res. 2016, 115, 4189–4198. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.K.; Yasuda, K.; Welch, R.M.; Miller, D.D.; Lei, X.G. Supplemental dietary inulin of variable chain lengths alters intestinal bacterial populations in young pigs. J. Nutr. 2010, 140, 2158–2161. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Schroyen, M.; Leblois, J.; Wavreille, J.; Soyeurt, H.; Bindelle, J.; Everaert, N. Effects of inulin supplementation to piglets in the suckling period on growth performance, postileal microbial and immunological traits in the suckling period and three weeks after weaning. Arch. Anim. Nutr. 2018, 72, 425–442. [Google Scholar] [CrossRef] [PubMed]
- Tako, E.; Glahn, R.P.; Welch, R.M.; Lei, X.; Yasuda, K.; Miller, D.D. Dietary inulin affects the expression of intestinal enterocyte iron transporters, receptors and storage protein and alters the microbiota in the pig intestine. Br. J. Nutr. 2008, 99, 472–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Yin, J.; Zhang, J.; Ward, R.E.; Martin, R.J.; Lefevre, M.; Cefalu, W.T.; Ye, J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009, 58, 1509–1517. [Google Scholar] [CrossRef]
- Tappy, L.; Gugolz, E.; Wursch, P. Effects of breakfast cereals containing various amounts of β-Glucan fibers on plasma glucose and insulin responses in niddm subjects. Diabetes Care 1996, 19, 831–834. [Google Scholar] [CrossRef]
- De, V.F.; Kovatcheva-Datchary, P.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. Cell Metab. 2016, 24, 151–157. [Google Scholar] [Green Version]
- Joo, S.T.; Kim, G.D.; Hwang, Y.H.; Ryu, Y.C. Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Sci. 2013, 95, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Henchion, M.; Mccarthy, M.; Resconi, V.C.; Troy, D. Meat consumption: Trends and quality matters. Meat Sci. 2014, 98, 561–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varel, V.H.; Jung, H.G.; Pond, W.G. Effects of dietary fiber of young adult genetically lean, obese and contemporary pigs: Rate of passage, digestibility and microbiological data. J. Anim. Sci. 1988, 66, 707. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Jun-Jie, J.; Jie, Y.U.; Xiang-Bing, M.; Bing, Y.U.; Dai-Wen, C. Effect of dietary supplementation with mulberry (Morus alba L.) leaves on the growth performance, meat quality and antioxidative capacity of finishing pigs. J. Integr. Agric. 2019, 18, 147–155. [Google Scholar]
- Pond, W.G.; Jung, H.G.; Varel, V.H. Effect of dietary fiber on young adult genetically lean, obese and contemporary pigs: Body weight, carcass measurements, organ weights and digesta content. J. Anim. Sci. 1988, 66, 699. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Yang, Z.B.; Yang, W.R.; Pang, Y.H. Effects of dietary crude fiber level on production performance, carcass performance and meat quality of finishing pigs. Chin. J. Anim. Sci. 2014, 50, 36–40. [Google Scholar]
