Modeling the Spatial Distribution of Plateau Pika (Ochotona curzoniae) in the Qinghai Lake Basin, China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Survey
2.3. Modeling Approach
2.4. Environmental Variables
2.4.1. Topographic Data
2.4.2. Soil Data
2.4.3. Vegetation Data
2.4.4. River Distribution
2.4.5. Bioclimatic Data
2.4.6. Land Surface Temperature
2.5. Anthropogenic Variables
2.6. Selection of Variables
3. Results
3.1. Plateau Pika’s Distribution in Qinghai Lake Basin
3.2. Macrohabitat Factors Affecting Plateau Pika’s Distribution
3.3. Impact of Human Activities on Plateau Pika’s Distribution
4. Discussion
4.1. The Importance of Human Activities to Plateau Pika’s Distribution
4.2. Environment Factors Affecting Plateau Pika’s Distribution
4.3. Modeling Plateau Pika’s Distribution with Maxent
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Harris, R.B. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. J. Arid Environ. 2010, 74, 1–12. [Google Scholar] [CrossRef]
- Zhang, H.F.; Liu, F.G.; Zhou, Q.; Duo, H.R. Degradation mechanism of the grass in Qinghai Plateau and its prevention and control countermeasures. J. Nat. Disasters 2004, 13, 115–120, (In Chinese with English abstract). [Google Scholar]
- Smith, A.T.; Badingqiuying; Wilson, M.C.; Hogan, B.W. Functional-trait ecology of the plateau pika Ochotona curzoniae in the Qinghai–Tibetan Plateau ecosystem. Integr. Zool. 2019, 14, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.H.; Smith, A.T. Keystone status of plateau pikas (Ochotona curzoniae): Effect of control on biodiversity of native birds. Biodivers. Conserv. 2003, 12, 1901–1912. [Google Scholar] [CrossRef]
- Chen, J.J.; Yi, S.H.; Qin, Y. The contribution of plateau pika disturbance and erosion on patchy alpine grassland soil on the Qinghai-Tibetan Plateau: Implications for grassland restoration. Geoderma 2017, 297, 1–9. [Google Scholar] [CrossRef]
- Smith, A.T.; Foggin, J.M. The plateau pika (Ochotona curzoniae) is a keystone species for biodiversity on the Tibetan plateau. Anim. Conserv. 1999, 2, 235–240. [Google Scholar] [CrossRef]
- Guo, Z.G.; Zhou, X.R.; Hou, Y. Effect of available burrow densities of plateau pika (Ochotona curzoniae) on soil physicochemical property of the bare land and vegetation land in the Qinghai-Tibetan plateau. Acta Ecol. Sin. 2012, 32, 104–110. [Google Scholar] [CrossRef]
- Yu, C.; Pang, X.P.; Wang, Q.; Jin, S.H.; Shu, C.C.; Guo, Z.G. Soil nutrient changes induced by the presence and intensity of plateaupika (Ochotona curzoniae) disturbances in the Qinghai-Tibet plateau, China. Ecol. Eng. 2017, 106, 1–9. [Google Scholar] [CrossRef]
- Aho, K.; Huntly, N.; Moen, J.; Oksanen, T. Pikas (Ochotona princeps: Lagomorpha) as allogenic engineers in an alpine ecosystem. Oecologia 1998, 114, 405–409. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, S.K.; Gao, Q.Z.; Liu, S.L.; Liang, Y.; Cao, X.J. Responses of alpine vegetation and soils to the disturbance of plateau pika (Ochotona curzoniae) at burrow level on the Qinghai-Tibetan Plateau of China. Ecol. Eng. 2016, 88, 232–236. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.M.; Wang, Z.H.; Giraudoux, P.; Takahashi, K.; Alastair, G. Primary study on habitat choice of plateau pika (Ochotona curzoniae). J. Sichuan Univ. (Natural Science Edition) 2004, 41, 1041–1045, (In Chinese with English abstract). [Google Scholar]
- Zhang, H.J.; Xie, J.X.; Li, X.L. The distribution of the plateau pika and correlation with soil properties of Henan County in Qinghai. J. Qinghai Univ. (Natural Science Edition) 2016, 34, 14–21, (In Chinese with English abstract). [Google Scholar]