- Awad, W.A.; Khaled, G.; Nadine, P.L.; Jürgen, Z. Dietary inulin alters the intestinal absorptive and barrier function of piglet intestine after weaning. Res. Vet. Sci. 2013, 95, 249–254. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Swine: Eleventh Revised Edition; National Academies Press: Washington, DC, USA, 2012; pp. 210–211. [Google Scholar]
- Liu, J.B.; Yan, H.L.; Zhang, Y.; Hu, Y.D.; Zhang, H.F. Effects of stale maize on growth performance, immunity, intestinal morphology and antioxidant capacity in broilers. Asian Australas. J. Anim. 2019. [Google Scholar] [CrossRef]
- Yan, H.L.; Cao, S.C.; Li, Y.; Zhang, H.F.; Liu, J.B. Reduced meal frequency alleviates high-fat diet-induced lipid accumulation and inflammation in adipose tissue of pigs under the circumstance of fixed feed allowance. Eur. J. Nutr. 2019. [Google Scholar] [CrossRef]
- Honikel, K.O.; Kim, C.J.; Hamm, R.; Roncales, P. Sarcomere shortening of prerigor muscle and its influence on drip loss. Meat Sci. 1986, 16, 267–282. [Google Scholar] [CrossRef]
- Liu, J.B.; Yan, H.L.; Zhang, Y. Effects of dietary energy and protein content and lipid source on growth performance and carcass traits in Pekin ducks. Poult. Sci. 2019, 98, 4829–4837. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△cT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Berrocoso, J.D. Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal 2015, 9, 1441–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houdijk, J.G.M.; Bosch, M.W.; Verstegen, M.W.A.; Berenpas, H.J. Effects of dietary oligosaccharides on the growth performance and faecal characteristics of young growing pigs. Anim. Feed Sci. Technol. 1998, 71, 35–48. [Google Scholar] [CrossRef]
- Saleri, R.; Baratta, M.; Mainardi, G.L.; Renaville, R.; Giustina, A.; Quintavalla, F.; Tamanini, C. IGF-I, IGFBP-2 and -3 but not GH concentrations are different in normal and poor growing piglets. Reprod. Nutr. Dev. 2001, 41, 163–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klip, A.; Pâquet, M.R. Glucose transport and glucose transporters in muscle and their metabolic regulation. Diabetes Care 1990, 13, 228–243. [Google Scholar] [CrossRef]
- Redpath, N.T.; Foulstone, E.J.; Proud, C.G. Regulation of translation elongation factor-2 by insulin via a rapamycin-sensitive signalling pathway. EMBO J. 1996, 15, 2291–2297. [Google Scholar] [CrossRef]
- Gingras, A.C.; Raught, A.B.; Sonenberg, N. eIF4 Initiation Factors: Effectors of mRNA Recruitment to Ribosomes and Regulators of Translation. Annu. Rev. Biochem. 2003, 68, 913–963. [Google Scholar] [CrossRef]
- Kjosetal, N.P.; Overland, M.; Matre, T. Pig feed from sugar beetpulp. Feed Mix 1999, 7, 22–24. [Google Scholar]
- Jia, Y. Effects of Dietary Fiber Sources on Growth Performance, Carcass Traits and Meat Quality of Finishing Pigs. Chin. J. Anim. Nutr. 2012, 24, 1421–1428. [Google Scholar]
- Wang, Y.Z.; Xu, Z.R.; Feng, J. The effect of betaine and dl-methionine on growth performance and carcass characteristics in meat ducks. Anim. Feed Sci. Technol. 2004, 116, 151–159. [Google Scholar] [CrossRef]
- Yano, K.; Bauchat, J.R.; Liimatta, M.B.; Clemmons, D.R.; Duan, C. Down-regulation of protein kinase C inhibits insulin-like growth factor I-induced vascular smooth muscle cell proliferation, migration, and gene expression. Endocrinology 1999, 140, 4622–4632. [Google Scholar] [CrossRef] [PubMed]
- Schiaffino, S.; Reggiani, C. Molecular diversity of myofibrillar proteins: Gene regulation and functional significance. Physiol. Rev. 1996, 76, 371–423. [Google Scholar] [CrossRef]
- Lefaucheur, L.; Ecolan, P.; Plantard, L.; Gueguen, N. New insights into muscle fiber types in the pig. J. Histochem. Cytochem. 2002, 50, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yan, H.L.; Zhou, P.; Zhang, Z.Z.; Liu, J.B. MicroRNA-152 Promotes Slow-TWItch Myofiber Formation via Targeting Uncoupling Protein-3 Gene. Animals 2019, 9, 669. [Google Scholar] [CrossRef]
- Lefaucheur, L. A second look into fibre typing—Relation to meat quality. Meat Sci. 2010, 84, 257–270. [Google Scholar] [CrossRef]
- Wimmers, K.; Ngu, N.T.; Jennen, D.G.J.; Tesfaye, D.; Murani, E.; Schellander, K.; Ponsuksili, S. Relationship between myosin heavy chain isoform expression and muscling in several diverse pig breeds. J. Anim. Sci. 2008, 86, 795–803. [Google Scholar] [CrossRef]
- Asnaghi, L.; Bruno, P.M.; Nicolin, A. mTOR: A protein kinase switching between life and death. Pharmacol. Res. 2004, 50, 545–549. [Google Scholar] [CrossRef]
- Bibollet-Bahena, O.; Almazan, G. IGF-1-stimulated protein synthesis in oligodendrocyte progenitors requires PI3K/mTOR/Akt and MEK/ERK pathways. J. Neurochem. 2009, 109, 1440–1451. [Google Scholar] [CrossRef]
- Bodine, S.C.; Latres, E.; Baumhueter, S.; Lai, V.K.; Nunez, L.; Clarke, B.A.; Poueymirou, W.T.; Panaro, F.J.; Na, E.; Dharmarajan, K. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001, 294, 1704–1708. [Google Scholar] [CrossRef] [PubMed]
- Emilie, V.H.; Seong-Il, L.; Sricharan, B.; Griffin, T.J.; Do-Hyung, K. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 2007, 9, 316–323. [Google Scholar]
- Mcelhinny, A.S.; Kazumi, K.; Hiroyuki, S.; Siegfried, L.; Gregorio, C.C. Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1. J. Cell Biol. 2002, 157, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Sacheck, J.M.; Ohtsuka, A.; Mclary, S.C.; Goldberg, A.L. IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E591. [Google Scholar] [CrossRef] [PubMed]
Ingredients, % | 1–32 d | 32–70 d | 70–96 d |
---|---|---|---|
Corn | 76.55 | 80.30 | 84.00 |
Soybean meal | 16.71 | 15.43 | 10.87 |
Wheat bran | 1.00 | ||
Fish meal | 2.70 | ||
Soybean oil | 1.40 | 1.40 | 1.50 |
Limestone | 0.73 | 0.70 | 0.63 |
CaHPO4 | 0.47 | 0.66 | 0.53 |
NaCl | 0.30 | 0.35 | 0.35 |
L-Lysine HCl | 0.49 | 0.51 | 0.48 |
DL-Methionine | 0.08 | 0.07 | 0.07 |
L-Threonine | 0.15 | 0.16 | 0.15 |
L-Tryptophan | 0.04 | 0.04 | 0.04 |
Choline chloride | 0.15 | 0.15 | 0.15 |
Vitamin premix 1 | 0.03 | 0.03 | 0.03 |
Mineral premix 2 | 0.20 | 0.20 | 0.20 |
Total | 100.00 | 100.00 | 100.00 |
Nutrients levels 3 | |||
DE (Mcal/kg) | 3.36 | 3.36 | 3.37 |