- Liu, Y.S.; Fan, J.W.; Shi, Z.J.; Yang, X.H.; Harris, W. Relationships between plateau pika (Ochotona curzoniae) densities and biomass and biodiversity indices of alpine meadow steppe on the Qinghai–Tibet Plateau China. Ecol. Eng. 2017, 102, 509–518. [Google Scholar] [CrossRef]
- Anthony, D.A.; Pech, R.P.; Chris, D.; Jiebu; Zhang, Y.M.; Lin, H. Livestock grazing, plateau pikas and the conservation of avian biodiversity on the Tibetan plateau. Biol. Conserv. 2008, 141, 1972–1981. [Google Scholar]
- Li, X.C.; Wang, Z.N.; Wang, D.L.; Wang, L.; Pan, D.F.; Li, J.; De, K.J.; Seastedt, T.R. Livestock grazing impacts on plateau pika (Ochotona curzoniae) vary by species identity. Agric. Ecosyst. Environ. 2019, 275, 23–31. [Google Scholar] [CrossRef]
- Zhou, L.; Yin, B.F.; Yang, S.M.; Huai, H.Y.; Li, S.P.; Zhang, Y.L.; Wei, W.H. Effects of Qinghai-Tibet Highway on genetic differentiation of plateau pika (Ochotona curzoniae). Acta Ecol. Sin. 2006, 26, 3572–3577, (In Chinese with English abstract). [Google Scholar]
- Pech, R.P.; Jiebu; Anthony, A.D.; Zhang, Y.M.; Lin, H. Population dynamics and responses to management of plateau pikas Ochotona curzoniae. J. Appl. Ecol. 2007, 44, 615–624. [Google Scholar] [CrossRef]
- Liu, H.W.; Zhou, L. Modeling dispersal of the plateau pika (Ochotona curzoniae) using a cellular automata model. Ecol. Modell. 2007, 202, 487–492. [Google Scholar] [CrossRef]
- Liu, H.W.; Chen, Y.M.; Zhou, L.; Jin, Z. The effects of management on population dynamics of plateau pika. Math. Comp. Model. 2013, 57, 525–535. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Sutkowska, A.; Pasierbiński, A.; Warzecha, T.; Mitka, J. Multiple cryptic refugia of forest grass Bromus benekenii in Europe as revealed by ISSR fingerprinting and species distribution modelling. Plant Syst. Evol. 2014, 300, 1437–1452. [Google Scholar] [CrossRef]
- McKenzie, D.; Halpern, C.B. Modeling the distributions of shrub species in Pacific northwest forests. For. Ecol. Manag. 1999, 114, 293–307. [Google Scholar] [CrossRef]
- Blach-Overgaard, A.; Svenning, J.-C.; Dransfield, J.; Greve, M.; Balslev, H. Determinants of palm species distributions across Africa: The relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography 2010, 33, 380–391. [Google Scholar] [CrossRef]
- Titeux, N.; Maes, D.; Marmion, M.; Luoto, M.; Heikkinen, R.K. Inclusion of soil data improves the performance of bioclimatic envelope models for insect species distributions in temperate Europe. J. Biogeogr. 2009, 36, 1459–1473. [Google Scholar] [CrossRef]
- Sherwood, J.L.; Stites, A.J.; Dreslik, M.J.; Tiemann, J.S. Predicting the range of a regionally threatened, benthic fish using species distribution models and field surveys. J. Fish Biol. 2018, 93, 972–977. [Google Scholar] [CrossRef]
- Ceia-Hasse, A.; Sinervo, B.; Vicente, L.; Pereira, H.M. Integrating ecophysiological models into species distribution projections of European reptile range shifts in response to climate change. Ecography 2014, 37, 679–688. [Google Scholar] [CrossRef]
- Hernandez, P.A.; Franke, I.; Herzog, S.K.; Pacheco, V.; Paniagua, L.; Quintana, H.L.; Soto, A.; Swenson, J.J.; Tovar, C.; Valqui, T.H.; et al. Predicting species distributions in poorly-studied landscapes. Biodivers. Conserv. 2008, 17, 1353–1366. [Google Scholar] [CrossRef]
- Silva, T.R.; Medeiros, M.B.; Noronha, S.E.; Pinto, J.R.R. Species distribution models of rare tree species as an evaluation tool for synergistic human impacts in the Amazon rainforest. Braz. J. Bot. 2017, 40, 963–971. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.W.; Zhou., L.; Liu, W.; Zhou, H.K. Using a cellular-automata model to investigate the effects of grazing on plateau pika population dynamics. Int. J. Biomath. 2011, 4, 275–287. [Google Scholar] [CrossRef]
- Ma, R.J.; Jiang, Z.G. Impacts of environmental degradation on wild vertebrates in the Qinghai Lake drainage. Acta Ecol. Sin. 2006, 26, 3066–3073, (In Chinese with English abstract). [Google Scholar]
- Shi, H.X.; Yu, J.L. Influence of burrowing rodent density plots on the alpine Kobresia meadows structure and soil water content. Chin. J. Grassl. 2010, 32, 109–112, (In Chinese with English abstract). [Google Scholar]
- Sun, F.D.; Chen, W.Y.; Liu, L.; Liu, W.; Lu, C.X.; Smith, P. The density of active burrows of plateau pika in relation to biomass allocation in the alpine meadow ecosystems of the Tibetan Plateau. Biochem. Syst. Ecol. 2015, 58, 257–264. [Google Scholar] [CrossRef]
- Jiang, Y.B.; Wang, T.J.; de Bie, C.A.J.M.; Skidmore, A.K.; Liu, X.H.; Song, S.S.; Zhang, L.; Wang, J.; Shao, X.M. Satellite-derived vegetation indices contribute significantlyto the prediction of epiphyllous liverworts. Ecol. Indic. 2014, 38, 72–80. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Bae, M.; Jin, D. On a robust MaxEnt process regression model with sample-selection. Entropy 2018, 20, 262. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 2009, 19, 181–197. [Google Scholar] [CrossRef]
- Prates-Clark, C.D.C.; Saatchi, S.S.; Agosti, D. Predicting geographical distribution models of high-value timber trees in the Amazon Basin using remotely sensed data. Ecol. Modell. 2008, 211, 309–323. [Google Scholar] [CrossRef]
- Scarnati, L.; Attorre, F.; Farcomeni, A.; Francesconi, F.; De Sanctis, M. Modelling the spatial distribution of tree species with fragmented populations from abundance data. Community Ecol. 2009, 10, 215–224. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef]
- Taheri, S.M.; Hesamian, G. A generalization of the Wilcoxon signed-rank test and its applications. Stat. Pap. 2013, 54, 457–470. [Google Scholar] [CrossRef]
- Nationwide Soil Survey Office of China. 1:1000000 Soil Map of People’s Republic of China; Xi’an Cartographic Publishing House: Xi’an, China, 1995; p. J-47. (In Chinese) [Google Scholar]
- Hengl, T.; de Jorge, M.J.; Robert, A.M.; Niels, H.B.; Gerard, B.M.H.; Eloi, R.; Alessandro, S.-R.; Bas, K.; Johan, G.B.L.; Markus, G.W.; et al. SoilGrids1km—global soil information based on automated mapping. PLoS ONE 2014, 9, e105992. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.J.; Wu, Y.N.; Liu, W.L.; Li, X.Y.; Lin, H. Microclimate response of soil to plateau pika’s disturbance in the northeast Qinghai-Tibet Plateau. Eur. J. Soil Sci. 2018, 69, 232–244. [Google Scholar] [CrossRef]
- Hou, X.Y. 1:1000000 vegetation map of People’s Republic of China; Science Press: Beijing, China, 2001; p. J-47. (In Chinese) [Google Scholar]
- Jönsson, P.; Eklundh, L. TIMESAT—a program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef]
- Fourcade, Y.; Engler, J.O.; Rödder, D.; Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PLoS ONE 2014, 9, e97122. [Google Scholar] [CrossRef]
- Takeyama, S. Maximum likelihood analysis of sensitivity test data according to up and down test plan. Sci. Technol. Energy Mater. 2012, 73, 8–14. [Google Scholar]
- Rosner, B.; Glynn, R.J.; Lee, T.M.-L. The Wilcoxon signed rank test for paired comparisons of clustered data. Biometrics 2006, 62, 185–192. [Google Scholar] [CrossRef]
- Niu, K.C.; Feng, F.; Xu, Q.; Badingqiuying; Zhang, S.T. Impoverished soil supports more plateau pika through lowered diversity of plant functional traits in Tibetan alpine meadows. Agric. Ecosyst. Environ. 2019, 285, 106621. [Google Scholar] [CrossRef]