CP (%) | 15.69 | 13.75 | 12.13 |
CF (%) | 2.22 | 2.20 | 2.05 |
Ca (%) | 0.66 | 0.59 | 0.52 |
TP (%) | 0.50 | 0.46 | 0.42 |
AP (%) | 0.31 | 0.27 | 0.2 |
D-Lys | 1.03 | 0.90 | 0.78 |
D-Met | 0.30 | 0.25 | 0.23 |
D-Met + Cys | 0.49 | 0.43 | 0.39 |
D-Thr | 0.62 | 0.55 | 0.49 |
Gene | Accession Number | Primer Sequence (5’–3’) | Size (bp) |
---|---|---|---|
β-actin | XM_003124280.5 | F: TGGAACGGTGAAGGTGACAGC R: GCTTTTGGGAAGGCAGGGACT | 177 |
mTOR | XM_003127584.6 | F: GCACAAGGACGGATTCCTAC R: CACTTGCGTTGGGACATC | 248 |
MuRF-1 | NM_001184756.1 | F: AACCTGGAGAAGCAGCTGAT R: TAGGGATTTGCAGCCTGGAA | 128 |
Atrogin1 | NM_001044588.1 | F: TGGACTTCTCGACTGCCATT R: GCTATCAGTTCCAACAGCCG | 70 |
HSL | NM_214315.3 | F: CACAAGGGCTGCTTCTACGG R: AAGCGGCCACTGGTGAAGAG | 167 |
FASN | NM_001099930.1 | F: CTACGAGGCCATTGTGGACG R: AGCCTATCATGCTGTAGCCC | 146 |
GCK | XM_013985832.2 | F: ATCAAACGGAGAGGGGACTT R: ACAATCATGCCAACCTCACA | 113 |
MyHC I | NM_213855.1 | F: GTTTGCCAACTATGCTGGGG R: TGTGCAGAGCTGACACAGTC | 95 |
MyHC IIa | NM214136.1 | F: CTCTGAGTTCAGCAGCCATGA R: GATGTCTTGGCATCAAAGGGC | 127 |
MyHC IIb | NM_001123141.1 | F: GAGGTACATCTAGTGCCCTGC R: GCAGCCTCCCCAAAAATAGC | 83 |
MyHC IIx | NM_001104951.2 | F: TTGACTGGGCTGCCATCAAT R: GCCTCAATGCGCTCCTTTTC | 111 |
Items | CON | INU | p-Value |
---|---|---|---|
1–32 d | |||
Initial weight, kg | 22.28 ± 0.29 | 22.26 ± 0.27 | 0.967 |
Final weight, kg | 45.22 ± 0.95 | 44.30 ± 0.51 | 0.414 |
ADG, g/d | 716.88 ± 32.32 | 688.59 ± 16.76 | 0.455 |
ADFI, g/d | 1434.98 ± 25.49 | 1434.64 ± 49.49 | 0.995 |
F/G | 2.00 ± 0.06 | 2.08 ± 0.04 | 0.385 |
32–70 d | |||
Initial weight, kg | 45.22 ± 0.95 | 44.30 ± 0.51 | 0.414 |
Final weight, kg | 81.62 ± 1.82 | 84.16 ± 1.58 | 0.316 |
ADG, g/d | 933.29 ± 24.25 | 1022.05 ± 34.59 | 0.062 |
ADFI, g/d | 2610 ± 60.36 | 2650.30 ± 97.15 | 0.732 |
F/G | 2.80 ± 0.07 b | 2.59 ± 0.06 a | 0.045 |
70–96 d | |||
Initial weight, kg | 81.62 ± 1.82 | 84.16 ± 1.58 | 0.316 |
Final weight, kg | 108.05 ± 2.31 | 112.36 ± 1.79 | 0.171 |
ADG, g/d | 1057.4 ± 23.20 | 1128.33 ± 28.31 | 0.081 |
ADFI, g/d | 3086.52 ± 67.97 b | 3336.51 ± 76.50 a | 0.035 |
F/G | 2.92 ± 0.07 | 2.96 ± 0.03 | 0.647 |
1–96 d | |||
Initial weight, kg | 22.28 ± 0.29 | 22.26 ± 22.26 | 0.967 |
Final weight, kg | 108.05 ± 2.31 | 112.36 ± 1.79 | 0.171 |
ADG, g/d | 893.47 ± 25.60 | 938.58 ± 18.42 | 0.183 |
ADFI, g/d | 2342.42 ± 42.16 | 2436.11 ± 49.31 | 0.179 |
F/G | 2.63 ± 0.06 | 2.59 ± 0.03 | 0.649 |
Items | CON | INU | p-Value |
---|---|---|---|
Triglycerides, mmol/L | 0.42 ± 0.02 | 0.49 ± 0.04 | 0.161 |
Total cholesterol, mmol/L | 3.74 ± 0.22 | 3.65 ± 0.11 | 0.705 |
HDL, mmol/L | 5.30 ± 0.20 | 5.61 ± 0.38 | 0.503 |
LDL, mmol/L | 1.25 ± 0.03 b | 1.51 ± 0.09 a | 0.019 |
Insulin, mIU/L | 48.61 ± 1.34 b | 53.63 ± 1.67 a | 0.042 |
Glucose, mmol/L | 4.15 ± 0.18 | 3.91 ± 0.32 | 0.531 |
IGF-1, ug/L | 2.19 ± 0.06 b | 2.32 ± 0.11 a | 0.025 |
GSH-Px, U/mL | 1613.25 ± 106.16 | 1726.86 ± 107.18 | 0.468 |
MDA, nmol/mL | 2.00 ± 0.09 | 1.93 ± 0.09 | 0.567 |
CAT, U/mL | 6.77 ± 0.49 | 7.46 ± 0.89 | 0.518 |