- Wang, D.H.; Sun., R.Y.; Wang, Z.W. Effects of photoperiod and temperature on brown adipose tissue thermogenic properties in plateau pika. Zool. Res. 1999, 20, 347–351, (In Chinese with English abstract). [Google Scholar]
- Fang, Y.C.; Shi, Q.M. The harm and control of Plateau Pika in Gansu Grassland. Agric. Gansu 1998, 6, 41–42. (In Chinese) [Google Scholar]
- Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A. Effects of sample size on the performance of species distribution models. Divers. Distrib. 2008, 14, 763–773. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, Y.J.; Cong, N.; Wimberly, M.; Wang, L.; Huang, K.; Li, J.X.; Zu, J.X.; Zhu, Y.X.; Chen, N. Spatial pattern of pika holes and their effects on vegetation coverage on the Tibetan Plateau: An analysis using unmanned aerial vehicle imagery. Ecol. Indic. 2019, 107, 105551. [Google Scholar] [CrossRef]
Variable | Abbreviation | Units |
---|---|---|
Annual mean air temperature | bio1 | °C |
Air temperature diurnal range (mean of monthly (maximum–minimum)) | bio2 | °C |
Isothermality (bio2/bio7) | bio3 | Dimensionless |
Air temperature seasonality (standard deviation) | bio4 | °C |
Maximum air temperature of warmest month | bio5 | °C |
Minimum air temperature of coldest month | bio6 | °C |
Air temperature annual range (bio5–bio6) | bio7 | °C |
Mean air temperature of wettest quarter | bio8 | °C |
Mean air temperature of driest quarter | bio9 | °C |
Mean air temperature of warmest quarter | bio10 | °C |
Mean air temperature of coldest quarter | bio11 | °C |
Annual precipitation | bio12 | mm |
Precipitation of wettest month | bio13 | mm |
Precipitation of driest month | bio14 | mm |
Precipitation seasonality (coefficient of variation) | bio15 | Dimensionless |
Precipitation of wettest quarter | bio16 | mm |
Precipitation of driest quarter | bio17 | mm |
Precipitation of warmest quarter | bio18 | mm |
Precipitation of coldest quarter | bio19 | mm |
Remained Variable | Abbreviation |
---|---|
EVI standard deviation | 2015evi_std |
Altitude | altitude |
Air temperature diurnal range (mean of monthly (maximum–minimum)) | bio2 |
Air temperature seasonality (standard deviation) | bio4 |
Mean air temperature of wettest quarter | bio8 |
Precipitation of wettest quarter | bio16 |
Distance to resident site | dis_to_resident |
Distance to river | dis_to_river |
Distance to road | dis_to_road |
Mean daytime land surface temperature | lst_day_mean |
Soil type | soil_type |
Vegetation type | vegetation_type |
Model | Training AUC | Test AUC | TSS | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
With human factors | 0.9539 | 0.0069 | 0.8954 | 0.0337 | 0.6723 | 0.0800 |
Without human factors | 0.9355 | 0.0071 | 0.8608 | 0.0300 | 0.6222 | 0.0728 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.-N.; Ma, Y.-J.; Liu, W.-L.; Zhang, W.-Z. Modeling the Spatial Distribution of Plateau Pika (Ochotona curzoniae) in the Qinghai Lake Basin, China. Animals 2019, 9, 843. https://doi.org/10.3390/ani9100843
Wu Y-N, Ma Y-J, Liu W-L, Zhang W-Z. Modeling the Spatial Distribution of Plateau Pika (Ochotona curzoniae) in the Qinghai Lake Basin, China. Animals. 2019; 9(10):843. https://doi.org/10.3390/ani9100843
Chicago/Turabian StyleWu, Yi-Nan, Yu-Jun Ma, Wen-Ling Liu, and Wu-Zhao Zhang. 2019. "Modeling the Spatial Distribution of Plateau Pika (Ochotona curzoniae) in the Qinghai Lake Basin, China" Animals 9, no. 10: 843. https://doi.org/10.3390/ani9100843
APA StyleWu, Y. -N., Ma, Y. -J., Liu, W. -L., & Zhang, W. -Z. (2019). Modeling the Spatial Distribution of Plateau Pika (Ochotona curzoniae) in the Qinghai Lake Basin, China. Animals, 9(10), 843. https://doi.org/10.3390/ani9100843