T-AOC, U/mL | 4.99 ± 0.56 | 3.93 ±0.42 | 0.074 |
SOD, U/mL | 71.77 ± 4.86 | 76.63 ± 2.60 | 0.403 |
Items | CON | INU | p-Value |
---|---|---|---|
Final body weight, kg | 108.05 ± 2.31 | 112.36 ± 1.79 | 0.171 |
Carcass weight, kg | 75.13 ± 2.50 a | 81.13 ± 1.44 b | 0.025 |
Dressing percentage, % | 69.52 ± 0.95 a | 72.20 ± 0.24 b | 0.040 |
Carcass length, cm | 101.80 ± 0.96 | 99.40 ± 1.31 | 0.111 |
Backfat depth, mm | 26.16 ± 2.57 | 29.76 ± 2.90 | 0.309 |
LEA, cm2 | 51.69 ± 1.52 | 60.52 ± 4.29 | 0.097 |
pH45min | 6.66 ± 0.17 | 6.48 ±0.07 | 0.376 |
pH24h | 6.07 ± 0.02 | 6.06 ± 0.01 | 0.472 |
L*45 min | 42.75 ± 0.45 | 41.40 ± 0.60 | 0.114 |
L*24 h | 50.93 ± 1.29 | 49.78 ± 0.71 | 0.457 |
a*45 min | 5.54 ± 0.34 | 4.71 ± 0.20 | 0.074 |
a*24 h | 8.91 ± 0.64 | 8.16 ± 0.37 | 0.338 |
b*45 min | 2.43 ± 025 | 2.22 ± 0.27 | 0.592 |
b*24 h | 7.70 ± 0.76 | 9.77 ± 0.48 | 0.793 |
Drip loss, % | 2.18 ± 0.32 | 2.05 ± 0.12 | 0.453 |
Cook loss, % | 35.38 ± 1.21 | 35.02 ± 0.40 | 0.788 |
Shear force, kg | 3.47 ± 0.17 | 3.12 ± 0.16 | 0.342 |
Items | CON | INU | p-Value |
---|---|---|---|
Liver glycogen content, % | 7.74 ± 0.40 | 7.65 ± 0.55 | 0.893 |
Muscle glycogen content, % | 1.33 ± 0.10 | 1.53 ± 0.08 | 0.185 |
Liver crude fat content, % | 5.37 ± 0.22 | 5.66 ± 0.31 | 0.486 |
IMF content, % | 3.14 ± 0.16 | 3.38 ± 0.17 | 0.337 |
Items | CON | INU | p-Value |
---|---|---|---|
MyHC I | 1.00 ± 0.17 | 0.78 ± 0.16 | 0.583 |
MyHC IIx | 1.00 ± 0.23 | 1.06 ± 0.09 | 0.943 |
MyHC IIa | 1.00 ± 0.21 | 0.98 ± 0.09 | 0.934 |
MyHC IIb | 1.00 ± 0.12 | 1.65 ± 0.17 | 0.029 |
GCK | 1.00 ± 0.15 | 0.92 ± 0.22 | 0.728 |
HSL | 1.00 ± 0.09 | 1.53 ± 0.15 | 0.560 |
FASN | 1.00 ± 0.23 | 0.90 ± 0.11 | 0.358 |
mTOR | 1.00 ± 0.13 | 1.78 ± 0.18 | 0.024 |
Atrogin1 | 1.00 ± 0.19 | 0.73 ± 0.08 | 0.323 |
MuRF-1 | 1.00 ± 0.19 | 0.52 ± 0.04 | 0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Chen, D.; Yu, B.; Huang, Z.; Luo, Y.; Zheng, P.; Mao, X.; Yu, J.; Luo, J.; He, J. Effect of Dietary Inulin Supplementation on Growth Performance, Carcass Traits, and Meat Quality in Growing–Finishing Pigs. Animals 2019, 9, 840. https://doi.org/10.3390/ani9100840
Wang W, Chen D, Yu B, Huang Z, Luo Y, Zheng P, Mao X, Yu J, Luo J, He J. Effect of Dietary Inulin Supplementation on Growth Performance, Carcass Traits, and Meat Quality in Growing–Finishing Pigs. Animals. 2019; 9(10):840. https://doi.org/10.3390/ani9100840
Chicago/Turabian StyleWang, Weikang, Daiwen Chen, Bing Yu, Zhiqing Huang, Yuheng Luo, Ping Zheng, Xiangbin Mao, Jie Yu, Junqiu Luo, and Jun He. 2019. "Effect of Dietary Inulin Supplementation on Growth Performance, Carcass Traits, and Meat Quality in Growing–Finishing Pigs" Animals 9, no. 10: 840. https://doi.org/10.3390/ani9100840
APA StyleWang, W., Chen, D., Yu, B., Huang, Z., Luo, Y., Zheng, P., Mao, X., Yu, J., Luo, J., & He, J. (2019). Effect of Dietary Inulin Supplementation on Growth Performance, Carcass Traits, and Meat Quality in Growing–Finishing Pigs. Animals, 9(10), 840. https://doi.org/10.3390/ani9100840